/* * ethtool.c: Linux ethernet device configuration tool. * * Copyright (C) 1998 David S. Miller (davem@dm.cobaltmicro.com) * Portions Copyright 2001 Sun Microsystems * Kernel 2.4 update Copyright 2001 Jeff Garzik * Wake-on-LAN,natsemi,misc support by Tim Hockin * Portions Copyright 2002 Intel * Portions Copyright (C) Sun Microsystems 2008 * do_test support by Eli Kupermann * ETHTOOL_PHYS_ID support by Chris Leech * e1000 support by Scott Feldman * e100 support by Wen Tao * ixgb support by Nicholas Nunley * amd8111e support by Reeja John * long arguments by Andi Kleen. * SMSC LAN911x support by Steve Glendinning * Rx Network Flow Control configuration support * Various features by Ben Hutchings ; * Copyright 2009, 2010 Solarflare Communications * MDI-X set support by Jesse Brandeburg * Copyright 2012 Intel Corporation * * TODO: * * show settings for all devices */ #include "internal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MAX_ADDR_LEN #define MAX_ADDR_LEN 32 #endif #ifndef HAVE_NETIF_MSG enum { NETIF_MSG_DRV = 0x0001, NETIF_MSG_PROBE = 0x0002, NETIF_MSG_LINK = 0x0004, NETIF_MSG_TIMER = 0x0008, NETIF_MSG_IFDOWN = 0x0010, NETIF_MSG_IFUP = 0x0020, NETIF_MSG_RX_ERR = 0x0040, NETIF_MSG_TX_ERR = 0x0080, NETIF_MSG_TX_QUEUED = 0x0100, NETIF_MSG_INTR = 0x0200, NETIF_MSG_TX_DONE = 0x0400, NETIF_MSG_RX_STATUS = 0x0800, NETIF_MSG_PKTDATA = 0x1000, NETIF_MSG_HW = 0x2000, NETIF_MSG_WOL = 0x4000, }; #endif static void exit_bad_args(void) __attribute__((noreturn)); static void exit_bad_args(void) { fprintf(stderr, "ethtool: bad command line argument(s)\n" "For more information run ethtool -h\n"); exit(1); } typedef enum { CMDL_NONE, CMDL_BOOL, CMDL_S32, CMDL_U8, CMDL_U16, CMDL_U32, CMDL_U64, CMDL_BE16, CMDL_IP4, CMDL_STR, CMDL_FLAG, CMDL_MAC, } cmdline_type_t; struct cmdline_info { const char *name; cmdline_type_t type; /* Points to int (BOOL), s32, u16, u32 (U32/FLAG/IP4), u64, * char * (STR) or u8[6] (MAC). For FLAG, the value accumulates * all flags to be set. */ void *wanted_val; void *ioctl_val; /* For FLAG, the flag value to be set/cleared */ u32 flag_val; /* For FLAG, points to u32 and accumulates all flags seen. * For anything else, points to int and is set if the option is * seen. */ void *seen_val; }; struct flag_info { const char *name; u32 value; }; static const struct flag_info flags_msglvl[] = { { "drv", NETIF_MSG_DRV }, { "probe", NETIF_MSG_PROBE }, { "link", NETIF_MSG_LINK }, { "timer", NETIF_MSG_TIMER }, { "ifdown", NETIF_MSG_IFDOWN }, { "ifup", NETIF_MSG_IFUP }, { "rx_err", NETIF_MSG_RX_ERR }, { "tx_err", NETIF_MSG_TX_ERR }, { "tx_queued", NETIF_MSG_TX_QUEUED }, { "intr", NETIF_MSG_INTR }, { "tx_done", NETIF_MSG_TX_DONE }, { "rx_status", NETIF_MSG_RX_STATUS }, { "pktdata", NETIF_MSG_PKTDATA }, { "hw", NETIF_MSG_HW }, { "wol", NETIF_MSG_WOL }, }; struct off_flag_def { const char *short_name; const char *long_name; const char *kernel_name; u32 get_cmd, set_cmd; u32 value; }; static const struct off_flag_def off_flag_def[] = { { "rx", "rx-checksumming", "rx-checksum", ETHTOOL_GRXCSUM, ETHTOOL_SRXCSUM, ETH_FLAG_RXCSUM }, { "tx", "tx-checksumming", "tx-checksum-*", ETHTOOL_GTXCSUM, ETHTOOL_STXCSUM, ETH_FLAG_TXCSUM }, { "sg", "scatter-gather", "tx-scatter-gather*", ETHTOOL_GSG, ETHTOOL_SSG, ETH_FLAG_SG }, { "tso", "tcp-segmentation-offload", "tx-tcp*-segmentation", ETHTOOL_GTSO, ETHTOOL_STSO, ETH_FLAG_TSO }, { "ufo", "udp-fragmentation-offload", "tx-udp-fragmentation", ETHTOOL_GUFO, ETHTOOL_SUFO, ETH_FLAG_UFO }, { "gso", "generic-segmentation-offload", "tx-generic-segmentation", ETHTOOL_GGSO, ETHTOOL_SGSO, ETH_FLAG_GSO }, { "gro", "generic-receive-offload", "rx-gro", ETHTOOL_GGRO, ETHTOOL_SGRO, ETH_FLAG_GRO }, { "lro", "large-receive-offload", "rx-lro", 0, 0, ETH_FLAG_LRO }, { "rxvlan", "rx-vlan-offload", "rx-vlan-hw-parse", 0, 0, ETH_FLAG_RXVLAN }, { "txvlan", "tx-vlan-offload", "tx-vlan-hw-insert", 0, 0, ETH_FLAG_TXVLAN }, { "ntuple", "ntuple-filters", "rx-ntuple-filter", 0, 0, ETH_FLAG_NTUPLE }, { "rxhash", "receive-hashing", "rx-hashing", 0, 0, ETH_FLAG_RXHASH }, }; struct feature_def { char name[ETH_GSTRING_LEN]; int off_flag_index; /* index in off_flag_def; negative if none match */ }; struct feature_defs { size_t n_features; /* Number of features each offload flag is associated with */ unsigned int off_flag_matched[ARRAY_SIZE(off_flag_def)]; /* Name and offload flag index for each feature */ struct feature_def def[0]; }; #define FEATURE_BITS_TO_BLOCKS(n_bits) DIV_ROUND_UP(n_bits, 32U) #define FEATURE_WORD(blocks, index, field) ((blocks)[(index) / 32U].field) #define FEATURE_FIELD_FLAG(index) (1U << (index) % 32U) #define FEATURE_BIT_SET(blocks, index, field) \ (FEATURE_WORD(blocks, index, field) |= FEATURE_FIELD_FLAG(index)) #define FEATURE_BIT_CLEAR(blocks, index, field) \ (FEATURE_WORD(blocks, index, filed) &= ~FEATURE_FIELD_FLAG(index)) #define FEATURE_BIT_IS_SET(blocks, index, field) \ (FEATURE_WORD(blocks, index, field) & FEATURE_FIELD_FLAG(index)) static long long get_int_range(char *str, int base, long long min, long long max) { long long v; char *endp; if (!str) exit_bad_args(); errno = 0; v = strtoll(str, &endp, base); if (errno || *endp || v < min || v > max) exit_bad_args(); return v; } static unsigned long long get_uint_range(char *str, int base, unsigned long long max) { unsigned long long v; char *endp; if (!str) exit_bad_args(); errno = 0; v = strtoull(str, &endp, base); if ( errno || *endp || v > max) exit_bad_args(); return v; } static int get_int(char *str, int base) { return get_int_range(str, base, INT_MIN, INT_MAX); } static u32 get_u32(char *str, int base) { return get_uint_range(str, base, 0xffffffff); } static void get_mac_addr(char *src, unsigned char *dest) { int count; int i; int buf[ETH_ALEN]; count = sscanf(src, "%2x:%2x:%2x:%2x:%2x:%2x", &buf[0], &buf[1], &buf[2], &buf[3], &buf[4], &buf[5]); if (count != ETH_ALEN) exit_bad_args(); for (i = 0; i < count; i++) { dest[i] = buf[i]; } } static void parse_generic_cmdline(struct cmd_context *ctx, int *changed, struct cmdline_info *info, unsigned int n_info) { int argc = ctx->argc; char **argp = ctx->argp; int i, idx; int found; for (i = 0; i < argc; i++) { found = 0; for (idx = 0; idx < n_info; idx++) { if (!strcmp(info[idx].name, argp[i])) { found = 1; *changed = 1; if (info[idx].type != CMDL_FLAG && info[idx].seen_val) *(int *)info[idx].seen_val = 1; i += 1; if (i >= argc) exit_bad_args(); switch (info[idx].type) { case CMDL_BOOL: { int *p = info[idx].wanted_val; if (!strcmp(argp[i], "on")) *p = 1; else if (!strcmp(argp[i], "off")) *p = 0; else exit_bad_args(); break; } case CMDL_S32: { s32 *p = info[idx].wanted_val; *p = get_int_range(argp[i], 0, -0x80000000LL, 0x7fffffff); break; } case CMDL_U8: { u8 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xff); break; } case CMDL_U16: { u16 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xffff); break; } case CMDL_U32: { u32 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xffffffff); break; } case CMDL_U64: { u64 *p = info[idx].wanted_val; *p = get_uint_range( argp[i], 0, 0xffffffffffffffffLL); break; } case CMDL_BE16: { u16 *p = info[idx].wanted_val; *p = cpu_to_be16( get_uint_range(argp[i], 0, 0xffff)); break; } case CMDL_IP4: { u32 *p = info[idx].wanted_val; struct in_addr in; if (!inet_aton(argp[i], &in)) exit_bad_args(); *p = in.s_addr; break; } case CMDL_MAC: get_mac_addr(argp[i], info[idx].wanted_val); break; case CMDL_FLAG: { u32 *p; p = info[idx].seen_val; *p |= info[idx].flag_val; if (!strcmp(argp[i], "on")) { p = info[idx].wanted_val; *p |= info[idx].flag_val; } else if (strcmp(argp[i], "off")) { exit_bad_args(); } break; } case CMDL_STR: { char **s = info[idx].wanted_val; *s = strdup(argp[i]); break; } default: exit_bad_args(); } break; } } if( !found) exit_bad_args(); } } static void flag_to_cmdline_info(const char *name, u32 value, u32 *wanted, u32 *mask, struct cmdline_info *cli) { memset(cli, 0, sizeof(*cli)); cli->name = name; cli->type = CMDL_FLAG; cli->flag_val = value; cli->wanted_val = wanted; cli->seen_val = mask; } static void print_flags(const struct flag_info *info, unsigned int n_info, u32 value) { const char *sep = ""; while (n_info) { if (value & info->value) { printf("%s%s", sep, info->name); sep = " "; value &= ~info->value; } ++info; --n_info; } /* Print any unrecognised flags in hex */ if (value) printf("%s%#x", sep, value); } static int rxflow_str_to_type(const char *str) { int flow_type = 0; if (!strcmp(str, "tcp4")) flow_type = TCP_V4_FLOW; else if (!strcmp(str, "udp4")) flow_type = UDP_V4_FLOW; else if (!strcmp(str, "ah4") || !strcmp(str, "esp4")) flow_type = AH_ESP_V4_FLOW; else if (!strcmp(str, "sctp4")) flow_type = SCTP_V4_FLOW; else if (!strcmp(str, "tcp6")) flow_type = TCP_V6_FLOW; else if (!strcmp(str, "udp6")) flow_type = UDP_V6_FLOW; else if (!strcmp(str, "ah6") || !strcmp(str, "esp6")) flow_type = AH_ESP_V6_FLOW; else if (!strcmp(str, "sctp6")) flow_type = SCTP_V6_FLOW; else if (!strcmp(str, "ether")) flow_type = ETHER_FLOW; return flow_type; } static int do_version(struct cmd_context *ctx) { fprintf(stdout, PACKAGE " version " VERSION "\n"); return 0; } static void dump_link_caps(const char *prefix, const char *an_prefix, u32 mask, int link_mode_only); static void dump_supported(struct ethtool_cmd *ep) { u32 mask = ep->supported; fprintf(stdout, " Supported ports: [ "); if (mask & SUPPORTED_TP) fprintf(stdout, "TP "); if (mask & SUPPORTED_AUI) fprintf(stdout, "AUI "); if (mask & SUPPORTED_BNC) fprintf(stdout, "BNC "); if (mask & SUPPORTED_MII) fprintf(stdout, "MII "); if (mask & SUPPORTED_FIBRE) fprintf(stdout, "FIBRE "); fprintf(stdout, "]\n"); dump_link_caps("Supported", "Supports", mask, 0); } /* Print link capability flags (supported, advertised or lp_advertised). * Assumes that the corresponding SUPPORTED and ADVERTISED flags are equal. */ static void dump_link_caps(const char *prefix, const char *an_prefix, u32 mask, int link_mode_only) { static const struct { int same_line; /* print on same line as previous */ u32 value; const char *name; } mode_defs[] = { { 0, ADVERTISED_10baseT_Half, "10baseT/Half" }, { 1, ADVERTISED_10baseT_Full, "10baseT/Full" }, { 0, ADVERTISED_100baseT_Half, "100baseT/Half" }, { 1, ADVERTISED_100baseT_Full, "100baseT/Full" }, { 0, ADVERTISED_1000baseT_Half, "1000baseT/Half" }, { 1, ADVERTISED_1000baseT_Full, "1000baseT/Full" }, { 0, ADVERTISED_1000baseKX_Full, "1000baseKX/Full" }, { 0, ADVERTISED_2500baseX_Full, "2500baseX/Full" }, { 0, ADVERTISED_10000baseT_Full, "10000baseT/Full" }, { 0, ADVERTISED_10000baseKX4_Full, "10000baseKX4/Full" }, { 0, ADVERTISED_20000baseMLD2_Full, "20000baseMLD2/Full" }, { 0, ADVERTISED_40000baseKR4_Full, "40000baseKR4/Full" }, { 0, ADVERTISED_40000baseCR4_Full, "40000baseCR4/Full" }, { 0, ADVERTISED_40000baseSR4_Full, "40000baseSR4/Full" }, { 0, ADVERTISED_40000baseLR4_Full, "40000baseLR4/Full" }, }; int indent; int did1, new_line_pend, i; /* Indent just like the separate functions used to */ indent = strlen(prefix) + 14; if (indent < 24) indent = 24; fprintf(stdout, " %s link modes:%*s", prefix, indent - (int)strlen(prefix) - 12, ""); did1 = 0; new_line_pend = 0; for (i = 0; i < ARRAY_SIZE(mode_defs); i++) { if (did1 && !mode_defs[i].same_line) new_line_pend = 1; if (mask & mode_defs[i].value) { if (new_line_pend) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); new_line_pend = 0; } did1++; fprintf(stdout, "%s ", mode_defs[i].name); } } if (did1 == 0) fprintf(stdout, "Not reported"); fprintf(stdout, "\n"); if (!link_mode_only) { fprintf(stdout, " %s pause frame use: ", prefix); if (mask & ADVERTISED_Pause) { fprintf(stdout, "Symmetric"); if (mask & ADVERTISED_Asym_Pause) fprintf(stdout, " Receive-only"); fprintf(stdout, "\n"); } else { if (mask & ADVERTISED_Asym_Pause) fprintf(stdout, "Transmit-only\n"); else fprintf(stdout, "No\n"); } fprintf(stdout, " %s auto-negotiation: ", an_prefix); if (mask & ADVERTISED_Autoneg) fprintf(stdout, "Yes\n"); else fprintf(stdout, "No\n"); } } static int dump_ecmd(struct ethtool_cmd *ep) { u32 speed; dump_supported(ep); dump_link_caps("Advertised", "Advertised", ep->advertising, 0); if (ep->lp_advertising) dump_link_caps("Link partner advertised", "Link partner advertised", ep->lp_advertising, 0); fprintf(stdout, " Speed: "); speed = ethtool_cmd_speed(ep); if (speed == 0 || speed == (u16)(-1) || speed == (u32)(-1)) fprintf(stdout, "Unknown!\n"); else fprintf(stdout, "%uMb/s\n", speed); fprintf(stdout, " Duplex: "); switch (ep->duplex) { case DUPLEX_HALF: fprintf(stdout, "Half\n"); break; case DUPLEX_FULL: fprintf(stdout, "Full\n"); break; default: fprintf(stdout, "Unknown! (%i)\n", ep->duplex); break; }; fprintf(stdout, " Port: "); switch (ep->port) { case PORT_TP: fprintf(stdout, "Twisted Pair\n"); break; case PORT_AUI: fprintf(stdout, "AUI\n"); break; case PORT_BNC: fprintf(stdout, "BNC\n"); break; case PORT_MII: fprintf(stdout, "MII\n"); break; case PORT_FIBRE: fprintf(stdout, "FIBRE\n"); break; case PORT_DA: fprintf(stdout, "Direct Attach Copper\n"); break; case PORT_NONE: fprintf(stdout, "None\n"); break; case PORT_OTHER: fprintf(stdout, "Other\n"); break; default: fprintf(stdout, "Unknown! (%i)\n", ep->port); break; }; fprintf(stdout, " PHYAD: %d\n", ep->phy_address); fprintf(stdout, " Transceiver: "); switch (ep->transceiver) { case XCVR_INTERNAL: fprintf(stdout, "internal\n"); break; case XCVR_EXTERNAL: fprintf(stdout, "external\n"); break; default: fprintf(stdout, "Unknown!\n"); break; }; fprintf(stdout, " Auto-negotiation: %s\n", (ep->autoneg == AUTONEG_DISABLE) ? "off" : "on"); if (ep->port == PORT_TP) { fprintf(stdout, " MDI-X: "); if (ep->eth_tp_mdix_ctrl == ETH_TP_MDI) { fprintf(stdout, "off (forced)\n"); } else if (ep->eth_tp_mdix_ctrl == ETH_TP_MDI_X) { fprintf(stdout, "on (forced)\n"); } else { switch (ep->eth_tp_mdix) { case ETH_TP_MDI: fprintf(stdout, "off"); break; case ETH_TP_MDI_X: fprintf(stdout, "on"); break; default: fprintf(stdout, "Unknown"); break; } if (ep->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) fprintf(stdout, " (auto)"); fprintf(stdout, "\n"); } } return 0; } static int dump_drvinfo(struct ethtool_drvinfo *info) { fprintf(stdout, "driver: %.*s\n" "version: %.*s\n" "firmware-version: %.*s\n" "bus-info: %.*s\n" "supports-statistics: %s\n" "supports-test: %s\n" "supports-eeprom-access: %s\n" "supports-register-dump: %s\n" "supports-priv-flags: %s\n", (int)sizeof(info->driver), info->driver, (int)sizeof(info->version), info->version, (int)sizeof(info->fw_version), info->fw_version, (int)sizeof(info->bus_info), info->bus_info, info->n_stats ? "yes" : "no", info->testinfo_len ? "yes" : "no", info->eedump_len ? "yes" : "no", info->regdump_len ? "yes" : "no", info->n_priv_flags ? "yes" : "no"); return 0; } static int parse_wolopts(char *optstr, u32 *data) { *data = 0; while (*optstr) { switch (*optstr) { case 'p': *data |= WAKE_PHY; break; case 'u': *data |= WAKE_UCAST; break; case 'm': *data |= WAKE_MCAST; break; case 'b': *data |= WAKE_BCAST; break; case 'a': *data |= WAKE_ARP; break; case 'g': *data |= WAKE_MAGIC; break; case 's': *data |= WAKE_MAGICSECURE; break; case 'd': *data = 0; break; default: return -1; } optstr++; } return 0; } static char *unparse_wolopts(int wolopts) { static char buf[16]; char *p = buf; memset(buf, 0, sizeof(buf)); if (wolopts) { if (wolopts & WAKE_PHY) *p++ = 'p'; if (wolopts & WAKE_UCAST) *p++ = 'u'; if (wolopts & WAKE_MCAST) *p++ = 'm'; if (wolopts & WAKE_BCAST) *p++ = 'b'; if (wolopts & WAKE_ARP) *p++ = 'a'; if (wolopts & WAKE_MAGIC) *p++ = 'g'; if (wolopts & WAKE_MAGICSECURE) *p++ = 's'; } else { *p = 'd'; } return buf; } static int dump_wol(struct ethtool_wolinfo *wol) { fprintf(stdout, " Supports Wake-on: %s\n", unparse_wolopts(wol->supported)); fprintf(stdout, " Wake-on: %s\n", unparse_wolopts(wol->wolopts)); if (wol->supported & WAKE_MAGICSECURE) { int i; int delim = 0; fprintf(stdout, " SecureOn password: "); for (i = 0; i < SOPASS_MAX; i++) { fprintf(stdout, "%s%02x", delim?":":"", wol->sopass[i]); delim=1; } fprintf(stdout, "\n"); } return 0; } static int parse_rxfhashopts(char *optstr, u32 *data) { *data = 0; while (*optstr) { switch (*optstr) { case 'm': *data |= RXH_L2DA; break; case 'v': *data |= RXH_VLAN; break; case 't': *data |= RXH_L3_PROTO; break; case 's': *data |= RXH_IP_SRC; break; case 'd': *data |= RXH_IP_DST; break; case 'f': *data |= RXH_L4_B_0_1; break; case 'n': *data |= RXH_L4_B_2_3; break; case 'r': *data |= RXH_DISCARD; break; default: return -1; } optstr++; } return 0; } static char *unparse_rxfhashopts(u64 opts) { static char buf[300]; memset(buf, 0, sizeof(buf)); if (opts) { if (opts & RXH_L2DA) { strcat(buf, "L2DA\n"); } if (opts & RXH_VLAN) { strcat(buf, "VLAN tag\n"); } if (opts & RXH_L3_PROTO) { strcat(buf, "L3 proto\n"); } if (opts & RXH_IP_SRC) { strcat(buf, "IP SA\n"); } if (opts & RXH_IP_DST) { strcat(buf, "IP DA\n"); } if (opts & RXH_L4_B_0_1) { strcat(buf, "L4 bytes 0 & 1 [TCP/UDP src port]\n"); } if (opts & RXH_L4_B_2_3) { strcat(buf, "L4 bytes 2 & 3 [TCP/UDP dst port]\n"); } } else { sprintf(buf, "None"); } return buf; } static const struct { const char *name; int (*func)(struct ethtool_drvinfo *info, struct ethtool_regs *regs); } driver_list[] = { { "8139cp", realtek_dump_regs }, { "8139too", realtek_dump_regs }, { "r8169", realtek_dump_regs }, { "de2104x", de2104x_dump_regs }, { "e1000", e1000_dump_regs }, { "e1000e", e1000_dump_regs }, { "igb", igb_dump_regs }, { "ixgb", ixgb_dump_regs }, { "ixgbe", ixgbe_dump_regs }, { "natsemi", natsemi_dump_regs }, { "e100", e100_dump_regs }, { "amd8111e", amd8111e_dump_regs }, { "pcnet32", pcnet32_dump_regs }, { "fec_8xx", fec_8xx_dump_regs }, { "ibm_emac", ibm_emac_dump_regs }, { "tg3", tg3_dump_regs }, { "skge", skge_dump_regs }, { "sky2", sky2_dump_regs }, { "vioc", vioc_dump_regs }, { "smsc911x", smsc911x_dump_regs }, { "at76c50x-usb", at76c50x_usb_dump_regs }, { "sfc", sfc_dump_regs }, { "st_mac100", st_mac100_dump_regs }, { "st_gmac", st_gmac_dump_regs }, }; void dump_hex(FILE *file, const u8 *data, int len, int offset) { int i; fprintf(file, "Offset\t\tValues\n"); fprintf(file, "------\t\t------"); for (i = 0; i < len; i++) { if (i % 16 == 0) fprintf(file, "\n0x%04x:\t\t", i + offset); fprintf(file, "%02x ", data[i]); } fprintf(file, "\n"); } static int dump_regs(int gregs_dump_raw, int gregs_dump_hex, const char *gregs_dump_file, struct ethtool_drvinfo *info, struct ethtool_regs *regs) { int i; if (gregs_dump_raw) { fwrite(regs->data, regs->len, 1, stdout); return 0; } if (gregs_dump_file) { FILE *f = fopen(gregs_dump_file, "r"); struct stat st; if (!f || fstat(fileno(f), &st) < 0) { fprintf(stderr, "Can't open '%s': %s\n", gregs_dump_file, strerror(errno)); return -1; } regs = realloc(regs, sizeof(*regs) + st.st_size); regs->len = st.st_size; fread(regs->data, regs->len, 1, f); fclose(f); } if (!gregs_dump_hex) for (i = 0; i < ARRAY_SIZE(driver_list); i++) if (!strncmp(driver_list[i].name, info->driver, ETHTOOL_BUSINFO_LEN)) return driver_list[i].func(info, regs); dump_hex(stdout, regs->data, regs->len, 0); return 0; } static int dump_eeprom(int geeprom_dump_raw, struct ethtool_drvinfo *info, struct ethtool_eeprom *ee) { if (geeprom_dump_raw) { fwrite(ee->data, 1, ee->len, stdout); return 0; } if (!strncmp("natsemi", info->driver, ETHTOOL_BUSINFO_LEN)) { return natsemi_dump_eeprom(info, ee); } else if (!strncmp("tg3", info->driver, ETHTOOL_BUSINFO_LEN)) { return tg3_dump_eeprom(info, ee); } dump_hex(stdout, ee->data, ee->len, ee->offset); return 0; } static int dump_test(struct ethtool_test *test, struct ethtool_gstrings *strings) { int i, rc; rc = test->flags & ETH_TEST_FL_FAILED; fprintf(stdout, "The test result is %s\n", rc ? "FAIL" : "PASS"); if (test->flags & ETH_TEST_FL_EXTERNAL_LB) fprintf(stdout, "External loopback test was %sexecuted\n", (test->flags & ETH_TEST_FL_EXTERNAL_LB_DONE) ? "" : "not "); if (strings->len) fprintf(stdout, "The test extra info:\n"); for (i = 0; i < strings->len; i++) { fprintf(stdout, "%s\t %d\n", (char *)(strings->data + i * ETH_GSTRING_LEN), (u32) test->data[i]); } fprintf(stdout, "\n"); return rc; } static int dump_pause(const struct ethtool_pauseparam *epause, u32 advertising, u32 lp_advertising) { fprintf(stdout, "Autonegotiate: %s\n" "RX: %s\n" "TX: %s\n", epause->autoneg ? "on" : "off", epause->rx_pause ? "on" : "off", epause->tx_pause ? "on" : "off"); if (lp_advertising) { int an_rx = 0, an_tx = 0; /* Work out negotiated pause frame usage per * IEEE 802.3-2005 table 28B-3. */ if (advertising & lp_advertising & ADVERTISED_Pause) { an_tx = 1; an_rx = 1; } else if (advertising & lp_advertising & ADVERTISED_Asym_Pause) { if (advertising & ADVERTISED_Pause) an_rx = 1; else if (lp_advertising & ADVERTISED_Pause) an_tx = 1; } fprintf(stdout, "RX negotiated: %s\n" "TX negotiated: %s\n", an_rx ? "on" : "off", an_tx ? "on" : "off"); } fprintf(stdout, "\n"); return 0; } static int dump_ring(const struct ethtool_ringparam *ering) { fprintf(stdout, "Pre-set maximums:\n" "RX: %u\n" "RX Mini: %u\n" "RX Jumbo: %u\n" "TX: %u\n", ering->rx_max_pending, ering->rx_mini_max_pending, ering->rx_jumbo_max_pending, ering->tx_max_pending); fprintf(stdout, "Current hardware settings:\n" "RX: %u\n" "RX Mini: %u\n" "RX Jumbo: %u\n" "TX: %u\n", ering->rx_pending, ering->rx_mini_pending, ering->rx_jumbo_pending, ering->tx_pending); fprintf(stdout, "\n"); return 0; } static int dump_channels(const struct ethtool_channels *echannels) { fprintf(stdout, "Pre-set maximums:\n" "RX: %u\n" "TX: %u\n" "Other: %u\n" "Combined: %u\n", echannels->max_rx, echannels->max_tx, echannels->max_other, echannels->max_combined); fprintf(stdout, "Current hardware settings:\n" "RX: %u\n" "TX: %u\n" "Other: %u\n" "Combined: %u\n", echannels->rx_count, echannels->tx_count, echannels->other_count, echannels->combined_count); fprintf(stdout, "\n"); return 0; } static int dump_coalesce(const struct ethtool_coalesce *ecoal) { fprintf(stdout, "Adaptive RX: %s TX: %s\n", ecoal->use_adaptive_rx_coalesce ? "on" : "off", ecoal->use_adaptive_tx_coalesce ? "on" : "off"); fprintf(stdout, "stats-block-usecs: %u\n" "sample-interval: %u\n" "pkt-rate-low: %u\n" "pkt-rate-high: %u\n" "\n" "rx-usecs: %u\n" "rx-frames: %u\n" "rx-usecs-irq: %u\n" "rx-frames-irq: %u\n" "\n" "tx-usecs: %u\n" "tx-frames: %u\n" "tx-usecs-irq: %u\n" "tx-frames-irq: %u\n" "\n" "rx-usecs-low: %u\n" "rx-frame-low: %u\n" "tx-usecs-low: %u\n" "tx-frame-low: %u\n" "\n" "rx-usecs-high: %u\n" "rx-frame-high: %u\n" "tx-usecs-high: %u\n" "tx-frame-high: %u\n" "\n", ecoal->stats_block_coalesce_usecs, ecoal->rate_sample_interval, ecoal->pkt_rate_low, ecoal->pkt_rate_high, ecoal->rx_coalesce_usecs, ecoal->rx_max_coalesced_frames, ecoal->rx_coalesce_usecs_irq, ecoal->rx_max_coalesced_frames_irq, ecoal->tx_coalesce_usecs, ecoal->tx_max_coalesced_frames, ecoal->tx_coalesce_usecs_irq, ecoal->tx_max_coalesced_frames_irq, ecoal->rx_coalesce_usecs_low, ecoal->rx_max_coalesced_frames_low, ecoal->tx_coalesce_usecs_low, ecoal->tx_max_coalesced_frames_low, ecoal->rx_coalesce_usecs_high, ecoal->rx_max_coalesced_frames_high, ecoal->tx_coalesce_usecs_high, ecoal->tx_max_coalesced_frames_high); return 0; } struct feature_state { u32 off_flags; struct ethtool_gfeatures features; }; static void dump_one_feature(const char *indent, const char *name, const struct feature_state *state, const struct feature_state *ref_state, u32 index) { if (ref_state && !(FEATURE_BIT_IS_SET(state->features.features, index, active) ^ FEATURE_BIT_IS_SET(ref_state->features.features, index, active))) return; printf("%s%s: %s%s\n", indent, name, FEATURE_BIT_IS_SET(state->features.features, index, active) ? "on" : "off", (!FEATURE_BIT_IS_SET(state->features.features, index, available) || FEATURE_BIT_IS_SET(state->features.features, index, never_changed)) ? " [fixed]" : (FEATURE_BIT_IS_SET(state->features.features, index, requested) ^ FEATURE_BIT_IS_SET(state->features.features, index, active)) ? (FEATURE_BIT_IS_SET(state->features.features, index, requested) ? " [requested on]" : " [requested off]") : ""); } static void dump_features(const struct feature_defs *defs, const struct feature_state *state, const struct feature_state *ref_state) { u32 value; int indent; int i, j; for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) { value = off_flag_def[i].value; /* If this offload flag matches exactly one generic * feature then it's redundant to show the flag and * feature states separately. Otherwise, show the * flag state first. */ if (defs->off_flag_matched[i] != 1 && (!ref_state || (state->off_flags ^ ref_state->off_flags) & value)) { printf("%s: %s\n", off_flag_def[i].long_name, (state->off_flags & value) ? "on" : "off"); indent = 1; } else { indent = 0; } /* Show matching features */ for (j = 0; j < defs->n_features; j++) { if (defs->def[j].off_flag_index != i) continue; if (defs->off_flag_matched[i] != 1) /* Show all matching feature states */ dump_one_feature(indent ? "\t" : "", defs->def[j].name, state, ref_state, j); else /* Show full state with the old flag name */ dump_one_feature("", off_flag_def[i].long_name, state, ref_state, j); } } /* Show all unmatched features that have non-null names */ for (j = 0; j < defs->n_features; j++) if (defs->def[j].off_flag_index < 0 && defs->def[j].name[0]) dump_one_feature("", defs->def[j].name, state, ref_state, j); } static int dump_rxfhash(int fhash, u64 val) { switch (fhash) { case TCP_V4_FLOW: fprintf(stdout, "TCP over IPV4 flows"); break; case UDP_V4_FLOW: fprintf(stdout, "UDP over IPV4 flows"); break; case SCTP_V4_FLOW: fprintf(stdout, "SCTP over IPV4 flows"); break; case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: fprintf(stdout, "IPSEC AH/ESP over IPV4 flows"); break; case TCP_V6_FLOW: fprintf(stdout, "TCP over IPV6 flows"); break; case UDP_V6_FLOW: fprintf(stdout, "UDP over IPV6 flows"); break; case SCTP_V6_FLOW: fprintf(stdout, "SCTP over IPV6 flows"); break; case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: fprintf(stdout, "IPSEC AH/ESP over IPV6 flows"); break; default: break; } if (val & RXH_DISCARD) { fprintf(stdout, " - All matching flows discarded on RX\n"); return 0; } fprintf(stdout, " use these fields for computing Hash flow key:\n"); fprintf(stdout, "%s\n", unparse_rxfhashopts(val)); return 0; } static void dump_eeecmd(struct ethtool_eee *ep) { fprintf(stdout, " EEE status: "); if (!ep->supported) { fprintf(stdout, "not supported\n"); return; } else if (!ep->eee_enabled) { fprintf(stdout, "disabled\n"); } else { fprintf(stdout, "enabled - "); if (ep->eee_active) fprintf(stdout, "active\n"); else fprintf(stdout, "inactive\n"); } fprintf(stdout, " Tx LPI:"); if (ep->tx_lpi_enabled) fprintf(stdout, " %d (us)\n", ep->tx_lpi_timer); else fprintf(stdout, " disabled\n"); dump_link_caps("Supported EEE", "", ep->supported, 1); dump_link_caps("Advertised EEE", "", ep->advertised, 1); dump_link_caps("Link partner advertised EEE", "", ep->lp_advertised, 1); } #define N_SOTS 7 static char *so_timestamping_labels[N_SOTS] = { "hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)", "software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)", "hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)", "software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)", "software-system-clock (SOF_TIMESTAMPING_SOFTWARE)", "hardware-legacy-clock (SOF_TIMESTAMPING_SYS_HARDWARE)", "hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)", }; #define N_TX_TYPES (HWTSTAMP_TX_ONESTEP_SYNC + 1) static char *tx_type_labels[N_TX_TYPES] = { "off (HWTSTAMP_TX_OFF)", "on (HWTSTAMP_TX_ON)", "one-step-sync (HWTSTAMP_TX_ONESTEP_SYNC)", }; #define N_RX_FILTERS (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ + 1) static char *rx_filter_labels[N_RX_FILTERS] = { "none (HWTSTAMP_FILTER_NONE)", "all (HWTSTAMP_FILTER_ALL)", "some (HWTSTAMP_FILTER_SOME)", "ptpv1-l4-event (HWTSTAMP_FILTER_PTP_V1_L4_EVENT)", "ptpv1-l4-sync (HWTSTAMP_FILTER_PTP_V1_L4_SYNC)", "ptpv1-l4-delay-req (HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ)", "ptpv2-l4-event (HWTSTAMP_FILTER_PTP_V2_L4_EVENT)", "ptpv2-l4-sync (HWTSTAMP_FILTER_PTP_V2_L4_SYNC)", "ptpv2-l4-delay-req (HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ)", "ptpv2-l2-event (HWTSTAMP_FILTER_PTP_V2_L2_EVENT)", "ptpv2-l2-sync (HWTSTAMP_FILTER_PTP_V2_L2_SYNC)", "ptpv2-l2-delay-req (HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ)", "ptpv2-event (HWTSTAMP_FILTER_PTP_V2_EVENT)", "ptpv2-sync (HWTSTAMP_FILTER_PTP_V2_SYNC)", "ptpv2-delay-req (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ)", }; static int dump_tsinfo(const struct ethtool_ts_info *info) { int i; fprintf(stdout, "Capabilities:\n"); for (i = 0; i < N_SOTS; i++) { if (info->so_timestamping & (1 << i)) fprintf(stdout, "\t%s\n", so_timestamping_labels[i]); } fprintf(stdout, "PTP Hardware Clock: "); if (info->phc_index < 0) fprintf(stdout, "none\n"); else fprintf(stdout, "%d\n", info->phc_index); fprintf(stdout, "Hardware Transmit Timestamp Modes:"); if (!info->tx_types) fprintf(stdout, " none\n"); else fprintf(stdout, "\n"); for (i = 0; i < N_TX_TYPES; i++) { if (info->tx_types & (1 << i)) fprintf(stdout, "\t%s\n", tx_type_labels[i]); } fprintf(stdout, "Hardware Receive Filter Modes:"); if (!info->rx_filters) fprintf(stdout, " none\n"); else fprintf(stdout, "\n"); for (i = 0; i < N_RX_FILTERS; i++) { if (info->rx_filters & (1 << i)) fprintf(stdout, "\t%s\n", rx_filter_labels[i]); } return 0; } static struct ethtool_gstrings * get_stringset(struct cmd_context *ctx, enum ethtool_stringset set_id, ptrdiff_t drvinfo_offset, int null_terminate) { struct { struct ethtool_sset_info hdr; u32 buf[1]; } sset_info; struct ethtool_drvinfo drvinfo; u32 len, i; struct ethtool_gstrings *strings; sset_info.hdr.cmd = ETHTOOL_GSSET_INFO; sset_info.hdr.reserved = 0; sset_info.hdr.sset_mask = 1ULL << set_id; if (send_ioctl(ctx, &sset_info) == 0) { len = sset_info.hdr.sset_mask ? sset_info.hdr.data[0] : 0; } else if (errno == EOPNOTSUPP && drvinfo_offset != 0) { /* Fallback for old kernel versions */ drvinfo.cmd = ETHTOOL_GDRVINFO; if (send_ioctl(ctx, &drvinfo)) return NULL; len = *(u32 *)((char *)&drvinfo + drvinfo_offset); } else { return NULL; } strings = calloc(1, sizeof(*strings) + len * ETH_GSTRING_LEN); if (!strings) return NULL; strings->cmd = ETHTOOL_GSTRINGS; strings->string_set = set_id; strings->len = len; if (len != 0 && send_ioctl(ctx, strings)) { free(strings); return NULL; } if (null_terminate) for (i = 0; i < len; i++) strings->data[(i + 1) * ETH_GSTRING_LEN - 1] = 0; return strings; } static struct feature_defs *get_feature_defs(struct cmd_context *ctx) { struct ethtool_gstrings *names; struct feature_defs *defs; u32 n_features; int i, j; names = get_stringset(ctx, ETH_SS_FEATURES, 0, 1); if (names) { n_features = names->len; } else if (errno == EOPNOTSUPP || errno == EINVAL) { /* Kernel doesn't support named features; not an error */ n_features = 0; } else if (errno == EPERM) { /* Kernel bug: ETHTOOL_GSSET_INFO was privileged. * Work around it. */ n_features = 0; } else { return NULL; } defs = malloc(sizeof(*defs) + sizeof(defs->def[0]) * n_features); if (!defs) return NULL; defs->n_features = n_features; memset(defs->off_flag_matched, 0, sizeof(defs->off_flag_matched)); /* Copy out feature names and find those associated with legacy flags */ for (i = 0; i < defs->n_features; i++) { memcpy(defs->def[i].name, names->data + i * ETH_GSTRING_LEN, ETH_GSTRING_LEN); defs->def[i].off_flag_index = -1; for (j = 0; j < ARRAY_SIZE(off_flag_def) && defs->def[i].off_flag_index < 0; j++) { const char *pattern = off_flag_def[j].kernel_name; const char *name = defs->def[i].name; for (;;) { if (*pattern == '*') { /* There is only one wildcard; so * switch to a suffix comparison */ size_t pattern_len = strlen(pattern + 1); size_t name_len = strlen(name); if (name_len < pattern_len) break; /* name is too short */ name += name_len - pattern_len; ++pattern; } else if (*pattern != *name) { break; /* mismatch */ } else if (*pattern == 0) { defs->def[i].off_flag_index = j; defs->off_flag_matched[j]++; break; } else { ++name; ++pattern; } } } } free(names); return defs; } static int get_netdev_attr(struct cmd_context *ctx, const char *name, char *buf, size_t buf_len) { #ifdef TEST_ETHTOOL errno = ENOENT; return -1; #else char path[40 + IFNAMSIZ]; ssize_t len; int fd; len = snprintf(path, sizeof(path), "/sys/class/net/%s/%s", ctx->devname, name); assert(len < sizeof(path)); fd = open(path, O_RDONLY); if (fd < 0) return fd; len = read(fd, buf, buf_len - 1); if (len >= 0) buf[len] = 0; close(fd); return len; #endif } static int do_gdrv(struct cmd_context *ctx) { int err; struct ethtool_drvinfo drvinfo; if (ctx->argc != 0) exit_bad_args(); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 71; } return dump_drvinfo(&drvinfo); } static int do_gpause(struct cmd_context *ctx) { struct ethtool_pauseparam epause; struct ethtool_cmd ecmd; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Pause parameters for %s:\n", ctx->devname); epause.cmd = ETHTOOL_GPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot get device pause settings"); return 76; } if (epause.autoneg) { ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err) { perror("Cannot get device settings"); return 1; } dump_pause(&epause, ecmd.advertising, ecmd.lp_advertising); } else { dump_pause(&epause, 0, 0); } return 0; } static void do_generic_set1(struct cmdline_info *info, int *changed_out) { int wanted, *v1, *v2; v1 = info->wanted_val; wanted = *v1; if (wanted < 0) return; v2 = info->ioctl_val; if (wanted == *v2) { fprintf(stderr, "%s unmodified, ignoring\n", info->name); } else { *v2 = wanted; *changed_out = 1; } } static void do_generic_set(struct cmdline_info *info, unsigned int n_info, int *changed_out) { unsigned int i; for (i = 0; i < n_info; i++) do_generic_set1(&info[i], changed_out); } static int do_spause(struct cmd_context *ctx) { struct ethtool_pauseparam epause; int gpause_changed = 0; int pause_autoneg_wanted = -1; int pause_rx_wanted = -1; int pause_tx_wanted = -1; struct cmdline_info cmdline_pause[] = { { "autoneg", CMDL_BOOL, &pause_autoneg_wanted, &epause.autoneg }, { "rx", CMDL_BOOL, &pause_rx_wanted, &epause.rx_pause }, { "tx", CMDL_BOOL, &pause_tx_wanted, &epause.tx_pause }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gpause_changed, cmdline_pause, ARRAY_SIZE(cmdline_pause)); epause.cmd = ETHTOOL_GPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot get device pause settings"); return 77; } do_generic_set(cmdline_pause, ARRAY_SIZE(cmdline_pause), &changed); if (!changed) { fprintf(stderr, "no pause parameters changed, aborting\n"); return 78; } epause.cmd = ETHTOOL_SPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot set device pause parameters"); return 79; } return 0; } static int do_sring(struct cmd_context *ctx) { struct ethtool_ringparam ering; int gring_changed = 0; s32 ring_rx_wanted = -1; s32 ring_rx_mini_wanted = -1; s32 ring_rx_jumbo_wanted = -1; s32 ring_tx_wanted = -1; struct cmdline_info cmdline_ring[] = { { "rx", CMDL_S32, &ring_rx_wanted, &ering.rx_pending }, { "rx-mini", CMDL_S32, &ring_rx_mini_wanted, &ering.rx_mini_pending }, { "rx-jumbo", CMDL_S32, &ring_rx_jumbo_wanted, &ering.rx_jumbo_pending }, { "tx", CMDL_S32, &ring_tx_wanted, &ering.tx_pending }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gring_changed, cmdline_ring, ARRAY_SIZE(cmdline_ring)); ering.cmd = ETHTOOL_GRINGPARAM; err = send_ioctl(ctx, &ering); if (err) { perror("Cannot get device ring settings"); return 76; } do_generic_set(cmdline_ring, ARRAY_SIZE(cmdline_ring), &changed); if (!changed) { fprintf(stderr, "no ring parameters changed, aborting\n"); return 80; } ering.cmd = ETHTOOL_SRINGPARAM; err = send_ioctl(ctx, &ering); if (err) { perror("Cannot set device ring parameters"); return 81; } return 0; } static int do_gring(struct cmd_context *ctx) { struct ethtool_ringparam ering; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Ring parameters for %s:\n", ctx->devname); ering.cmd = ETHTOOL_GRINGPARAM; err = send_ioctl(ctx, &ering); if (err == 0) { err = dump_ring(&ering); if (err) return err; } else { perror("Cannot get device ring settings"); return 76; } return 0; } static int do_schannels(struct cmd_context *ctx) { struct ethtool_channels echannels; int gchannels_changed; s32 channels_rx_wanted = -1; s32 channels_tx_wanted = -1; s32 channels_other_wanted = -1; s32 channels_combined_wanted = -1; struct cmdline_info cmdline_channels[] = { { "rx", CMDL_S32, &channels_rx_wanted, &echannels.rx_count }, { "tx", CMDL_S32, &channels_tx_wanted, &echannels.tx_count }, { "other", CMDL_S32, &channels_other_wanted, &echannels.other_count }, { "combined", CMDL_S32, &channels_combined_wanted, &echannels.combined_count }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gchannels_changed, cmdline_channels, ARRAY_SIZE(cmdline_channels)); echannels.cmd = ETHTOOL_GCHANNELS; err = send_ioctl(ctx, &echannels); if (err) { perror("Cannot get device channel parameters"); return 1; } do_generic_set(cmdline_channels, ARRAY_SIZE(cmdline_channels), &changed); if (!changed) { fprintf(stderr, "no channel parameters changed, aborting\n"); fprintf(stderr, "current values: tx %u rx %u other %u" "combined %u\n", echannels.rx_count, echannels.tx_count, echannels.other_count, echannels.combined_count); return 1; } echannels.cmd = ETHTOOL_SCHANNELS; err = send_ioctl(ctx, &echannels); if (err) { perror("Cannot set device channel parameters"); return 1; } return 0; } static int do_gchannels(struct cmd_context *ctx) { struct ethtool_channels echannels; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Channel parameters for %s:\n", ctx->devname); echannels.cmd = ETHTOOL_GCHANNELS; err = send_ioctl(ctx, &echannels); if (err == 0) { err = dump_channels(&echannels); if (err) return err; } else { perror("Cannot get device channel parameters\n"); return 1; } return 0; } static int do_gcoalesce(struct cmd_context *ctx) { struct ethtool_coalesce ecoal; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Coalesce parameters for %s:\n", ctx->devname); ecoal.cmd = ETHTOOL_GCOALESCE; err = send_ioctl(ctx, &ecoal); if (err == 0) { err = dump_coalesce(&ecoal); if (err) return err; } else { perror("Cannot get device coalesce settings"); return 82; } return 0; } static int do_scoalesce(struct cmd_context *ctx) { struct ethtool_coalesce ecoal; int gcoalesce_changed = 0; s32 coal_stats_wanted = -1; int coal_adaptive_rx_wanted = -1; int coal_adaptive_tx_wanted = -1; s32 coal_sample_rate_wanted = -1; s32 coal_pkt_rate_low_wanted = -1; s32 coal_pkt_rate_high_wanted = -1; s32 coal_rx_usec_wanted = -1; s32 coal_rx_frames_wanted = -1; s32 coal_rx_usec_irq_wanted = -1; s32 coal_rx_frames_irq_wanted = -1; s32 coal_tx_usec_wanted = -1; s32 coal_tx_frames_wanted = -1; s32 coal_tx_usec_irq_wanted = -1; s32 coal_tx_frames_irq_wanted = -1; s32 coal_rx_usec_low_wanted = -1; s32 coal_rx_frames_low_wanted = -1; s32 coal_tx_usec_low_wanted = -1; s32 coal_tx_frames_low_wanted = -1; s32 coal_rx_usec_high_wanted = -1; s32 coal_rx_frames_high_wanted = -1; s32 coal_tx_usec_high_wanted = -1; s32 coal_tx_frames_high_wanted = -1; struct cmdline_info cmdline_coalesce[] = { { "adaptive-rx", CMDL_BOOL, &coal_adaptive_rx_wanted, &ecoal.use_adaptive_rx_coalesce }, { "adaptive-tx", CMDL_BOOL, &coal_adaptive_tx_wanted, &ecoal.use_adaptive_tx_coalesce }, { "sample-interval", CMDL_S32, &coal_sample_rate_wanted, &ecoal.rate_sample_interval }, { "stats-block-usecs", CMDL_S32, &coal_stats_wanted, &ecoal.stats_block_coalesce_usecs }, { "pkt-rate-low", CMDL_S32, &coal_pkt_rate_low_wanted, &ecoal.pkt_rate_low }, { "pkt-rate-high", CMDL_S32, &coal_pkt_rate_high_wanted, &ecoal.pkt_rate_high }, { "rx-usecs", CMDL_S32, &coal_rx_usec_wanted, &ecoal.rx_coalesce_usecs }, { "rx-frames", CMDL_S32, &coal_rx_frames_wanted, &ecoal.rx_max_coalesced_frames }, { "rx-usecs-irq", CMDL_S32, &coal_rx_usec_irq_wanted, &ecoal.rx_coalesce_usecs_irq }, { "rx-frames-irq", CMDL_S32, &coal_rx_frames_irq_wanted, &ecoal.rx_max_coalesced_frames_irq }, { "tx-usecs", CMDL_S32, &coal_tx_usec_wanted, &ecoal.tx_coalesce_usecs }, { "tx-frames", CMDL_S32, &coal_tx_frames_wanted, &ecoal.tx_max_coalesced_frames }, { "tx-usecs-irq", CMDL_S32, &coal_tx_usec_irq_wanted, &ecoal.tx_coalesce_usecs_irq }, { "tx-frames-irq", CMDL_S32, &coal_tx_frames_irq_wanted, &ecoal.tx_max_coalesced_frames_irq }, { "rx-usecs-low", CMDL_S32, &coal_rx_usec_low_wanted, &ecoal.rx_coalesce_usecs_low }, { "rx-frames-low", CMDL_S32, &coal_rx_frames_low_wanted, &ecoal.rx_max_coalesced_frames_low }, { "tx-usecs-low", CMDL_S32, &coal_tx_usec_low_wanted, &ecoal.tx_coalesce_usecs_low }, { "tx-frames-low", CMDL_S32, &coal_tx_frames_low_wanted, &ecoal.tx_max_coalesced_frames_low }, { "rx-usecs-high", CMDL_S32, &coal_rx_usec_high_wanted, &ecoal.rx_coalesce_usecs_high }, { "rx-frames-high", CMDL_S32, &coal_rx_frames_high_wanted, &ecoal.rx_max_coalesced_frames_high }, { "tx-usecs-high", CMDL_S32, &coal_tx_usec_high_wanted, &ecoal.tx_coalesce_usecs_high }, { "tx-frames-high", CMDL_S32, &coal_tx_frames_high_wanted, &ecoal.tx_max_coalesced_frames_high }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gcoalesce_changed, cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce)); ecoal.cmd = ETHTOOL_GCOALESCE; err = send_ioctl(ctx, &ecoal); if (err) { perror("Cannot get device coalesce settings"); return 76; } do_generic_set(cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce), &changed); if (!changed) { fprintf(stderr, "no coalesce parameters changed, aborting\n"); return 80; } ecoal.cmd = ETHTOOL_SCOALESCE; err = send_ioctl(ctx, &ecoal); if (err) { perror("Cannot set device coalesce parameters"); return 81; } return 0; } static struct feature_state * get_features(struct cmd_context *ctx, const struct feature_defs *defs) { struct feature_state *state; struct ethtool_value eval; int err, allfail = 1; u32 value; int i; state = malloc(sizeof(*state) + FEATURE_BITS_TO_BLOCKS(defs->n_features) * sizeof(state->features.features[0])); if (!state) return NULL; state->off_flags = 0; for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) { value = off_flag_def[i].value; if (!off_flag_def[i].get_cmd) continue; eval.cmd = off_flag_def[i].get_cmd; err = send_ioctl(ctx, &eval); if (err) { fprintf(stderr, "Cannot get device %s settings: %m\n", off_flag_def[i].long_name); } else { if (eval.data) state->off_flags |= value; allfail = 0; } } eval.cmd = ETHTOOL_GFLAGS; err = send_ioctl(ctx, &eval); if (err) { perror("Cannot get device flags"); } else { state->off_flags |= eval.data & ETH_FLAG_EXT_MASK; allfail = 0; } if (defs->n_features) { state->features.cmd = ETHTOOL_GFEATURES; state->features.size = FEATURE_BITS_TO_BLOCKS(defs->n_features); err = send_ioctl(ctx, &state->features); if (err) perror("Cannot get device generic features"); else allfail = 0; } else { /* We should have got VLAN tag offload flags through * ETHTOOL_GFLAGS. However, prior to Linux 2.6.37 * they were not exposed in this way - and since VLAN * tag offload was defined and implemented by many * drivers, we shouldn't assume they are off. * Instead, since these feature flag values were * stable, read them from sysfs. */ char buf[20]; if (get_netdev_attr(ctx, "features", buf, sizeof(buf)) > 0) state->off_flags |= strtoul(buf, NULL, 0) & (ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN); } if (allfail) { free(state); return NULL; } return state; } static int do_gfeatures(struct cmd_context *ctx) { struct feature_defs *defs; struct feature_state *features; if (ctx->argc != 0) exit_bad_args(); defs = get_feature_defs(ctx); if (!defs) { perror("Cannot get device feature names"); return 1; } fprintf(stdout, "Features for %s:\n", ctx->devname); features = get_features(ctx, defs); if (!features) { fprintf(stdout, "no feature info available\n"); return 1; } dump_features(defs, features, NULL); return 0; } static int do_sfeatures(struct cmd_context *ctx) { struct feature_defs *defs; int any_changed = 0, any_mismatch = 0; u32 off_flags_wanted = 0; u32 off_flags_mask = 0; struct ethtool_sfeatures *efeatures; struct cmdline_info *cmdline_features; struct feature_state *old_state, *new_state; struct ethtool_value eval; int err; int i, j; defs = get_feature_defs(ctx); if (!defs) { perror("Cannot get device feature names"); return 1; } if (defs->n_features) { efeatures = malloc(sizeof(*efeatures) + FEATURE_BITS_TO_BLOCKS(defs->n_features) * sizeof(efeatures->features[0])); if (!efeatures) { perror("Cannot parse arguments"); return 1; } efeatures->cmd = ETHTOOL_SFEATURES; efeatures->size = FEATURE_BITS_TO_BLOCKS(defs->n_features); memset(efeatures->features, 0, FEATURE_BITS_TO_BLOCKS(defs->n_features) * sizeof(efeatures->features[0])); } else { efeatures = NULL; } /* Generate cmdline_info for legacy flags and kernel-named * features, and parse our arguments. */ cmdline_features = calloc(ARRAY_SIZE(off_flag_def) + defs->n_features, sizeof(cmdline_features[0])); if (!cmdline_features) { perror("Cannot parse arguments"); return 1; } for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) flag_to_cmdline_info(off_flag_def[i].short_name, off_flag_def[i].value, &off_flags_wanted, &off_flags_mask, &cmdline_features[i]); for (i = 0; i < defs->n_features; i++) flag_to_cmdline_info( defs->def[i].name, FEATURE_FIELD_FLAG(i), &FEATURE_WORD(efeatures->features, i, requested), &FEATURE_WORD(efeatures->features, i, valid), &cmdline_features[ARRAY_SIZE(off_flag_def) + i]); parse_generic_cmdline(ctx, &any_changed, cmdline_features, ARRAY_SIZE(off_flag_def) + defs->n_features); free(cmdline_features); if (!any_changed) { fprintf(stdout, "no features changed\n"); return 0; } old_state = get_features(ctx, defs); if (!old_state) return 1; if (efeatures) { /* For each offload that the user specified, update any * related features that the user did not specify and that * are not fixed. Warn if all related features are fixed. */ for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) { int fixed = 1; if (!(off_flags_mask & off_flag_def[i].value)) continue; for (j = 0; j < defs->n_features; j++) { if (defs->def[j].off_flag_index != i || !FEATURE_BIT_IS_SET( old_state->features.features, j, available) || FEATURE_BIT_IS_SET( old_state->features.features, j, never_changed)) continue; fixed = 0; if (!FEATURE_BIT_IS_SET(efeatures->features, j, valid)) { FEATURE_BIT_SET(efeatures->features, j, valid); if (off_flags_wanted & off_flag_def[i].value) FEATURE_BIT_SET( efeatures->features, j, requested); } } if (fixed) fprintf(stderr, "Cannot change %s\n", off_flag_def[i].long_name); } err = send_ioctl(ctx, efeatures); if (err < 0) { perror("Cannot set device feature settings"); return 1; } } else { for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) { if (!off_flag_def[i].set_cmd) continue; if (off_flags_mask & off_flag_def[i].value) { eval.cmd = off_flag_def[i].set_cmd; eval.data = !!(off_flags_wanted & off_flag_def[i].value); err = send_ioctl(ctx, &eval); if (err) { fprintf(stderr, "Cannot set device %s settings: %m\n", off_flag_def[i].long_name); return 1; } } } if (off_flags_mask & ETH_FLAG_EXT_MASK) { eval.cmd = ETHTOOL_SFLAGS; eval.data = (old_state->off_flags & ~off_flags_mask & ETH_FLAG_EXT_MASK); eval.data |= off_flags_wanted & ETH_FLAG_EXT_MASK; err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device flag settings"); return 92; } } } /* Compare new state with requested state */ new_state = get_features(ctx, defs); if (!new_state) return 1; any_changed = new_state->off_flags != old_state->off_flags; any_mismatch = (new_state->off_flags != ((old_state->off_flags & ~off_flags_mask) | off_flags_wanted)); for (i = 0; i < FEATURE_BITS_TO_BLOCKS(defs->n_features); i++) { if (new_state->features.features[i].active != old_state->features.features[i].active) any_changed = 1; if (new_state->features.features[i].active != ((old_state->features.features[i].active & ~efeatures->features[i].valid) | efeatures->features[i].requested)) any_mismatch = 1; } if (any_mismatch) { if (!any_changed) { fprintf(stderr, "Could not change any device features\n"); return 1; } printf("Actual changes:\n"); dump_features(defs, new_state, old_state); } return 0; } static int do_gset(struct cmd_context *ctx) { int err; struct ethtool_cmd ecmd; struct ethtool_wolinfo wolinfo; struct ethtool_value edata; int allfail = 1; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Settings for %s:\n", ctx->devname); ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err == 0) { err = dump_ecmd(&ecmd); if (err) return err; allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get device settings"); } wolinfo.cmd = ETHTOOL_GWOL; err = send_ioctl(ctx, &wolinfo); if (err == 0) { err = dump_wol(&wolinfo); if (err) return err; allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get wake-on-lan settings"); } edata.cmd = ETHTOOL_GMSGLVL; err = send_ioctl(ctx, &edata); if (err == 0) { fprintf(stdout, " Current message level: 0x%08x (%d)\n" " ", edata.data, edata.data); print_flags(flags_msglvl, ARRAY_SIZE(flags_msglvl), edata.data); fprintf(stdout, "\n"); allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get message level"); } edata.cmd = ETHTOOL_GLINK; err = send_ioctl(ctx, &edata); if (err == 0) { fprintf(stdout, " Link detected: %s\n", edata.data ? "yes":"no"); allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get link status"); } if (allfail) { fprintf(stdout, "No data available\n"); return 75; } return 0; } static int do_sset(struct cmd_context *ctx) { int speed_wanted = -1; int duplex_wanted = -1; int port_wanted = -1; int mdix_wanted = -1; int autoneg_wanted = -1; int phyad_wanted = -1; int xcvr_wanted = -1; int advertising_wanted = -1; int gset_changed = 0; /* did anything in GSET change? */ u32 wol_wanted = 0; int wol_change = 0; u8 sopass_wanted[SOPASS_MAX]; int sopass_change = 0; int gwol_changed = 0; /* did anything in GWOL change? */ int msglvl_changed = 0; u32 msglvl_wanted = 0; u32 msglvl_mask = 0; struct cmdline_info cmdline_msglvl[ARRAY_SIZE(flags_msglvl)]; int argc = ctx->argc; char **argp = ctx->argp; int i; int err; for (i = 0; i < ARRAY_SIZE(flags_msglvl); i++) flag_to_cmdline_info(flags_msglvl[i].name, flags_msglvl[i].value, &msglvl_wanted, &msglvl_mask, &cmdline_msglvl[i]); for (i = 0; i < argc; i++) { if (!strcmp(argp[i], "speed")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); speed_wanted = get_int(argp[i],10); } else if (!strcmp(argp[i], "duplex")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "half")) duplex_wanted = DUPLEX_HALF; else if (!strcmp(argp[i], "full")) duplex_wanted = DUPLEX_FULL; else exit_bad_args(); } else if (!strcmp(argp[i], "port")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "tp")) port_wanted = PORT_TP; else if (!strcmp(argp[i], "aui")) port_wanted = PORT_AUI; else if (!strcmp(argp[i], "bnc")) port_wanted = PORT_BNC; else if (!strcmp(argp[i], "mii")) port_wanted = PORT_MII; else if (!strcmp(argp[i], "fibre")) port_wanted = PORT_FIBRE; else exit_bad_args(); } else if (!strcmp(argp[i], "mdix")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "auto")) mdix_wanted = ETH_TP_MDI_AUTO; else if (!strcmp(argp[i], "on")) mdix_wanted = ETH_TP_MDI_X; else if (!strcmp(argp[i], "off")) mdix_wanted = ETH_TP_MDI; else exit_bad_args(); } else if (!strcmp(argp[i], "autoneg")) { i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "on")) { gset_changed = 1; autoneg_wanted = AUTONEG_ENABLE; } else if (!strcmp(argp[i], "off")) { gset_changed = 1; autoneg_wanted = AUTONEG_DISABLE; } else { exit_bad_args(); } } else if (!strcmp(argp[i], "advertise")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); advertising_wanted = get_int(argp[i], 16); } else if (!strcmp(argp[i], "phyad")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); phyad_wanted = get_int(argp[i], 0); } else if (!strcmp(argp[i], "xcvr")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "internal")) xcvr_wanted = XCVR_INTERNAL; else if (!strcmp(argp[i], "external")) xcvr_wanted = XCVR_EXTERNAL; else exit_bad_args(); } else if (!strcmp(argp[i], "wol")) { gwol_changed = 1; i++; if (i >= argc) exit_bad_args(); if (parse_wolopts(argp[i], &wol_wanted) < 0) exit_bad_args(); wol_change = 1; } else if (!strcmp(argp[i], "sopass")) { gwol_changed = 1; i++; if (i >= argc) exit_bad_args(); get_mac_addr(argp[i], sopass_wanted); sopass_change = 1; } else if (!strcmp(argp[i], "msglvl")) { i++; if (i >= argc) exit_bad_args(); if (isdigit((unsigned char)argp[i][0])) { msglvl_changed = 1; msglvl_mask = ~0; msglvl_wanted = get_uint_range(argp[i], 0, 0xffffffff); } else { ctx->argc -= i; ctx->argp += i; parse_generic_cmdline( ctx, &msglvl_changed, cmdline_msglvl, ARRAY_SIZE(cmdline_msglvl)); break; } } else { exit_bad_args(); } } if (advertising_wanted < 0) { if (speed_wanted == SPEED_10 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_10baseT_Half; else if (speed_wanted == SPEED_10 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_10baseT_Full; else if (speed_wanted == SPEED_100 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_100baseT_Half; else if (speed_wanted == SPEED_100 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_100baseT_Full; else if (speed_wanted == SPEED_1000 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_1000baseT_Half; else if (speed_wanted == SPEED_1000 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_1000baseT_Full; else if (speed_wanted == SPEED_2500 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_2500baseX_Full; else if (speed_wanted == SPEED_10000 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_10000baseT_Full; else /* auto negotiate without forcing, * all supported speed will be assigned below */ advertising_wanted = 0; } if (gset_changed) { struct ethtool_cmd ecmd; ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err < 0) { perror("Cannot get current device settings"); } else { /* Change everything the user specified. */ if (speed_wanted != -1) ethtool_cmd_speed_set(&ecmd, speed_wanted); if (duplex_wanted != -1) ecmd.duplex = duplex_wanted; if (port_wanted != -1) ecmd.port = port_wanted; if (mdix_wanted != -1) { /* check driver supports MDI-X */ if (ecmd.eth_tp_mdix_ctrl != ETH_TP_MDI_INVALID) ecmd.eth_tp_mdix_ctrl = mdix_wanted; else fprintf(stderr, "setting MDI not supported\n"); } if (autoneg_wanted != -1) ecmd.autoneg = autoneg_wanted; if (phyad_wanted != -1) ecmd.phy_address = phyad_wanted; if (xcvr_wanted != -1) ecmd.transceiver = xcvr_wanted; /* XXX If the user specified speed or duplex * then we should mask the advertised modes * accordingly. For now, warn that we aren't * doing that. */ if ((speed_wanted != -1 || duplex_wanted != -1) && ecmd.autoneg && advertising_wanted == 0) { fprintf(stderr, "Cannot advertise"); if (speed_wanted >= 0) fprintf(stderr, " speed %d", speed_wanted); if (duplex_wanted >= 0) fprintf(stderr, " duplex %s", duplex_wanted ? "full" : "half"); fprintf(stderr, "\n"); } if (autoneg_wanted == AUTONEG_ENABLE && advertising_wanted == 0) { ecmd.advertising = ecmd.supported & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | ADVERTISED_2500baseX_Full | ADVERTISED_10000baseT_Full | ADVERTISED_20000baseMLD2_Full | ADVERTISED_20000baseKR2_Full); } else if (advertising_wanted > 0) { ecmd.advertising = advertising_wanted; } /* Try to perform the update. */ ecmd.cmd = ETHTOOL_SSET; err = send_ioctl(ctx, &ecmd); if (err < 0) perror("Cannot set new settings"); } if (err < 0) { if (speed_wanted != -1) fprintf(stderr, " not setting speed\n"); if (duplex_wanted != -1) fprintf(stderr, " not setting duplex\n"); if (port_wanted != -1) fprintf(stderr, " not setting port\n"); if (autoneg_wanted != -1) fprintf(stderr, " not setting autoneg\n"); if (phyad_wanted != -1) fprintf(stderr, " not setting phy_address\n"); if (xcvr_wanted != -1) fprintf(stderr, " not setting transceiver\n"); if (mdix_wanted != -1) fprintf(stderr, " not setting mdix\n"); } } if (gwol_changed) { struct ethtool_wolinfo wol; wol.cmd = ETHTOOL_GWOL; err = send_ioctl(ctx, &wol); if (err < 0) { perror("Cannot get current wake-on-lan settings"); } else { /* Change everything the user specified. */ if (wol_change) { wol.wolopts = wol_wanted; } if (sopass_change) { int i; for (i = 0; i < SOPASS_MAX; i++) { wol.sopass[i] = sopass_wanted[i]; } } /* Try to perform the update. */ wol.cmd = ETHTOOL_SWOL; err = send_ioctl(ctx, &wol); if (err < 0) perror("Cannot set new wake-on-lan settings"); } if (err < 0) { if (wol_change) fprintf(stderr, " not setting wol\n"); if (sopass_change) fprintf(stderr, " not setting sopass\n"); } } if (msglvl_changed) { struct ethtool_value edata; edata.cmd = ETHTOOL_GMSGLVL; err = send_ioctl(ctx, &edata); if (err < 0) { perror("Cannot get msglvl"); } else { edata.cmd = ETHTOOL_SMSGLVL; edata.data = ((edata.data & ~msglvl_mask) | msglvl_wanted); err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot set new msglvl"); } } return 0; } static int do_gregs(struct cmd_context *ctx) { int gregs_changed = 0; int gregs_dump_raw = 0; int gregs_dump_hex = 0; char *gregs_dump_file = NULL; struct cmdline_info cmdline_gregs[] = { { "raw", CMDL_BOOL, &gregs_dump_raw, NULL }, { "hex", CMDL_BOOL, &gregs_dump_hex, NULL }, { "file", CMDL_STR, &gregs_dump_file, NULL }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_regs *regs; parse_generic_cmdline(ctx, &gregs_changed, cmdline_gregs, ARRAY_SIZE(cmdline_gregs)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 72; } regs = calloc(1, sizeof(*regs)+drvinfo.regdump_len); if (!regs) { perror("Cannot allocate memory for register dump"); return 73; } regs->cmd = ETHTOOL_GREGS; regs->len = drvinfo.regdump_len; err = send_ioctl(ctx, regs); if (err < 0) { perror("Cannot get register dump"); free(regs); return 74; } if (dump_regs(gregs_dump_raw, gregs_dump_hex, gregs_dump_file, &drvinfo, regs) < 0) { perror("Cannot dump registers"); free(regs); return 75; } free(regs); return 0; } static int do_nway_rst(struct cmd_context *ctx) { struct ethtool_value edata; int err; if (ctx->argc != 0) exit_bad_args(); edata.cmd = ETHTOOL_NWAY_RST; err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot restart autonegotiation"); return err; } static int do_geeprom(struct cmd_context *ctx) { int geeprom_changed = 0; int geeprom_dump_raw = 0; u32 geeprom_offset = 0; u32 geeprom_length = -1; struct cmdline_info cmdline_geeprom[] = { { "offset", CMDL_U32, &geeprom_offset, NULL }, { "length", CMDL_U32, &geeprom_length, NULL }, { "raw", CMDL_BOOL, &geeprom_dump_raw, NULL }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_eeprom *eeprom; parse_generic_cmdline(ctx, &geeprom_changed, cmdline_geeprom, ARRAY_SIZE(cmdline_geeprom)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 74; } if (geeprom_length == -1) geeprom_length = drvinfo.eedump_len; if (drvinfo.eedump_len < geeprom_offset + geeprom_length) geeprom_length = drvinfo.eedump_len - geeprom_offset; eeprom = calloc(1, sizeof(*eeprom)+geeprom_length); if (!eeprom) { perror("Cannot allocate memory for EEPROM data"); return 75; } eeprom->cmd = ETHTOOL_GEEPROM; eeprom->len = geeprom_length; eeprom->offset = geeprom_offset; err = send_ioctl(ctx, eeprom); if (err < 0) { perror("Cannot get EEPROM data"); free(eeprom); return 74; } err = dump_eeprom(geeprom_dump_raw, &drvinfo, eeprom); free(eeprom); return err; } static int do_seeprom(struct cmd_context *ctx) { int seeprom_changed = 0; u32 seeprom_magic = 0; u32 seeprom_length = -1; u32 seeprom_offset = 0; u8 seeprom_value = 0; int seeprom_value_seen = 0; struct cmdline_info cmdline_seeprom[] = { { "magic", CMDL_U32, &seeprom_magic, NULL }, { "offset", CMDL_U32, &seeprom_offset, NULL }, { "length", CMDL_U32, &seeprom_length, NULL }, { "value", CMDL_U8, &seeprom_value, NULL, 0, &seeprom_value_seen }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_eeprom *eeprom; parse_generic_cmdline(ctx, &seeprom_changed, cmdline_seeprom, ARRAY_SIZE(cmdline_seeprom)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 74; } if (seeprom_value_seen) seeprom_length = 1; if (seeprom_length == -1) seeprom_length = drvinfo.eedump_len; if (drvinfo.eedump_len < seeprom_offset + seeprom_length) seeprom_length = drvinfo.eedump_len - seeprom_offset; eeprom = calloc(1, sizeof(*eeprom)+seeprom_length); if (!eeprom) { perror("Cannot allocate memory for EEPROM data"); return 75; } eeprom->cmd = ETHTOOL_SEEPROM; eeprom->len = seeprom_length; eeprom->offset = seeprom_offset; eeprom->magic = seeprom_magic; eeprom->data[0] = seeprom_value; /* Multi-byte write: read input from stdin */ if (!seeprom_value_seen) eeprom->len = fread(eeprom->data, 1, eeprom->len, stdin); err = send_ioctl(ctx, eeprom); if (err < 0) { perror("Cannot set EEPROM data"); err = 87; } free(eeprom); return err; } static int do_test(struct cmd_context *ctx) { enum { ONLINE=0, OFFLINE, EXTERNAL_LB, } test_type; int err; struct ethtool_test *test; struct ethtool_gstrings *strings; if (ctx->argc > 1) exit_bad_args(); if (ctx->argc == 1) { if (!strcmp(ctx->argp[0], "online")) { test_type = ONLINE; } else if (!strcmp(*ctx->argp, "offline")) { test_type = OFFLINE; } else if (!strcmp(*ctx->argp, "external_lb")) { test_type = EXTERNAL_LB; } else { exit_bad_args(); } } else { test_type = OFFLINE; } strings = get_stringset(ctx, ETH_SS_TEST, offsetof(struct ethtool_drvinfo, testinfo_len), 1); if (!strings) { perror("Cannot get strings"); return 74; } test = calloc(1, sizeof(*test) + strings->len * sizeof(u64)); if (!test) { perror("Cannot allocate memory for test info"); free(strings); return 73; } memset(test->data, 0, strings->len * sizeof(u64)); test->cmd = ETHTOOL_TEST; test->len = strings->len; if (test_type == EXTERNAL_LB) test->flags = (ETH_TEST_FL_OFFLINE | ETH_TEST_FL_EXTERNAL_LB); else if (test_type == OFFLINE) test->flags = ETH_TEST_FL_OFFLINE; else test->flags = 0; err = send_ioctl(ctx, test); if (err < 0) { perror("Cannot test"); free (test); free(strings); return 74; } err = dump_test(test, strings); free(test); free(strings); return err; } static int do_phys_id(struct cmd_context *ctx) { int err; struct ethtool_value edata; int phys_id_time; if (ctx->argc > 1) exit_bad_args(); if (ctx->argc == 1) phys_id_time = get_int(*ctx->argp, 0); else phys_id_time = 0; edata.cmd = ETHTOOL_PHYS_ID; edata.data = phys_id_time; err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot identify NIC"); return err; } static int do_gstats(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct ethtool_stats *stats; unsigned int n_stats, sz_stats, i; int err; if (ctx->argc != 0) exit_bad_args(); strings = get_stringset(ctx, ETH_SS_STATS, offsetof(struct ethtool_drvinfo, n_stats), 0); if (!strings) { perror("Cannot get stats strings information"); return 96; } n_stats = strings->len; if (n_stats < 1) { fprintf(stderr, "no stats available\n"); free(strings); return 94; } sz_stats = n_stats * sizeof(u64); stats = calloc(1, sz_stats + sizeof(struct ethtool_stats)); if (!stats) { fprintf(stderr, "no memory available\n"); free(strings); return 95; } stats->cmd = ETHTOOL_GSTATS; stats->n_stats = n_stats; err = send_ioctl(ctx, stats); if (err < 0) { perror("Cannot get stats information"); free(strings); free(stats); return 97; } /* todo - pretty-print the strings per-driver */ fprintf(stdout, "NIC statistics:\n"); for (i = 0; i < n_stats; i++) { fprintf(stdout, " %.*s: %llu\n", ETH_GSTRING_LEN, &strings->data[i * ETH_GSTRING_LEN], stats->data[i]); } free(strings); free(stats); return 0; } static int do_srxntuple(struct cmd_context *ctx, struct ethtool_rx_flow_spec *rx_rule_fs); static int do_srxclass(struct cmd_context *ctx) { int err; if (ctx->argc < 2) exit_bad_args(); if (ctx->argc == 3 && !strcmp(ctx->argp[0], "rx-flow-hash")) { int rx_fhash_set; u32 rx_fhash_val; struct ethtool_rxnfc nfccmd; rx_fhash_set = rxflow_str_to_type(ctx->argp[1]); if (!rx_fhash_set) exit_bad_args(); if (parse_rxfhashopts(ctx->argp[2], &rx_fhash_val) < 0) exit_bad_args(); nfccmd.cmd = ETHTOOL_SRXFH; nfccmd.flow_type = rx_fhash_set; nfccmd.data = rx_fhash_val; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot change RX network flow hashing options"); } else if (!strcmp(ctx->argp[0], "flow-type")) { struct ethtool_rx_flow_spec rx_rule_fs; ctx->argc--; ctx->argp++; if (rxclass_parse_ruleopts(ctx, &rx_rule_fs) < 0) exit_bad_args(); /* attempt to add rule via N-tuple specifier */ err = do_srxntuple(ctx, &rx_rule_fs); if (!err) return 0; /* attempt to add rule via network flow classifier */ err = rxclass_rule_ins(ctx, &rx_rule_fs); if (err < 0) { fprintf(stderr, "Cannot insert" " classification rule\n"); return 1; } } else if (!strcmp(ctx->argp[0], "delete")) { int rx_class_rule_del = get_uint_range(ctx->argp[1], 0, INT_MAX); err = rxclass_rule_del(ctx, rx_class_rule_del); if (err < 0) { fprintf(stderr, "Cannot delete" " classification rule\n"); return 1; } } else { exit_bad_args(); } return 0; } static int do_grxclass(struct cmd_context *ctx) { struct ethtool_rxnfc nfccmd; int err; if (ctx->argc == 2 && !strcmp(ctx->argp[0], "rx-flow-hash")) { int rx_fhash_get; rx_fhash_get = rxflow_str_to_type(ctx->argp[1]); if (!rx_fhash_get) exit_bad_args(); nfccmd.cmd = ETHTOOL_GRXFH; nfccmd.flow_type = rx_fhash_get; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot get RX network flow hashing options"); else dump_rxfhash(rx_fhash_get, nfccmd.data); } else if (ctx->argc == 2 && !strcmp(ctx->argp[0], "rule")) { int rx_class_rule_get = get_uint_range(ctx->argp[1], 0, INT_MAX); err = rxclass_rule_get(ctx, rx_class_rule_get); if (err < 0) fprintf(stderr, "Cannot get RX classification rule\n"); } else if (ctx->argc == 0) { nfccmd.cmd = ETHTOOL_GRXRINGS; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot get RX rings"); else fprintf(stdout, "%d RX rings available\n", (int)nfccmd.data); err = rxclass_rule_getall(ctx); if (err < 0) fprintf(stderr, "RX classification rule retrieval failed\n"); } else { exit_bad_args(); } return err ? 1 : 0; } static int do_grxfhindir(struct cmd_context *ctx) { struct ethtool_rxnfc ring_count; struct ethtool_rxfh_indir indir_head; struct ethtool_rxfh_indir *indir; u32 i; int err; ring_count.cmd = ETHTOOL_GRXRINGS; err = send_ioctl(ctx, &ring_count); if (err < 0) { perror("Cannot get RX ring count"); return 102; } indir_head.cmd = ETHTOOL_GRXFHINDIR; indir_head.size = 0; err = send_ioctl(ctx, &indir_head); if (err < 0) { perror("Cannot get RX flow hash indirection table size"); return 103; } indir = malloc(sizeof(*indir) + indir_head.size * sizeof(*indir->ring_index)); indir->cmd = ETHTOOL_GRXFHINDIR; indir->size = indir_head.size; err = send_ioctl(ctx, indir); if (err < 0) { perror("Cannot get RX flow hash indirection table"); return 103; } printf("RX flow hash indirection table for %s with %llu RX ring(s):\n", ctx->devname, ring_count.data); for (i = 0; i < indir->size; i++) { if (i % 8 == 0) printf("%5u: ", i); printf(" %5u", indir->ring_index[i]); if (i % 8 == 7) fputc('\n', stdout); } return 0; } static int do_srxfhindir(struct cmd_context *ctx) { int rxfhindir_equal = 0; char **rxfhindir_weight = NULL; struct ethtool_rxfh_indir indir_head; struct ethtool_rxfh_indir *indir; u32 i; int err; if (ctx->argc < 2) exit_bad_args(); if (!strcmp(ctx->argp[0], "equal")) { if (ctx->argc != 2) exit_bad_args(); rxfhindir_equal = get_int_range(ctx->argp[1], 0, 1, INT_MAX); } else if (!strcmp(ctx->argp[0], "weight")) { rxfhindir_weight = ctx->argp + 1; } else { exit_bad_args(); } indir_head.cmd = ETHTOOL_GRXFHINDIR; indir_head.size = 0; err = send_ioctl(ctx, &indir_head); if (err < 0) { perror("Cannot get RX flow hash indirection table size"); return 104; } indir = malloc(sizeof(*indir) + indir_head.size * sizeof(*indir->ring_index)); indir->cmd = ETHTOOL_SRXFHINDIR; indir->size = indir_head.size; if (rxfhindir_equal) { for (i = 0; i < indir->size; i++) indir->ring_index[i] = i % rxfhindir_equal; } else { u32 j, weight, sum = 0, partial = 0; for (j = 0; rxfhindir_weight[j]; j++) { weight = get_u32(rxfhindir_weight[j], 0); sum += weight; } if (sum == 0) { fprintf(stderr, "At least one weight must be non-zero\n"); exit(1); } if (sum > indir->size) { fprintf(stderr, "Total weight exceeds the size of the " "indirection table\n"); exit(1); } j = -1; for (i = 0; i < indir->size; i++) { while (i >= indir->size * partial / sum) { j += 1; weight = get_u32(rxfhindir_weight[j], 0); partial += weight; } indir->ring_index[i] = j; } } err = send_ioctl(ctx, indir); if (err < 0) { perror("Cannot set RX flow hash indirection table"); return 105; } return 0; } static int do_flash(struct cmd_context *ctx) { char *flash_file; int flash_region; struct ethtool_flash efl; int err; if (ctx->argc < 1 || ctx->argc > 2) exit_bad_args(); flash_file = ctx->argp[0]; if (ctx->argc == 2) { flash_region = strtol(ctx->argp[1], NULL, 0); if (flash_region < 0) exit_bad_args(); } else { flash_region = -1; } if (strlen(flash_file) > ETHTOOL_FLASH_MAX_FILENAME - 1) { fprintf(stdout, "Filename too long\n"); return 99; } efl.cmd = ETHTOOL_FLASHDEV; strcpy(efl.data, flash_file); if (flash_region < 0) efl.region = ETHTOOL_FLASH_ALL_REGIONS; else efl.region = flash_region; err = send_ioctl(ctx, &efl); if (err < 0) perror("Flashing failed"); return err; } static int do_permaddr(struct cmd_context *ctx) { int i, err; struct ethtool_perm_addr *epaddr; epaddr = malloc(sizeof(struct ethtool_perm_addr) + MAX_ADDR_LEN); epaddr->cmd = ETHTOOL_GPERMADDR; epaddr->size = MAX_ADDR_LEN; err = send_ioctl(ctx, epaddr); if (err < 0) perror("Cannot read permanent address"); else { printf("Permanent address:"); for (i = 0; i < epaddr->size; i++) printf("%c%02x", (i == 0) ? ' ' : ':', epaddr->data[i]); printf("\n"); } free(epaddr); return err; } static int flow_spec_to_ntuple(struct ethtool_rx_flow_spec *fsp, struct ethtool_rx_ntuple_flow_spec *ntuple) { size_t i; /* verify location is not specified */ if (fsp->location != RX_CLS_LOC_ANY) return -1; /* verify ring cookie can transfer to action */ if (fsp->ring_cookie > INT_MAX && fsp->ring_cookie < (u64)(-2)) return -1; /* verify only one field is setting data field */ if ((fsp->flow_type & FLOW_EXT) && (fsp->m_ext.data[0] || fsp->m_ext.data[1]) && fsp->m_ext.vlan_etype) return -1; /* Set entire ntuple to ~0 to guarantee all masks are set */ memset(ntuple, ~0, sizeof(*ntuple)); /* set non-filter values */ ntuple->flow_type = fsp->flow_type; ntuple->action = fsp->ring_cookie; /* * Copy over header union, they are identical in layout however * the ntuple union contains additional padding on the end */ memcpy(&ntuple->h_u, &fsp->h_u, sizeof(fsp->h_u)); /* * The same rule mentioned above applies to the mask union. However, * in addition we need to invert the mask bits to match the ntuple * mask which is 1 for masked, versus 0 for masked as seen in nfc. */ memcpy(&ntuple->m_u, &fsp->m_u, sizeof(fsp->m_u)); for (i = 0; i < sizeof(fsp->m_u); i++) ntuple->m_u.hdata[i] ^= 0xFF; /* copy extended fields */ if (fsp->flow_type & FLOW_EXT) { ntuple->vlan_tag = ntohs(fsp->h_ext.vlan_tci); ntuple->vlan_tag_mask = ~ntohs(fsp->m_ext.vlan_tci); if (fsp->m_ext.vlan_etype) { /* * vlan_etype and user data are mutually exclusive * in ntuple configuration as they occupy the same * space. */ if (fsp->m_ext.data[0] || fsp->m_ext.data[1]) return -1; ntuple->data = ntohl(fsp->h_ext.vlan_etype); ntuple->data_mask = ~(u64)ntohl(fsp->m_ext.vlan_etype); } else { ntuple->data = (u64)ntohl(fsp->h_ext.data[0]) << 32; ntuple->data |= (u64)ntohl(fsp->h_ext.data[1]); ntuple->data_mask = (u64)ntohl(~fsp->m_ext.data[0]) << 32; ntuple->data_mask |= (u64)ntohl(~fsp->m_ext.data[1]); } } /* Mask out the extended bit, because ntuple does not know it! */ ntuple->flow_type &= ~FLOW_EXT; return 0; } static int do_srxntuple(struct cmd_context *ctx, struct ethtool_rx_flow_spec *rx_rule_fs) { struct ethtool_rx_ntuple ntuplecmd; struct ethtool_value eval; int err; /* attempt to convert the flow classifier to an ntuple classifier */ err = flow_spec_to_ntuple(rx_rule_fs, &ntuplecmd.fs); if (err) return -1; /* * Check to see if the flag is set for N-tuple, this allows * us to avoid the possible EINVAL response for the N-tuple * flag not being set on the device */ eval.cmd = ETHTOOL_GFLAGS; err = send_ioctl(ctx, &eval); if (err || !(eval.data & ETH_FLAG_NTUPLE)) return -1; /* send rule via N-tuple */ ntuplecmd.cmd = ETHTOOL_SRXNTUPLE; err = send_ioctl(ctx, &ntuplecmd); /* * Display error only if reponse is something other than op not * supported. It is possible that the interface uses the network * flow classifier interface instead of N-tuple. */ if (err < 0) { if (errno != EOPNOTSUPP) perror("Cannot add new rule via N-tuple"); return -1; } return 0; } static int do_writefwdump(struct ethtool_dump *dump, const char *dump_file) { int err = 0; FILE *f; size_t bytes; f = fopen(dump_file, "wb+"); if (!f) { fprintf(stderr, "Can't open file %s: %s\n", dump_file, strerror(errno)); return 1; } bytes = fwrite(dump->data, 1, dump->len, f); if (bytes != dump->len) { fprintf(stderr, "Can not write all of dump data\n"); err = 1; } if (fclose(f)) { fprintf(stderr, "Can't close file %s: %s\n", dump_file, strerror(errno)); err = 1; } return err; } static int do_getfwdump(struct cmd_context *ctx) { u32 dump_flag; char *dump_file; int err; struct ethtool_dump edata; struct ethtool_dump *data; if (ctx->argc == 2 && !strcmp(ctx->argp[0], "data")) { dump_flag = ETHTOOL_GET_DUMP_DATA; dump_file = ctx->argp[1]; } else if (ctx->argc == 0) { dump_flag = 0; dump_file = NULL; } else { exit_bad_args(); } edata.cmd = ETHTOOL_GET_DUMP_FLAG; err = send_ioctl(ctx, &edata); if (err < 0) { perror("Can not get dump level\n"); return 1; } if (dump_flag != ETHTOOL_GET_DUMP_DATA) { fprintf(stdout, "flag: %u, version: %u, length: %u\n", edata.flag, edata.version, edata.len); return 0; } data = calloc(1, offsetof(struct ethtool_dump, data) + edata.len); if (!data) { perror("Can not allocate enough memory\n"); return 1; } data->cmd = ETHTOOL_GET_DUMP_DATA; data->len = edata.len; err = send_ioctl(ctx, data); if (err < 0) { perror("Can not get dump data\n"); err = 1; goto free; } err = do_writefwdump(data, dump_file); free: free(data); return err; } static int do_setfwdump(struct cmd_context *ctx) { u32 dump_flag; int err; struct ethtool_dump dump; if (ctx->argc != 1) exit_bad_args(); dump_flag = get_u32(ctx->argp[0], 0); dump.cmd = ETHTOOL_SET_DUMP; dump.flag = dump_flag; err = send_ioctl(ctx, &dump); if (err < 0) { perror("Can not set dump level\n"); return 1; } return 0; } static int do_gprivflags(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct ethtool_value flags; unsigned int i; if (ctx->argc != 0) exit_bad_args(); strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS, offsetof(struct ethtool_drvinfo, n_priv_flags), 1); if (!strings) { perror("Cannot get private flag names"); return 1; } if (strings->len == 0) { fprintf(stderr, "No private flags defined\n"); return 1; } if (strings->len > 32) { /* ETHTOOL_GPFLAGS can only cover 32 flags */ fprintf(stderr, "Only showing first 32 private flags\n"); strings->len = 32; } flags.cmd = ETHTOOL_GPFLAGS; if (send_ioctl(ctx, &flags)) { perror("Cannot get private flags"); return 1; } printf("Private flags for %s:\n", ctx->devname); for (i = 0; i < strings->len; i++) printf("%s: %s\n", (const char *)strings->data + i * ETH_GSTRING_LEN, (flags.data & (1U << i)) ? "on" : "off"); return 0; } static int do_sprivflags(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct cmdline_info *cmdline; struct ethtool_value flags; u32 wanted_flags = 0, seen_flags = 0; int any_changed; unsigned int i; strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS, offsetof(struct ethtool_drvinfo, n_priv_flags), 1); if (!strings) { perror("Cannot get private flag names"); return 1; } if (strings->len == 0) { fprintf(stderr, "No private flags defined\n"); return 1; } if (strings->len > 32) { /* ETHTOOL_{G,S}PFLAGS can only cover 32 flags */ fprintf(stderr, "Only setting first 32 private flags\n"); strings->len = 32; } cmdline = calloc(strings->len, sizeof(*cmdline)); if (!cmdline) { perror("Cannot parse arguments"); return 1; } for (i = 0; i < strings->len; i++) { cmdline[i].name = ((const char *)strings->data + i * ETH_GSTRING_LEN); cmdline[i].type = CMDL_FLAG; cmdline[i].wanted_val = &wanted_flags; cmdline[i].flag_val = 1U << i; cmdline[i].seen_val = &seen_flags; } parse_generic_cmdline(ctx, &any_changed, cmdline, strings->len); flags.cmd = ETHTOOL_GPFLAGS; if (send_ioctl(ctx, &flags)) { perror("Cannot get private flags"); return 1; } flags.cmd = ETHTOOL_SPFLAGS; flags.data = (flags.data & ~seen_flags) | wanted_flags; if (send_ioctl(ctx, &flags)) { perror("Cannot set private flags"); return 1; } return 0; } static int do_tsinfo(struct cmd_context *ctx) { struct ethtool_ts_info info; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Time stamping parameters for %s:\n", ctx->devname); info.cmd = ETHTOOL_GET_TS_INFO; if (send_ioctl(ctx, &info)) { perror("Cannot get device time stamping settings"); return -1; } dump_tsinfo(&info); return 0; } static int do_getmodule(struct cmd_context *ctx) { struct ethtool_modinfo modinfo; struct ethtool_eeprom *eeprom; u32 geeprom_offset = 0; u32 geeprom_length = -1; int geeprom_changed = 0; int geeprom_dump_raw = 0; int geeprom_dump_hex = 0; int err; struct cmdline_info cmdline_geeprom[] = { { "offset", CMDL_U32, &geeprom_offset, NULL }, { "length", CMDL_U32, &geeprom_length, NULL }, { "raw", CMDL_BOOL, &geeprom_dump_raw, NULL }, { "hex", CMDL_BOOL, &geeprom_dump_hex, NULL }, }; parse_generic_cmdline(ctx, &geeprom_changed, cmdline_geeprom, ARRAY_SIZE(cmdline_geeprom)); if (geeprom_dump_raw && geeprom_dump_hex) { printf("Hex and raw dump cannot be specified together\n"); return 1; } modinfo.cmd = ETHTOOL_GMODULEINFO; err = send_ioctl(ctx, &modinfo); if (err < 0) { perror("Cannot get module EEPROM information"); return 1; } if (geeprom_length == -1) geeprom_length = modinfo.eeprom_len; if (modinfo.eeprom_len < geeprom_offset + geeprom_length) geeprom_length = modinfo.eeprom_len - geeprom_offset; eeprom = calloc(1, sizeof(*eeprom)+geeprom_length); if (!eeprom) { perror("Cannot allocate memory for Module EEPROM data"); return 1; } eeprom->cmd = ETHTOOL_GMODULEEEPROM; eeprom->len = geeprom_length; eeprom->offset = geeprom_offset; err = send_ioctl(ctx, eeprom); if (err < 0) { perror("Cannot get Module EEPROM data"); free(eeprom); return 1; } if (geeprom_dump_raw) { fwrite(eeprom->data, 1, eeprom->len, stdout); } else { if (eeprom->offset != 0 || (eeprom->len != modinfo.eeprom_len)) { geeprom_dump_hex = 1; } else if (!geeprom_dump_hex) { switch (modinfo.type) { case ETH_MODULE_SFF_8079: case ETH_MODULE_SFF_8472: sff8079_show_all(eeprom->data); break; default: geeprom_dump_hex = 1; break; } } if (geeprom_dump_hex) dump_hex(stdout, eeprom->data, eeprom->len, eeprom->offset); } free(eeprom); return 0; } static int do_geee(struct cmd_context *ctx) { struct ethtool_eee eeecmd; if (ctx->argc != 0) exit_bad_args(); eeecmd.cmd = ETHTOOL_GEEE; if (send_ioctl(ctx, &eeecmd)) { perror("Cannot get EEE settings"); return 1; } fprintf(stdout, "EEE Settings for %s:\n", ctx->devname); dump_eeecmd(&eeecmd); return 0; } static int do_seee(struct cmd_context *ctx) { int adv_c = -1, lpi_c = -1, lpi_time_c = -1, eee_c = -1; int change = -1, change2 = -1; struct ethtool_eee eeecmd; struct cmdline_info cmdline_eee[] = { { "advertise", CMDL_U32, &adv_c, &eeecmd.advertised }, { "tx-lpi", CMDL_BOOL, &lpi_c, &eeecmd.tx_lpi_enabled }, { "tx-timer", CMDL_U32, &lpi_time_c, &eeecmd.tx_lpi_timer}, { "eee", CMDL_BOOL, &eee_c, &eeecmd.eee_enabled}, }; if (ctx->argc == 0) exit_bad_args(); parse_generic_cmdline(ctx, &change, cmdline_eee, ARRAY_SIZE(cmdline_eee)); eeecmd.cmd = ETHTOOL_GEEE; if (send_ioctl(ctx, &eeecmd)) { perror("Cannot get EEE settings"); return 1; } do_generic_set(cmdline_eee, ARRAY_SIZE(cmdline_eee), &change2); if (change2) { eeecmd.cmd = ETHTOOL_SEEE; if (send_ioctl(ctx, &eeecmd)) { perror("Cannot set EEE settings"); return 1; } } return 0; } #ifndef TEST_ETHTOOL int send_ioctl(struct cmd_context *ctx, void *cmd) { ctx->ifr.ifr_data = cmd; return ioctl(ctx->fd, SIOCETHTOOL, &ctx->ifr); } #endif static int show_usage(struct cmd_context *ctx); static const struct option { const char *opts; int want_device; int (*func)(struct cmd_context *); char *help; char *opthelp; } args[] = { { "-s|--change", 1, do_sset, "Change generic options", " [ speed %d ]\n" " [ duplex half|full ]\n" " [ port tp|aui|bnc|mii|fibre ]\n" " [ mdix auto|on|off ]\n" " [ autoneg on|off ]\n" " [ advertise %x ]\n" " [ phyad %d ]\n" " [ xcvr internal|external ]\n" " [ wol p|u|m|b|a|g|s|d... ]\n" " [ sopass %x:%x:%x:%x:%x:%x ]\n" " [ msglvl %d | msglvl type on|off ... ]\n" }, { "-a|--show-pause", 1, do_gpause, "Show pause options" }, { "-A|--pause", 1, do_spause, "Set pause options", " [ autoneg on|off ]\n" " [ rx on|off ]\n" " [ tx on|off ]\n" }, { "-c|--show-coalesce", 1, do_gcoalesce, "Show coalesce options" }, { "-C|--coalesce", 1, do_scoalesce, "Set coalesce options", " [adaptive-rx on|off]\n" " [adaptive-tx on|off]\n" " [rx-usecs N]\n" " [rx-frames N]\n" " [rx-usecs-irq N]\n" " [rx-frames-irq N]\n" " [tx-usecs N]\n" " [tx-frames N]\n" " [tx-usecs-irq N]\n" " [tx-frames-irq N]\n" " [stats-block-usecs N]\n" " [pkt-rate-low N]\n" " [rx-usecs-low N]\n" " [rx-frames-low N]\n" " [tx-usecs-low N]\n" " [tx-frames-low N]\n" " [pkt-rate-high N]\n" " [rx-usecs-high N]\n" " [rx-frames-high N]\n" " [tx-usecs-high N]\n" " [tx-frames-high N]\n" " [sample-interval N]\n" }, { "-g|--show-ring", 1, do_gring, "Query RX/TX ring parameters" }, { "-G|--set-ring", 1, do_sring, "Set RX/TX ring parameters", " [ rx N ]\n" " [ rx-mini N ]\n" " [ rx-jumbo N ]\n" " [ tx N ]\n" }, { "-k|--show-features|--show-offload", 1, do_gfeatures, "Get state of protocol offload and other features" }, { "-K|--features|--offload", 1, do_sfeatures, "Set protocol offload and other features", " FEATURE on|off ...\n" }, { "-i|--driver", 1, do_gdrv, "Show driver information" }, { "-d|--register-dump", 1, do_gregs, "Do a register dump", " [ raw on|off ]\n" " [ file FILENAME ]\n" }, { "-e|--eeprom-dump", 1, do_geeprom, "Do a EEPROM dump", " [ raw on|off ]\n" " [ offset N ]\n" " [ length N ]\n" }, { "-E|--change-eeprom", 1, do_seeprom, "Change bytes in device EEPROM", " [ magic N ]\n" " [ offset N ]\n" " [ length N ]\n" " [ value N ]\n" }, { "-r|--negotiate", 1, do_nway_rst, "Restart N-WAY negotiation" }, { "-p|--identify", 1, do_phys_id, "Show visible port identification (e.g. blinking)", " [ TIME-IN-SECONDS ]\n" }, { "-t|--test", 1, do_test, "Execute adapter self test", " [ online | offline | external_lb ]\n" }, { "-S|--statistics", 1, do_gstats, "Show adapter statistics" }, { "-n|-u|--show-nfc|--show-ntuple", 1, do_grxclass, "Show Rx network flow classification options or rules", " [ rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|" "tcp6|udp6|ah6|esp6|sctp6 |\n" " rule %d ]\n" }, { "-N|-U|--config-nfc|--config-ntuple", 1, do_srxclass, "Configure Rx network flow classification options or rules", " rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|" "tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r... |\n" " flow-type ether|ip4|tcp4|udp4|sctp4|ah4|esp4\n" " [ src %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n" " [ dst %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n" " [ proto %d [m %x] ]\n" " [ src-ip %d.%d.%d.%d [m %d.%d.%d.%d] ]\n" " [ dst-ip %d.%d.%d.%d [m %d.%d.%d.%d] ]\n" " [ tos %d [m %x] ]\n" " [ l4proto %d [m %x] ]\n" " [ src-port %d [m %x] ]\n" " [ dst-port %d [m %x] ]\n" " [ spi %d [m %x] ]\n" " [ vlan-etype %x [m %x] ]\n" " [ vlan %x [m %x] ]\n" " [ user-def %x [m %x] ]\n" " [ action %d ]\n" " [ loc %d]] |\n" " delete %d\n" }, { "-T|--show-time-stamping", 1, do_tsinfo, "Show time stamping capabilities" }, { "-x|--show-rxfh-indir", 1, do_grxfhindir, "Show Rx flow hash indirection" }, { "-X|--set-rxfh-indir", 1, do_srxfhindir, "Set Rx flow hash indirection", " equal N | weight W0 W1 ...\n" }, { "-f|--flash", 1, do_flash, "Flash firmware image from the specified file to a region on the device", " FILENAME [ REGION-NUMBER-TO-FLASH ]\n" }, { "-P|--show-permaddr", 1, do_permaddr, "Show permanent hardware address" }, { "-w|--get-dump", 1, do_getfwdump, "Get dump flag, data", " [ data FILENAME ]\n" }, { "-W|--set-dump", 1, do_setfwdump, "Set dump flag of the device", " N\n"}, { "-l|--show-channels", 1, do_gchannels, "Query Channels" }, { "-L|--set-channels", 1, do_schannels, "Set Channels", " [ rx N ]\n" " [ tx N ]\n" " [ other N ]\n" " [ combined N ]\n" }, { "--show-priv-flags" , 1, do_gprivflags, "Query private flags" }, { "--set-priv-flags", 1, do_sprivflags, "Set private flags", " FLAG on|off ...\n" }, { "-m|--dump-module-eeprom", 1, do_getmodule, "Qeuery/Decode Module EEPROM information", " [ raw on|off ]\n" " [ hex on|off ]\n" " [ offset N ]\n" " [ length N ]\n" }, { "--show-eee", 1, do_geee, "Show EEE settings"}, { "--set-eee", 1, do_seee, "Set EEE settings", " [ eee on|off ]\n" " [ advertise %x ]\n" " [ tx-lpi on|off ]\n" " [ tx-timer %d ]\n"}, { "-h|--help", 0, show_usage, "Show this help" }, { "--version", 0, do_version, "Show version number" }, {} }; static int show_usage(struct cmd_context *ctx) { int i; /* ethtool -h */ fprintf(stdout, PACKAGE " version " VERSION "\n"); fprintf(stdout, "Usage:\n" " ethtool DEVNAME\t" "Display standard information about device\n"); for (i = 0; args[i].opts; i++) { fputs(" ethtool ", stdout); fprintf(stdout, "%s %s\t%s\n", args[i].opts, args[i].want_device ? "DEVNAME" : "\t", args[i].help); if (args[i].opthelp) fputs(args[i].opthelp, stdout); } return 0; } int main(int argc, char **argp) { int (*func)(struct cmd_context *); int want_device; struct cmd_context ctx; int k; /* Skip command name */ argp++; argc--; /* First argument must be either a valid option or a device * name to get settings for (which we don't expect to begin * with '-'). */ if (argc == 0) exit_bad_args(); for (k = 0; args[k].opts; k++) { const char *opt; size_t len; opt = args[k].opts; for (;;) { len = strcspn(opt, "|"); if (strncmp(*argp, opt, len) == 0 && (*argp)[len] == 0) { argp++; argc--; func = args[k].func; want_device = args[k].want_device; goto opt_found; } if (opt[len] == 0) break; opt += len + 1; } } if ((*argp)[0] == '-') exit_bad_args(); func = do_gset; want_device = 1; opt_found: if (want_device) { ctx.devname = *argp++; argc--; if (ctx.devname == NULL) exit_bad_args(); if (strlen(ctx.devname) >= IFNAMSIZ) exit_bad_args(); /* Setup our control structures. */ memset(&ctx.ifr, 0, sizeof(ctx.ifr)); strcpy(ctx.ifr.ifr_name, ctx.devname); /* Open control socket. */ ctx.fd = socket(AF_INET, SOCK_DGRAM, 0); if (ctx.fd < 0) { perror("Cannot get control socket"); return 70; } } else { ctx.fd = -1; } ctx.argc = argc; ctx.argp = argp; return func(&ctx); }