/* * ethtool.c: Linux ethernet device configuration tool. * * Copyright (C) 1998 David S. Miller (davem@dm.cobaltmicro.com) * Portions Copyright 2001 Sun Microsystems * Kernel 2.4 update Copyright 2001 Jeff Garzik * Wake-on-LAN,natsemi,misc support by Tim Hockin * Portions Copyright 2002 Intel * Portions Copyright (C) Sun Microsystems 2008 * do_test support by Eli Kupermann * ETHTOOL_PHYS_ID support by Chris Leech * e1000 support by Scott Feldman * e100 support by Wen Tao * ixgb support by Nicholas Nunley * amd8111e support by Reeja John * long arguments by Andi Kleen. * SMSC LAN911x support by Steve Glendinning * Rx Network Flow Control configuration support * Various features by Ben Hutchings ; * Copyright 2009, 2010 Solarflare Communications * * TODO: * * show settings for all devices */ #include "internal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MAX_ADDR_LEN #define MAX_ADDR_LEN 32 #endif #ifndef HAVE_NETIF_MSG enum { NETIF_MSG_DRV = 0x0001, NETIF_MSG_PROBE = 0x0002, NETIF_MSG_LINK = 0x0004, NETIF_MSG_TIMER = 0x0008, NETIF_MSG_IFDOWN = 0x0010, NETIF_MSG_IFUP = 0x0020, NETIF_MSG_RX_ERR = 0x0040, NETIF_MSG_TX_ERR = 0x0080, NETIF_MSG_TX_QUEUED = 0x0100, NETIF_MSG_INTR = 0x0200, NETIF_MSG_TX_DONE = 0x0400, NETIF_MSG_RX_STATUS = 0x0800, NETIF_MSG_PKTDATA = 0x1000, NETIF_MSG_HW = 0x2000, NETIF_MSG_WOL = 0x4000, }; #endif static void exit_bad_args(void) __attribute__((noreturn)); static void exit_bad_args(void) { fprintf(stderr, "ethtool: bad command line argument(s)\n" "For more information run ethtool -h\n"); exit(1); } typedef enum { CMDL_NONE, CMDL_BOOL, CMDL_S32, CMDL_U8, CMDL_U16, CMDL_U32, CMDL_U64, CMDL_BE16, CMDL_IP4, CMDL_STR, CMDL_FLAG, CMDL_MAC, } cmdline_type_t; struct cmdline_info { const char *name; cmdline_type_t type; /* Points to int (BOOL), s32, u16, u32 (U32/FLAG/IP4), u64, * char * (STR) or u8[6] (MAC). For FLAG, the value accumulates * all flags to be set. */ void *wanted_val; void *ioctl_val; /* For FLAG, the flag value to be set/cleared */ u32 flag_val; /* For FLAG, points to u32 and accumulates all flags seen. * For anything else, points to int and is set if the option is * seen. */ void *seen_val; }; struct flag_info { const char *name; u32 value; }; static const struct flag_info flags_msglvl[] = { { "drv", NETIF_MSG_DRV }, { "probe", NETIF_MSG_PROBE }, { "link", NETIF_MSG_LINK }, { "timer", NETIF_MSG_TIMER }, { "ifdown", NETIF_MSG_IFDOWN }, { "ifup", NETIF_MSG_IFUP }, { "rx_err", NETIF_MSG_RX_ERR }, { "tx_err", NETIF_MSG_TX_ERR }, { "tx_queued", NETIF_MSG_TX_QUEUED }, { "intr", NETIF_MSG_INTR }, { "tx_done", NETIF_MSG_TX_DONE }, { "rx_status", NETIF_MSG_RX_STATUS }, { "pktdata", NETIF_MSG_PKTDATA }, { "hw", NETIF_MSG_HW }, { "wol", NETIF_MSG_WOL }, }; static long long get_int_range(char *str, int base, long long min, long long max) { long long v; char *endp; if (!str) exit_bad_args(); errno = 0; v = strtoll(str, &endp, base); if (errno || *endp || v < min || v > max) exit_bad_args(); return v; } static unsigned long long get_uint_range(char *str, int base, unsigned long long max) { unsigned long long v; char *endp; if (!str) exit_bad_args(); errno = 0; v = strtoull(str, &endp, base); if ( errno || *endp || v > max) exit_bad_args(); return v; } static int get_int(char *str, int base) { return get_int_range(str, base, INT_MIN, INT_MAX); } static u32 get_u32(char *str, int base) { return get_uint_range(str, base, 0xffffffff); } static void get_mac_addr(char *src, unsigned char *dest) { int count; int i; int buf[ETH_ALEN]; count = sscanf(src, "%2x:%2x:%2x:%2x:%2x:%2x", &buf[0], &buf[1], &buf[2], &buf[3], &buf[4], &buf[5]); if (count != ETH_ALEN) exit_bad_args(); for (i = 0; i < count; i++) { dest[i] = buf[i]; } } static void parse_generic_cmdline(struct cmd_context *ctx, int *changed, struct cmdline_info *info, unsigned int n_info) { int argc = ctx->argc; char **argp = ctx->argp; int i, idx; int found; for (i = 0; i < argc; i++) { found = 0; for (idx = 0; idx < n_info; idx++) { if (!strcmp(info[idx].name, argp[i])) { found = 1; *changed = 1; if (info[idx].type != CMDL_FLAG && info[idx].seen_val) *(int *)info[idx].seen_val = 1; i += 1; if (i >= argc) exit_bad_args(); switch (info[idx].type) { case CMDL_BOOL: { int *p = info[idx].wanted_val; if (!strcmp(argp[i], "on")) *p = 1; else if (!strcmp(argp[i], "off")) *p = 0; else exit_bad_args(); break; } case CMDL_S32: { s32 *p = info[idx].wanted_val; *p = get_int_range(argp[i], 0, -0x80000000LL, 0x7fffffff); break; } case CMDL_U8: { u8 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xff); break; } case CMDL_U16: { u16 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xffff); break; } case CMDL_U32: { u32 *p = info[idx].wanted_val; *p = get_uint_range(argp[i], 0, 0xffffffff); break; } case CMDL_U64: { u64 *p = info[idx].wanted_val; *p = get_uint_range( argp[i], 0, 0xffffffffffffffffLL); break; } case CMDL_BE16: { u16 *p = info[idx].wanted_val; *p = cpu_to_be16( get_uint_range(argp[i], 0, 0xffff)); break; } case CMDL_IP4: { u32 *p = info[idx].wanted_val; struct in_addr in; if (!inet_aton(argp[i], &in)) exit_bad_args(); *p = in.s_addr; break; } case CMDL_MAC: get_mac_addr(argp[i], info[idx].wanted_val); break; case CMDL_FLAG: { u32 *p; p = info[idx].seen_val; *p |= info[idx].flag_val; if (!strcmp(argp[i], "on")) { p = info[idx].wanted_val; *p |= info[idx].flag_val; } else if (strcmp(argp[i], "off")) { exit_bad_args(); } break; } case CMDL_STR: { char **s = info[idx].wanted_val; *s = strdup(argp[i]); break; } default: exit_bad_args(); } break; } } if( !found) exit_bad_args(); } } static void flag_to_cmdline_info(const char *name, u32 value, u32 *wanted, u32 *mask, struct cmdline_info *cli) { memset(cli, 0, sizeof(*cli)); cli->name = name; cli->type = CMDL_FLAG; cli->flag_val = value; cli->wanted_val = wanted; cli->seen_val = mask; } static void print_flags(const struct flag_info *info, unsigned int n_info, u32 value) { const char *sep = ""; while (n_info) { if (value & info->value) { printf("%s%s", sep, info->name); sep = " "; value &= ~info->value; } ++info; --n_info; } /* Print any unrecognised flags in hex */ if (value) printf("%s%#x", sep, value); } static int rxflow_str_to_type(const char *str) { int flow_type = 0; if (!strcmp(str, "tcp4")) flow_type = TCP_V4_FLOW; else if (!strcmp(str, "udp4")) flow_type = UDP_V4_FLOW; else if (!strcmp(str, "ah4") || !strcmp(str, "esp4")) flow_type = AH_ESP_V4_FLOW; else if (!strcmp(str, "sctp4")) flow_type = SCTP_V4_FLOW; else if (!strcmp(str, "tcp6")) flow_type = TCP_V6_FLOW; else if (!strcmp(str, "udp6")) flow_type = UDP_V6_FLOW; else if (!strcmp(str, "ah6") || !strcmp(str, "esp6")) flow_type = AH_ESP_V6_FLOW; else if (!strcmp(str, "sctp6")) flow_type = SCTP_V6_FLOW; else if (!strcmp(str, "ether")) flow_type = ETHER_FLOW; return flow_type; } static int do_version(struct cmd_context *ctx) { fprintf(stdout, PACKAGE " version " VERSION "\n"); return 0; } static void dump_link_caps(const char *prefix, const char *an_prefix, u32 mask); static void dump_supported(struct ethtool_cmd *ep) { u32 mask = ep->supported; fprintf(stdout, " Supported ports: [ "); if (mask & SUPPORTED_TP) fprintf(stdout, "TP "); if (mask & SUPPORTED_AUI) fprintf(stdout, "AUI "); if (mask & SUPPORTED_BNC) fprintf(stdout, "BNC "); if (mask & SUPPORTED_MII) fprintf(stdout, "MII "); if (mask & SUPPORTED_FIBRE) fprintf(stdout, "FIBRE "); fprintf(stdout, "]\n"); dump_link_caps("Supported", "Supports", mask); } /* Print link capability flags (supported, advertised or lp_advertised). * Assumes that the corresponding SUPPORTED and ADVERTISED flags are equal. */ static void dump_link_caps(const char *prefix, const char *an_prefix, u32 mask) { int indent; int did1; /* Indent just like the separate functions used to */ indent = strlen(prefix) + 14; if (indent < 24) indent = 24; fprintf(stdout, " %s link modes:%*s", prefix, indent - (int)strlen(prefix) - 12, ""); did1 = 0; if (mask & ADVERTISED_10baseT_Half) { did1++; fprintf(stdout, "10baseT/Half "); } if (mask & ADVERTISED_10baseT_Full) { did1++; fprintf(stdout, "10baseT/Full "); } if (did1 && (mask & (ADVERTISED_100baseT_Half|ADVERTISED_100baseT_Full))) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_100baseT_Half) { did1++; fprintf(stdout, "100baseT/Half "); } if (mask & ADVERTISED_100baseT_Full) { did1++; fprintf(stdout, "100baseT/Full "); } if (did1 && (mask & (ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full))) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_1000baseT_Half) { did1++; fprintf(stdout, "1000baseT/Half "); } if (mask & ADVERTISED_1000baseT_Full) { did1++; fprintf(stdout, "1000baseT/Full "); } if (did1 && (mask & ADVERTISED_2500baseX_Full)) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_2500baseX_Full) { did1++; fprintf(stdout, "2500baseX/Full "); } if (did1 && (mask & ADVERTISED_10000baseT_Full)) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_10000baseT_Full) { did1++; fprintf(stdout, "10000baseT/Full "); } if (did1 && (mask & ADVERTISED_20000baseMLD2_Full)) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_20000baseMLD2_Full) { did1++; fprintf(stdout, "20000baseMLD2/Full "); } if (did1 && (mask & ADVERTISED_20000baseKR2_Full)) { fprintf(stdout, "\n"); fprintf(stdout, " %*s", indent, ""); } if (mask & ADVERTISED_20000baseKR2_Full) { did1++; fprintf(stdout, "20000baseKR2/Full "); } if (did1 == 0) fprintf(stdout, "Not reported"); fprintf(stdout, "\n"); fprintf(stdout, " %s pause frame use: ", prefix); if (mask & ADVERTISED_Pause) { fprintf(stdout, "Symmetric"); if (mask & ADVERTISED_Asym_Pause) fprintf(stdout, " Receive-only"); fprintf(stdout, "\n"); } else { if (mask & ADVERTISED_Asym_Pause) fprintf(stdout, "Transmit-only\n"); else fprintf(stdout, "No\n"); } fprintf(stdout, " %s auto-negotiation: ", an_prefix); if (mask & ADVERTISED_Autoneg) fprintf(stdout, "Yes\n"); else fprintf(stdout, "No\n"); } static int dump_ecmd(struct ethtool_cmd *ep) { u32 speed; dump_supported(ep); dump_link_caps("Advertised", "Advertised", ep->advertising); if (ep->lp_advertising) dump_link_caps("Link partner advertised", "Link partner advertised", ep->lp_advertising); fprintf(stdout, " Speed: "); speed = ethtool_cmd_speed(ep); if (speed == 0 || speed == (u16)(-1) || speed == (u32)(-1)) fprintf(stdout, "Unknown!\n"); else fprintf(stdout, "%uMb/s\n", speed); fprintf(stdout, " Duplex: "); switch (ep->duplex) { case DUPLEX_HALF: fprintf(stdout, "Half\n"); break; case DUPLEX_FULL: fprintf(stdout, "Full\n"); break; default: fprintf(stdout, "Unknown! (%i)\n", ep->duplex); break; }; fprintf(stdout, " Port: "); switch (ep->port) { case PORT_TP: fprintf(stdout, "Twisted Pair\n"); break; case PORT_AUI: fprintf(stdout, "AUI\n"); break; case PORT_BNC: fprintf(stdout, "BNC\n"); break; case PORT_MII: fprintf(stdout, "MII\n"); break; case PORT_FIBRE: fprintf(stdout, "FIBRE\n"); break; case PORT_DA: fprintf(stdout, "Direct Attach Copper\n"); break; case PORT_NONE: fprintf(stdout, "None\n"); break; case PORT_OTHER: fprintf(stdout, "Other\n"); break; default: fprintf(stdout, "Unknown! (%i)\n", ep->port); break; }; fprintf(stdout, " PHYAD: %d\n", ep->phy_address); fprintf(stdout, " Transceiver: "); switch (ep->transceiver) { case XCVR_INTERNAL: fprintf(stdout, "internal\n"); break; case XCVR_EXTERNAL: fprintf(stdout, "external\n"); break; default: fprintf(stdout, "Unknown!\n"); break; }; fprintf(stdout, " Auto-negotiation: %s\n", (ep->autoneg == AUTONEG_DISABLE) ? "off" : "on"); if (ep->port == PORT_TP) { fprintf(stdout, " MDI-X: "); switch (ep->eth_tp_mdix) { case ETH_TP_MDI: fprintf(stdout, "off\n"); break; case ETH_TP_MDI_X: fprintf(stdout, "on\n"); break; default: fprintf(stdout, "Unknown\n"); break; } } return 0; } static int dump_drvinfo(struct ethtool_drvinfo *info) { fprintf(stdout, "driver: %s\n" "version: %s\n" "firmware-version: %s\n" "bus-info: %s\n" "supports-statistics: %s\n" "supports-test: %s\n" "supports-eeprom-access: %s\n" "supports-register-dump: %s\n" "supports-priv-flags: %s\n", info->driver, info->version, info->fw_version, info->bus_info, info->n_stats ? "yes" : "no", info->testinfo_len ? "yes" : "no", info->eedump_len ? "yes" : "no", info->regdump_len ? "yes" : "no", info->n_priv_flags ? "yes" : "no"); return 0; } static int parse_wolopts(char *optstr, u32 *data) { *data = 0; while (*optstr) { switch (*optstr) { case 'p': *data |= WAKE_PHY; break; case 'u': *data |= WAKE_UCAST; break; case 'm': *data |= WAKE_MCAST; break; case 'b': *data |= WAKE_BCAST; break; case 'a': *data |= WAKE_ARP; break; case 'g': *data |= WAKE_MAGIC; break; case 's': *data |= WAKE_MAGICSECURE; break; case 'd': *data = 0; break; default: return -1; } optstr++; } return 0; } static char *unparse_wolopts(int wolopts) { static char buf[16]; char *p = buf; memset(buf, 0, sizeof(buf)); if (wolopts) { if (wolopts & WAKE_PHY) *p++ = 'p'; if (wolopts & WAKE_UCAST) *p++ = 'u'; if (wolopts & WAKE_MCAST) *p++ = 'm'; if (wolopts & WAKE_BCAST) *p++ = 'b'; if (wolopts & WAKE_ARP) *p++ = 'a'; if (wolopts & WAKE_MAGIC) *p++ = 'g'; if (wolopts & WAKE_MAGICSECURE) *p++ = 's'; } else { *p = 'd'; } return buf; } static int dump_wol(struct ethtool_wolinfo *wol) { fprintf(stdout, " Supports Wake-on: %s\n", unparse_wolopts(wol->supported)); fprintf(stdout, " Wake-on: %s\n", unparse_wolopts(wol->wolopts)); if (wol->supported & WAKE_MAGICSECURE) { int i; int delim = 0; fprintf(stdout, " SecureOn password: "); for (i = 0; i < SOPASS_MAX; i++) { fprintf(stdout, "%s%02x", delim?":":"", wol->sopass[i]); delim=1; } fprintf(stdout, "\n"); } return 0; } static int parse_rxfhashopts(char *optstr, u32 *data) { *data = 0; while (*optstr) { switch (*optstr) { case 'm': *data |= RXH_L2DA; break; case 'v': *data |= RXH_VLAN; break; case 't': *data |= RXH_L3_PROTO; break; case 's': *data |= RXH_IP_SRC; break; case 'd': *data |= RXH_IP_DST; break; case 'f': *data |= RXH_L4_B_0_1; break; case 'n': *data |= RXH_L4_B_2_3; break; case 'r': *data |= RXH_DISCARD; break; default: return -1; } optstr++; } return 0; } static char *unparse_rxfhashopts(u64 opts) { static char buf[300]; memset(buf, 0, sizeof(buf)); if (opts) { if (opts & RXH_L2DA) { strcat(buf, "L2DA\n"); } if (opts & RXH_VLAN) { strcat(buf, "VLAN tag\n"); } if (opts & RXH_L3_PROTO) { strcat(buf, "L3 proto\n"); } if (opts & RXH_IP_SRC) { strcat(buf, "IP SA\n"); } if (opts & RXH_IP_DST) { strcat(buf, "IP DA\n"); } if (opts & RXH_L4_B_0_1) { strcat(buf, "L4 bytes 0 & 1 [TCP/UDP src port]\n"); } if (opts & RXH_L4_B_2_3) { strcat(buf, "L4 bytes 2 & 3 [TCP/UDP dst port]\n"); } } else { sprintf(buf, "None"); } return buf; } static const struct { const char *name; int (*func)(struct ethtool_drvinfo *info, struct ethtool_regs *regs); } driver_list[] = { { "8139cp", realtek_dump_regs }, { "8139too", realtek_dump_regs }, { "r8169", realtek_dump_regs }, { "de2104x", de2104x_dump_regs }, { "e1000", e1000_dump_regs }, { "e1000e", e1000_dump_regs }, { "igb", igb_dump_regs }, { "ixgb", ixgb_dump_regs }, { "ixgbe", ixgbe_dump_regs }, { "natsemi", natsemi_dump_regs }, { "e100", e100_dump_regs }, { "amd8111e", amd8111e_dump_regs }, { "pcnet32", pcnet32_dump_regs }, { "fec_8xx", fec_8xx_dump_regs }, { "ibm_emac", ibm_emac_dump_regs }, { "tg3", tg3_dump_regs }, { "skge", skge_dump_regs }, { "sky2", sky2_dump_regs }, { "vioc", vioc_dump_regs }, { "smsc911x", smsc911x_dump_regs }, { "at76c50x-usb", at76c50x_usb_dump_regs }, { "sfc", sfc_dump_regs }, { "st_mac100", st_mac100_dump_regs }, { "st_gmac", st_gmac_dump_regs }, }; static int dump_regs(int gregs_dump_raw, int gregs_dump_hex, const char *gregs_dump_file, struct ethtool_drvinfo *info, struct ethtool_regs *regs) { int i; if (gregs_dump_raw) { fwrite(regs->data, regs->len, 1, stdout); return 0; } if (gregs_dump_file) { FILE *f = fopen(gregs_dump_file, "r"); struct stat st; if (!f || fstat(fileno(f), &st) < 0) { fprintf(stderr, "Can't open '%s': %s\n", gregs_dump_file, strerror(errno)); return -1; } regs = realloc(regs, sizeof(*regs) + st.st_size); regs->len = st.st_size; fread(regs->data, regs->len, 1, f); fclose(f); } if (!gregs_dump_hex) for (i = 0; i < ARRAY_SIZE(driver_list); i++) if (!strncmp(driver_list[i].name, info->driver, ETHTOOL_BUSINFO_LEN)) return driver_list[i].func(info, regs); fprintf(stdout, "Offset\tValues\n"); fprintf(stdout, "--------\t-----"); for (i = 0; i < regs->len; i++) { if (i%16 == 0) fprintf(stdout, "\n%03x:\t", i); fprintf(stdout, " %02x", regs->data[i]); } fprintf(stdout, "\n\n"); return 0; } static int dump_eeprom(int geeprom_dump_raw, struct ethtool_drvinfo *info, struct ethtool_eeprom *ee) { int i; if (geeprom_dump_raw) { fwrite(ee->data, 1, ee->len, stdout); return 0; } if (!strncmp("natsemi", info->driver, ETHTOOL_BUSINFO_LEN)) { return natsemi_dump_eeprom(info, ee); } else if (!strncmp("tg3", info->driver, ETHTOOL_BUSINFO_LEN)) { return tg3_dump_eeprom(info, ee); } fprintf(stdout, "Offset\t\tValues\n"); fprintf(stdout, "------\t\t------"); for (i = 0; i < ee->len; i++) { if(!(i%16)) fprintf(stdout, "\n0x%04x\t\t", i + ee->offset); fprintf(stdout, "%02x ", ee->data[i]); } fprintf(stdout, "\n"); return 0; } static int dump_test(struct ethtool_test *test, struct ethtool_gstrings *strings) { int i, rc; rc = test->flags & ETH_TEST_FL_FAILED; fprintf(stdout, "The test result is %s\n", rc ? "FAIL" : "PASS"); if (test->flags & ETH_TEST_FL_EXTERNAL_LB) fprintf(stdout, "External loopback test was %sexecuted\n", (test->flags & ETH_TEST_FL_EXTERNAL_LB_DONE) ? "" : "not "); if (strings->len) fprintf(stdout, "The test extra info:\n"); for (i = 0; i < strings->len; i++) { fprintf(stdout, "%s\t %d\n", (char *)(strings->data + i * ETH_GSTRING_LEN), (u32) test->data[i]); } fprintf(stdout, "\n"); return rc; } static int dump_pause(const struct ethtool_pauseparam *epause, u32 advertising, u32 lp_advertising) { fprintf(stdout, "Autonegotiate: %s\n" "RX: %s\n" "TX: %s\n", epause->autoneg ? "on" : "off", epause->rx_pause ? "on" : "off", epause->tx_pause ? "on" : "off"); if (lp_advertising) { int an_rx = 0, an_tx = 0; /* Work out negotiated pause frame usage per * IEEE 802.3-2005 table 28B-3. */ if (advertising & lp_advertising & ADVERTISED_Pause) { an_tx = 1; an_rx = 1; } else if (advertising & lp_advertising & ADVERTISED_Asym_Pause) { if (advertising & ADVERTISED_Pause) an_rx = 1; else if (lp_advertising & ADVERTISED_Pause) an_tx = 1; } fprintf(stdout, "RX negotiated: %s\n" "TX negotiated: %s\n", an_rx ? "on" : "off", an_tx ? "on" : "off"); } fprintf(stdout, "\n"); return 0; } static int dump_ring(const struct ethtool_ringparam *ering) { fprintf(stdout, "Pre-set maximums:\n" "RX: %u\n" "RX Mini: %u\n" "RX Jumbo: %u\n" "TX: %u\n", ering->rx_max_pending, ering->rx_mini_max_pending, ering->rx_jumbo_max_pending, ering->tx_max_pending); fprintf(stdout, "Current hardware settings:\n" "RX: %u\n" "RX Mini: %u\n" "RX Jumbo: %u\n" "TX: %u\n", ering->rx_pending, ering->rx_mini_pending, ering->rx_jumbo_pending, ering->tx_pending); fprintf(stdout, "\n"); return 0; } static int dump_channels(const struct ethtool_channels *echannels) { fprintf(stdout, "Pre-set maximums:\n" "RX: %u\n" "TX: %u\n" "Other: %u\n" "Combined: %u\n", echannels->max_rx, echannels->max_tx, echannels->max_other, echannels->max_combined); fprintf(stdout, "Current hardware settings:\n" "RX: %u\n" "TX: %u\n" "Other: %u\n" "Combined: %u\n", echannels->rx_count, echannels->tx_count, echannels->other_count, echannels->combined_count); fprintf(stdout, "\n"); return 0; } static int dump_coalesce(const struct ethtool_coalesce *ecoal) { fprintf(stdout, "Adaptive RX: %s TX: %s\n", ecoal->use_adaptive_rx_coalesce ? "on" : "off", ecoal->use_adaptive_tx_coalesce ? "on" : "off"); fprintf(stdout, "stats-block-usecs: %u\n" "sample-interval: %u\n" "pkt-rate-low: %u\n" "pkt-rate-high: %u\n" "\n" "rx-usecs: %u\n" "rx-frames: %u\n" "rx-usecs-irq: %u\n" "rx-frames-irq: %u\n" "\n" "tx-usecs: %u\n" "tx-frames: %u\n" "tx-usecs-irq: %u\n" "tx-frames-irq: %u\n" "\n" "rx-usecs-low: %u\n" "rx-frame-low: %u\n" "tx-usecs-low: %u\n" "tx-frame-low: %u\n" "\n" "rx-usecs-high: %u\n" "rx-frame-high: %u\n" "tx-usecs-high: %u\n" "tx-frame-high: %u\n" "\n", ecoal->stats_block_coalesce_usecs, ecoal->rate_sample_interval, ecoal->pkt_rate_low, ecoal->pkt_rate_high, ecoal->rx_coalesce_usecs, ecoal->rx_max_coalesced_frames, ecoal->rx_coalesce_usecs_irq, ecoal->rx_max_coalesced_frames_irq, ecoal->tx_coalesce_usecs, ecoal->tx_max_coalesced_frames, ecoal->tx_coalesce_usecs_irq, ecoal->tx_max_coalesced_frames_irq, ecoal->rx_coalesce_usecs_low, ecoal->rx_max_coalesced_frames_low, ecoal->tx_coalesce_usecs_low, ecoal->tx_max_coalesced_frames_low, ecoal->rx_coalesce_usecs_high, ecoal->rx_max_coalesced_frames_high, ecoal->tx_coalesce_usecs_high, ecoal->tx_max_coalesced_frames_high); return 0; } static int dump_offload(int rx, int tx, int sg, int tso, int ufo, int gso, int gro, int lro, int rxvlan, int txvlan, int ntuple, int rxhash) { fprintf(stdout, "rx-checksumming: %s\n" "tx-checksumming: %s\n" "scatter-gather: %s\n" "tcp-segmentation-offload: %s\n" "udp-fragmentation-offload: %s\n" "generic-segmentation-offload: %s\n" "generic-receive-offload: %s\n" "large-receive-offload: %s\n" "rx-vlan-offload: %s\n" "tx-vlan-offload: %s\n" "ntuple-filters: %s\n" "receive-hashing: %s\n", rx ? "on" : "off", tx ? "on" : "off", sg ? "on" : "off", tso ? "on" : "off", ufo ? "on" : "off", gso ? "on" : "off", gro ? "on" : "off", lro ? "on" : "off", rxvlan ? "on" : "off", txvlan ? "on" : "off", ntuple ? "on" : "off", rxhash ? "on" : "off"); return 0; } static int dump_rxfhash(int fhash, u64 val) { switch (fhash) { case TCP_V4_FLOW: fprintf(stdout, "TCP over IPV4 flows"); break; case UDP_V4_FLOW: fprintf(stdout, "UDP over IPV4 flows"); break; case SCTP_V4_FLOW: fprintf(stdout, "SCTP over IPV4 flows"); break; case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: fprintf(stdout, "IPSEC AH/ESP over IPV4 flows"); break; case TCP_V6_FLOW: fprintf(stdout, "TCP over IPV6 flows"); break; case UDP_V6_FLOW: fprintf(stdout, "UDP over IPV6 flows"); break; case SCTP_V6_FLOW: fprintf(stdout, "SCTP over IPV6 flows"); break; case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: fprintf(stdout, "IPSEC AH/ESP over IPV6 flows"); break; default: break; } if (val & RXH_DISCARD) { fprintf(stdout, " - All matching flows discarded on RX\n"); return 0; } fprintf(stdout, " use these fields for computing Hash flow key:\n"); fprintf(stdout, "%s\n", unparse_rxfhashopts(val)); return 0; } static struct ethtool_gstrings * get_stringset(struct cmd_context *ctx, enum ethtool_stringset set_id, ptrdiff_t drvinfo_offset) { struct { struct ethtool_sset_info hdr; u32 buf[1]; } sset_info; struct ethtool_drvinfo drvinfo; u32 len; struct ethtool_gstrings *strings; sset_info.hdr.cmd = ETHTOOL_GSSET_INFO; sset_info.hdr.reserved = 0; sset_info.hdr.sset_mask = 1ULL << set_id; if (send_ioctl(ctx, &sset_info) == 0) { len = sset_info.hdr.sset_mask ? sset_info.hdr.data[0] : 0; } else if (errno == EOPNOTSUPP && drvinfo_offset != 0) { /* Fallback for old kernel versions */ drvinfo.cmd = ETHTOOL_GDRVINFO; if (send_ioctl(ctx, &drvinfo)) return NULL; len = *(u32 *)((char *)&drvinfo + drvinfo_offset); } else { return NULL; } strings = calloc(1, sizeof(*strings) + len * ETH_GSTRING_LEN); if (!strings) return NULL; strings->cmd = ETHTOOL_GSTRINGS; strings->string_set = set_id; strings->len = len; if (len != 0 && send_ioctl(ctx, strings)) { free(strings); return NULL; } return strings; } static int do_gdrv(struct cmd_context *ctx) { int err; struct ethtool_drvinfo drvinfo; if (ctx->argc != 0) exit_bad_args(); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 71; } return dump_drvinfo(&drvinfo); } static int do_gpause(struct cmd_context *ctx) { struct ethtool_pauseparam epause; struct ethtool_cmd ecmd; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Pause parameters for %s:\n", ctx->devname); epause.cmd = ETHTOOL_GPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot get device pause settings"); return 76; } if (epause.autoneg) { ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err) { perror("Cannot get device settings"); return 1; } dump_pause(&epause, ecmd.advertising, ecmd.lp_advertising); } else { dump_pause(&epause, 0, 0); } return 0; } static void do_generic_set1(struct cmdline_info *info, int *changed_out) { int wanted, *v1, *v2; v1 = info->wanted_val; wanted = *v1; if (wanted < 0) return; v2 = info->ioctl_val; if (wanted == *v2) { fprintf(stderr, "%s unmodified, ignoring\n", info->name); } else { *v2 = wanted; *changed_out = 1; } } static void do_generic_set(struct cmdline_info *info, unsigned int n_info, int *changed_out) { unsigned int i; for (i = 0; i < n_info; i++) do_generic_set1(&info[i], changed_out); } static int do_spause(struct cmd_context *ctx) { struct ethtool_pauseparam epause; int gpause_changed = 0; int pause_autoneg_wanted = -1; int pause_rx_wanted = -1; int pause_tx_wanted = -1; struct cmdline_info cmdline_pause[] = { { "autoneg", CMDL_BOOL, &pause_autoneg_wanted, &epause.autoneg }, { "rx", CMDL_BOOL, &pause_rx_wanted, &epause.rx_pause }, { "tx", CMDL_BOOL, &pause_tx_wanted, &epause.tx_pause }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gpause_changed, cmdline_pause, ARRAY_SIZE(cmdline_pause)); epause.cmd = ETHTOOL_GPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot get device pause settings"); return 77; } do_generic_set(cmdline_pause, ARRAY_SIZE(cmdline_pause), &changed); if (!changed) { fprintf(stderr, "no pause parameters changed, aborting\n"); return 78; } epause.cmd = ETHTOOL_SPAUSEPARAM; err = send_ioctl(ctx, &epause); if (err) { perror("Cannot set device pause parameters"); return 79; } return 0; } static int do_sring(struct cmd_context *ctx) { struct ethtool_ringparam ering; int gring_changed = 0; s32 ring_rx_wanted = -1; s32 ring_rx_mini_wanted = -1; s32 ring_rx_jumbo_wanted = -1; s32 ring_tx_wanted = -1; struct cmdline_info cmdline_ring[] = { { "rx", CMDL_S32, &ring_rx_wanted, &ering.rx_pending }, { "rx-mini", CMDL_S32, &ring_rx_mini_wanted, &ering.rx_mini_pending }, { "rx-jumbo", CMDL_S32, &ring_rx_jumbo_wanted, &ering.rx_jumbo_pending }, { "tx", CMDL_S32, &ring_tx_wanted, &ering.tx_pending }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gring_changed, cmdline_ring, ARRAY_SIZE(cmdline_ring)); ering.cmd = ETHTOOL_GRINGPARAM; err = send_ioctl(ctx, &ering); if (err) { perror("Cannot get device ring settings"); return 76; } do_generic_set(cmdline_ring, ARRAY_SIZE(cmdline_ring), &changed); if (!changed) { fprintf(stderr, "no ring parameters changed, aborting\n"); return 80; } ering.cmd = ETHTOOL_SRINGPARAM; err = send_ioctl(ctx, &ering); if (err) { perror("Cannot set device ring parameters"); return 81; } return 0; } static int do_gring(struct cmd_context *ctx) { struct ethtool_ringparam ering; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Ring parameters for %s:\n", ctx->devname); ering.cmd = ETHTOOL_GRINGPARAM; err = send_ioctl(ctx, &ering); if (err == 0) { err = dump_ring(&ering); if (err) return err; } else { perror("Cannot get device ring settings"); return 76; } return 0; } static int do_schannels(struct cmd_context *ctx) { struct ethtool_channels echannels; int gchannels_changed; s32 channels_rx_wanted = -1; s32 channels_tx_wanted = -1; s32 channels_other_wanted = -1; s32 channels_combined_wanted = -1; struct cmdline_info cmdline_channels[] = { { "rx", CMDL_S32, &channels_rx_wanted, &echannels.rx_count }, { "tx", CMDL_S32, &channels_tx_wanted, &echannels.tx_count }, { "other", CMDL_S32, &channels_other_wanted, &echannels.other_count }, { "combined", CMDL_S32, &channels_combined_wanted, &echannels.combined_count }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gchannels_changed, cmdline_channels, ARRAY_SIZE(cmdline_channels)); echannels.cmd = ETHTOOL_GCHANNELS; err = send_ioctl(ctx, &echannels); if (err) { perror("Cannot get device channel parameters"); return 1; } do_generic_set(cmdline_channels, ARRAY_SIZE(cmdline_channels), &changed); if (!changed) { fprintf(stderr, "no channel parameters changed, aborting\n"); fprintf(stderr, "current values: tx %u rx %u other %u" "combined %u\n", echannels.rx_count, echannels.tx_count, echannels.other_count, echannels.combined_count); return 1; } echannels.cmd = ETHTOOL_SCHANNELS; err = send_ioctl(ctx, &echannels); if (err) { perror("Cannot set device channel parameters"); return 1; } return 0; } static int do_gchannels(struct cmd_context *ctx) { struct ethtool_channels echannels; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Channel parameters for %s:\n", ctx->devname); echannels.cmd = ETHTOOL_GCHANNELS; err = send_ioctl(ctx, &echannels); if (err == 0) { err = dump_channels(&echannels); if (err) return err; } else { perror("Cannot get device channel parameters\n"); return 1; } return 0; } static int do_gcoalesce(struct cmd_context *ctx) { struct ethtool_coalesce ecoal; int err; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Coalesce parameters for %s:\n", ctx->devname); ecoal.cmd = ETHTOOL_GCOALESCE; err = send_ioctl(ctx, &ecoal); if (err == 0) { err = dump_coalesce(&ecoal); if (err) return err; } else { perror("Cannot get device coalesce settings"); return 82; } return 0; } static int do_scoalesce(struct cmd_context *ctx) { struct ethtool_coalesce ecoal; int gcoalesce_changed = 0; s32 coal_stats_wanted = -1; int coal_adaptive_rx_wanted = -1; int coal_adaptive_tx_wanted = -1; s32 coal_sample_rate_wanted = -1; s32 coal_pkt_rate_low_wanted = -1; s32 coal_pkt_rate_high_wanted = -1; s32 coal_rx_usec_wanted = -1; s32 coal_rx_frames_wanted = -1; s32 coal_rx_usec_irq_wanted = -1; s32 coal_rx_frames_irq_wanted = -1; s32 coal_tx_usec_wanted = -1; s32 coal_tx_frames_wanted = -1; s32 coal_tx_usec_irq_wanted = -1; s32 coal_tx_frames_irq_wanted = -1; s32 coal_rx_usec_low_wanted = -1; s32 coal_rx_frames_low_wanted = -1; s32 coal_tx_usec_low_wanted = -1; s32 coal_tx_frames_low_wanted = -1; s32 coal_rx_usec_high_wanted = -1; s32 coal_rx_frames_high_wanted = -1; s32 coal_tx_usec_high_wanted = -1; s32 coal_tx_frames_high_wanted = -1; struct cmdline_info cmdline_coalesce[] = { { "adaptive-rx", CMDL_BOOL, &coal_adaptive_rx_wanted, &ecoal.use_adaptive_rx_coalesce }, { "adaptive-tx", CMDL_BOOL, &coal_adaptive_tx_wanted, &ecoal.use_adaptive_tx_coalesce }, { "sample-interval", CMDL_S32, &coal_sample_rate_wanted, &ecoal.rate_sample_interval }, { "stats-block-usecs", CMDL_S32, &coal_stats_wanted, &ecoal.stats_block_coalesce_usecs }, { "pkt-rate-low", CMDL_S32, &coal_pkt_rate_low_wanted, &ecoal.pkt_rate_low }, { "pkt-rate-high", CMDL_S32, &coal_pkt_rate_high_wanted, &ecoal.pkt_rate_high }, { "rx-usecs", CMDL_S32, &coal_rx_usec_wanted, &ecoal.rx_coalesce_usecs }, { "rx-frames", CMDL_S32, &coal_rx_frames_wanted, &ecoal.rx_max_coalesced_frames }, { "rx-usecs-irq", CMDL_S32, &coal_rx_usec_irq_wanted, &ecoal.rx_coalesce_usecs_irq }, { "rx-frames-irq", CMDL_S32, &coal_rx_frames_irq_wanted, &ecoal.rx_max_coalesced_frames_irq }, { "tx-usecs", CMDL_S32, &coal_tx_usec_wanted, &ecoal.tx_coalesce_usecs }, { "tx-frames", CMDL_S32, &coal_tx_frames_wanted, &ecoal.tx_max_coalesced_frames }, { "tx-usecs-irq", CMDL_S32, &coal_tx_usec_irq_wanted, &ecoal.tx_coalesce_usecs_irq }, { "tx-frames-irq", CMDL_S32, &coal_tx_frames_irq_wanted, &ecoal.tx_max_coalesced_frames_irq }, { "rx-usecs-low", CMDL_S32, &coal_rx_usec_low_wanted, &ecoal.rx_coalesce_usecs_low }, { "rx-frames-low", CMDL_S32, &coal_rx_frames_low_wanted, &ecoal.rx_max_coalesced_frames_low }, { "tx-usecs-low", CMDL_S32, &coal_tx_usec_low_wanted, &ecoal.tx_coalesce_usecs_low }, { "tx-frames-low", CMDL_S32, &coal_tx_frames_low_wanted, &ecoal.tx_max_coalesced_frames_low }, { "rx-usecs-high", CMDL_S32, &coal_rx_usec_high_wanted, &ecoal.rx_coalesce_usecs_high }, { "rx-frames-high", CMDL_S32, &coal_rx_frames_high_wanted, &ecoal.rx_max_coalesced_frames_high }, { "tx-usecs-high", CMDL_S32, &coal_tx_usec_high_wanted, &ecoal.tx_coalesce_usecs_high }, { "tx-frames-high", CMDL_S32, &coal_tx_frames_high_wanted, &ecoal.tx_max_coalesced_frames_high }, }; int err, changed = 0; parse_generic_cmdline(ctx, &gcoalesce_changed, cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce)); ecoal.cmd = ETHTOOL_GCOALESCE; err = send_ioctl(ctx, &ecoal); if (err) { perror("Cannot get device coalesce settings"); return 76; } do_generic_set(cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce), &changed); if (!changed) { fprintf(stderr, "no coalesce parameters changed, aborting\n"); return 80; } ecoal.cmd = ETHTOOL_SCOALESCE; err = send_ioctl(ctx, &ecoal); if (err) { perror("Cannot set device coalesce parameters"); return 81; } return 0; } static int do_goffload(struct cmd_context *ctx) { struct ethtool_value eval; int err, allfail = 1, rx = 0, tx = 0, sg = 0; int tso = 0, ufo = 0, gso = 0, gro = 0, lro = 0, rxvlan = 0, txvlan = 0, ntuple = 0, rxhash = 0; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Offload parameters for %s:\n", ctx->devname); eval.cmd = ETHTOOL_GRXCSUM; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device rx csum settings"); else { rx = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GTXCSUM; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device tx csum settings"); else { tx = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GSG; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device scatter-gather settings"); else { sg = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GTSO; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device tcp segmentation offload settings"); else { tso = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GUFO; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device udp large send offload settings"); else { ufo = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GGSO; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device generic segmentation offload settings"); else { gso = eval.data; allfail = 0; } eval.cmd = ETHTOOL_GFLAGS; err = send_ioctl(ctx, &eval); if (err) { perror("Cannot get device flags"); } else { lro = (eval.data & ETH_FLAG_LRO) != 0; rxvlan = (eval.data & ETH_FLAG_RXVLAN) != 0; txvlan = (eval.data & ETH_FLAG_TXVLAN) != 0; ntuple = (eval.data & ETH_FLAG_NTUPLE) != 0; rxhash = (eval.data & ETH_FLAG_RXHASH) != 0; allfail = 0; } eval.cmd = ETHTOOL_GGRO; err = send_ioctl(ctx, &eval); if (err) perror("Cannot get device GRO settings"); else { gro = eval.data; allfail = 0; } if (allfail) { fprintf(stdout, "no offload info available\n"); return 83; } return dump_offload(rx, tx, sg, tso, ufo, gso, gro, lro, rxvlan, txvlan, ntuple, rxhash); } static int do_soffload(struct cmd_context *ctx) { int goffload_changed = 0; int off_csum_rx_wanted = -1; int off_csum_tx_wanted = -1; int off_sg_wanted = -1; int off_tso_wanted = -1; int off_ufo_wanted = -1; int off_gso_wanted = -1; u32 off_flags_wanted = 0; u32 off_flags_mask = 0; int off_gro_wanted = -1; struct cmdline_info cmdline_offload[] = { { "rx", CMDL_BOOL, &off_csum_rx_wanted, NULL }, { "tx", CMDL_BOOL, &off_csum_tx_wanted, NULL }, { "sg", CMDL_BOOL, &off_sg_wanted, NULL }, { "tso", CMDL_BOOL, &off_tso_wanted, NULL }, { "ufo", CMDL_BOOL, &off_ufo_wanted, NULL }, { "gso", CMDL_BOOL, &off_gso_wanted, NULL }, { "lro", CMDL_FLAG, &off_flags_wanted, NULL, ETH_FLAG_LRO, &off_flags_mask }, { "gro", CMDL_BOOL, &off_gro_wanted, NULL }, { "rxvlan", CMDL_FLAG, &off_flags_wanted, NULL, ETH_FLAG_RXVLAN, &off_flags_mask }, { "txvlan", CMDL_FLAG, &off_flags_wanted, NULL, ETH_FLAG_TXVLAN, &off_flags_mask }, { "ntuple", CMDL_FLAG, &off_flags_wanted, NULL, ETH_FLAG_NTUPLE, &off_flags_mask }, { "rxhash", CMDL_FLAG, &off_flags_wanted, NULL, ETH_FLAG_RXHASH, &off_flags_mask }, }; struct ethtool_value eval; int err, changed = 0; parse_generic_cmdline(ctx, &goffload_changed, cmdline_offload, ARRAY_SIZE(cmdline_offload)); if (off_csum_rx_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_SRXCSUM; eval.data = (off_csum_rx_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device rx csum settings"); return 84; } } if (off_csum_tx_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_STXCSUM; eval.data = (off_csum_tx_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device tx csum settings"); return 85; } } if (off_sg_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_SSG; eval.data = (off_sg_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device scatter-gather settings"); return 86; } } if (off_tso_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_STSO; eval.data = (off_tso_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device tcp segmentation offload settings"); return 88; } } if (off_ufo_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_SUFO; eval.data = (off_ufo_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device udp large send offload settings"); return 89; } } if (off_gso_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_SGSO; eval.data = (off_gso_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device generic segmentation offload settings"); return 90; } } if (off_flags_mask) { changed = 1; eval.cmd = ETHTOOL_GFLAGS; eval.data = 0; err = send_ioctl(ctx, &eval); if (err) { perror("Cannot get device flag settings"); return 91; } eval.cmd = ETHTOOL_SFLAGS; eval.data = ((eval.data & ~off_flags_mask) | off_flags_wanted); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device flag settings"); return 92; } } if (off_gro_wanted >= 0) { changed = 1; eval.cmd = ETHTOOL_SGRO; eval.data = (off_gro_wanted == 1); err = send_ioctl(ctx, &eval); if (err) { perror("Cannot set device GRO settings"); return 93; } } if (!changed) { fprintf(stdout, "no offload settings changed\n"); } return 0; } static int do_gset(struct cmd_context *ctx) { int err; struct ethtool_cmd ecmd; struct ethtool_wolinfo wolinfo; struct ethtool_value edata; int allfail = 1; if (ctx->argc != 0) exit_bad_args(); fprintf(stdout, "Settings for %s:\n", ctx->devname); ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err == 0) { err = dump_ecmd(&ecmd); if (err) return err; allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get device settings"); } wolinfo.cmd = ETHTOOL_GWOL; err = send_ioctl(ctx, &wolinfo); if (err == 0) { err = dump_wol(&wolinfo); if (err) return err; allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get wake-on-lan settings"); } edata.cmd = ETHTOOL_GMSGLVL; err = send_ioctl(ctx, &edata); if (err == 0) { fprintf(stdout, " Current message level: 0x%08x (%d)\n" " ", edata.data, edata.data); print_flags(flags_msglvl, ARRAY_SIZE(flags_msglvl), edata.data); fprintf(stdout, "\n"); allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get message level"); } edata.cmd = ETHTOOL_GLINK; err = send_ioctl(ctx, &edata); if (err == 0) { fprintf(stdout, " Link detected: %s\n", edata.data ? "yes":"no"); allfail = 0; } else if (errno != EOPNOTSUPP) { perror("Cannot get link status"); } if (allfail) { fprintf(stdout, "No data available\n"); return 75; } return 0; } static int do_sset(struct cmd_context *ctx) { int speed_wanted = -1; int duplex_wanted = -1; int port_wanted = -1; int autoneg_wanted = -1; int phyad_wanted = -1; int xcvr_wanted = -1; int advertising_wanted = -1; int gset_changed = 0; /* did anything in GSET change? */ u32 wol_wanted = 0; int wol_change = 0; u8 sopass_wanted[SOPASS_MAX]; int sopass_change = 0; int gwol_changed = 0; /* did anything in GWOL change? */ int msglvl_changed = 0; u32 msglvl_wanted = 0; u32 msglvl_mask = 0; struct cmdline_info cmdline_msglvl[ARRAY_SIZE(flags_msglvl)]; int argc = ctx->argc; char **argp = ctx->argp; int i; int err; for (i = 0; i < ARRAY_SIZE(flags_msglvl); i++) flag_to_cmdline_info(flags_msglvl[i].name, flags_msglvl[i].value, &msglvl_wanted, &msglvl_mask, &cmdline_msglvl[i]); for (i = 0; i < argc; i++) { if (!strcmp(argp[i], "speed")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); speed_wanted = get_int(argp[i],10); } else if (!strcmp(argp[i], "duplex")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "half")) duplex_wanted = DUPLEX_HALF; else if (!strcmp(argp[i], "full")) duplex_wanted = DUPLEX_FULL; else exit_bad_args(); } else if (!strcmp(argp[i], "port")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "tp")) port_wanted = PORT_TP; else if (!strcmp(argp[i], "aui")) port_wanted = PORT_AUI; else if (!strcmp(argp[i], "bnc")) port_wanted = PORT_BNC; else if (!strcmp(argp[i], "mii")) port_wanted = PORT_MII; else if (!strcmp(argp[i], "fibre")) port_wanted = PORT_FIBRE; else exit_bad_args(); } else if (!strcmp(argp[i], "autoneg")) { i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "on")) { gset_changed = 1; autoneg_wanted = AUTONEG_ENABLE; } else if (!strcmp(argp[i], "off")) { gset_changed = 1; autoneg_wanted = AUTONEG_DISABLE; } else { exit_bad_args(); } } else if (!strcmp(argp[i], "advertise")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); advertising_wanted = get_int(argp[i], 16); } else if (!strcmp(argp[i], "phyad")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); phyad_wanted = get_int(argp[i], 0); } else if (!strcmp(argp[i], "xcvr")) { gset_changed = 1; i += 1; if (i >= argc) exit_bad_args(); if (!strcmp(argp[i], "internal")) xcvr_wanted = XCVR_INTERNAL; else if (!strcmp(argp[i], "external")) xcvr_wanted = XCVR_EXTERNAL; else exit_bad_args(); } else if (!strcmp(argp[i], "wol")) { gwol_changed = 1; i++; if (i >= argc) exit_bad_args(); if (parse_wolopts(argp[i], &wol_wanted) < 0) exit_bad_args(); wol_change = 1; } else if (!strcmp(argp[i], "sopass")) { gwol_changed = 1; i++; if (i >= argc) exit_bad_args(); get_mac_addr(argp[i], sopass_wanted); sopass_change = 1; } else if (!strcmp(argp[i], "msglvl")) { i++; if (i >= argc) exit_bad_args(); if (isdigit((unsigned char)argp[i][0])) { msglvl_changed = 1; msglvl_mask = ~0; msglvl_wanted = get_uint_range(argp[i], 0, 0xffffffff); } else { ctx->argc -= i; ctx->argp += i; parse_generic_cmdline( ctx, &msglvl_changed, cmdline_msglvl, ARRAY_SIZE(cmdline_msglvl)); break; } } else { exit_bad_args(); } } if (advertising_wanted < 0) { if (speed_wanted == SPEED_10 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_10baseT_Half; else if (speed_wanted == SPEED_10 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_10baseT_Full; else if (speed_wanted == SPEED_100 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_100baseT_Half; else if (speed_wanted == SPEED_100 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_100baseT_Full; else if (speed_wanted == SPEED_1000 && duplex_wanted == DUPLEX_HALF) advertising_wanted = ADVERTISED_1000baseT_Half; else if (speed_wanted == SPEED_1000 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_1000baseT_Full; else if (speed_wanted == SPEED_2500 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_2500baseX_Full; else if (speed_wanted == SPEED_10000 && duplex_wanted == DUPLEX_FULL) advertising_wanted = ADVERTISED_10000baseT_Full; else /* auto negotiate without forcing, * all supported speed will be assigned below */ advertising_wanted = 0; } if (gset_changed) { struct ethtool_cmd ecmd; ecmd.cmd = ETHTOOL_GSET; err = send_ioctl(ctx, &ecmd); if (err < 0) { perror("Cannot get current device settings"); } else { /* Change everything the user specified. */ if (speed_wanted != -1) ethtool_cmd_speed_set(&ecmd, speed_wanted); if (duplex_wanted != -1) ecmd.duplex = duplex_wanted; if (port_wanted != -1) ecmd.port = port_wanted; if (autoneg_wanted != -1) ecmd.autoneg = autoneg_wanted; if (phyad_wanted != -1) ecmd.phy_address = phyad_wanted; if (xcvr_wanted != -1) ecmd.transceiver = xcvr_wanted; /* XXX If the user specified speed or duplex * then we should mask the advertised modes * accordingly. For now, warn that we aren't * doing that. */ if ((speed_wanted != -1 || duplex_wanted != -1) && ecmd.autoneg && advertising_wanted == 0) { fprintf(stderr, "Cannot advertise"); if (speed_wanted >= 0) fprintf(stderr, " speed %d", speed_wanted); if (duplex_wanted >= 0) fprintf(stderr, " duplex %s", duplex_wanted ? "full" : "half"); fprintf(stderr, "\n"); } if (autoneg_wanted == AUTONEG_ENABLE && advertising_wanted == 0) { ecmd.advertising = ecmd.supported & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | ADVERTISED_2500baseX_Full | ADVERTISED_10000baseT_Full | ADVERTISED_20000baseMLD2_Full | ADVERTISED_20000baseKR2_Full); } else if (advertising_wanted > 0) { ecmd.advertising = advertising_wanted; } /* Try to perform the update. */ ecmd.cmd = ETHTOOL_SSET; err = send_ioctl(ctx, &ecmd); if (err < 0) perror("Cannot set new settings"); } if (err < 0) { if (speed_wanted != -1) fprintf(stderr, " not setting speed\n"); if (duplex_wanted != -1) fprintf(stderr, " not setting duplex\n"); if (port_wanted != -1) fprintf(stderr, " not setting port\n"); if (autoneg_wanted != -1) fprintf(stderr, " not setting autoneg\n"); if (phyad_wanted != -1) fprintf(stderr, " not setting phy_address\n"); if (xcvr_wanted != -1) fprintf(stderr, " not setting transceiver\n"); } } if (gwol_changed) { struct ethtool_wolinfo wol; wol.cmd = ETHTOOL_GWOL; err = send_ioctl(ctx, &wol); if (err < 0) { perror("Cannot get current wake-on-lan settings"); } else { /* Change everything the user specified. */ if (wol_change) { wol.wolopts = wol_wanted; } if (sopass_change) { int i; for (i = 0; i < SOPASS_MAX; i++) { wol.sopass[i] = sopass_wanted[i]; } } /* Try to perform the update. */ wol.cmd = ETHTOOL_SWOL; err = send_ioctl(ctx, &wol); if (err < 0) perror("Cannot set new wake-on-lan settings"); } if (err < 0) { if (wol_change) fprintf(stderr, " not setting wol\n"); if (sopass_change) fprintf(stderr, " not setting sopass\n"); } } if (msglvl_changed) { struct ethtool_value edata; edata.cmd = ETHTOOL_GMSGLVL; err = send_ioctl(ctx, &edata); if (err < 0) { perror("Cannot get msglvl"); } else { edata.cmd = ETHTOOL_SMSGLVL; edata.data = ((edata.data & ~msglvl_mask) | msglvl_wanted); err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot set new msglvl"); } } return 0; } static int do_gregs(struct cmd_context *ctx) { int gregs_changed = 0; int gregs_dump_raw = 0; int gregs_dump_hex = 0; char *gregs_dump_file = NULL; struct cmdline_info cmdline_gregs[] = { { "raw", CMDL_BOOL, &gregs_dump_raw, NULL }, { "hex", CMDL_BOOL, &gregs_dump_hex, NULL }, { "file", CMDL_STR, &gregs_dump_file, NULL }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_regs *regs; parse_generic_cmdline(ctx, &gregs_changed, cmdline_gregs, ARRAY_SIZE(cmdline_gregs)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 72; } regs = calloc(1, sizeof(*regs)+drvinfo.regdump_len); if (!regs) { perror("Cannot allocate memory for register dump"); return 73; } regs->cmd = ETHTOOL_GREGS; regs->len = drvinfo.regdump_len; err = send_ioctl(ctx, regs); if (err < 0) { perror("Cannot get register dump"); free(regs); return 74; } if (dump_regs(gregs_dump_raw, gregs_dump_hex, gregs_dump_file, &drvinfo, regs) < 0) { perror("Cannot dump registers"); free(regs); return 75; } free(regs); return 0; } static int do_nway_rst(struct cmd_context *ctx) { struct ethtool_value edata; int err; if (ctx->argc != 0) exit_bad_args(); edata.cmd = ETHTOOL_NWAY_RST; err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot restart autonegotiation"); return err; } static int do_geeprom(struct cmd_context *ctx) { int geeprom_changed = 0; int geeprom_dump_raw = 0; u32 geeprom_offset = 0; u32 geeprom_length = -1; struct cmdline_info cmdline_geeprom[] = { { "offset", CMDL_U32, &geeprom_offset, NULL }, { "length", CMDL_U32, &geeprom_length, NULL }, { "raw", CMDL_BOOL, &geeprom_dump_raw, NULL }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_eeprom *eeprom; parse_generic_cmdline(ctx, &geeprom_changed, cmdline_geeprom, ARRAY_SIZE(cmdline_geeprom)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 74; } if (geeprom_length == -1) geeprom_length = drvinfo.eedump_len; if (drvinfo.eedump_len < geeprom_offset + geeprom_length) geeprom_length = drvinfo.eedump_len - geeprom_offset; eeprom = calloc(1, sizeof(*eeprom)+geeprom_length); if (!eeprom) { perror("Cannot allocate memory for EEPROM data"); return 75; } eeprom->cmd = ETHTOOL_GEEPROM; eeprom->len = geeprom_length; eeprom->offset = geeprom_offset; err = send_ioctl(ctx, eeprom); if (err < 0) { perror("Cannot get EEPROM data"); free(eeprom); return 74; } err = dump_eeprom(geeprom_dump_raw, &drvinfo, eeprom); free(eeprom); return err; } static int do_seeprom(struct cmd_context *ctx) { int seeprom_changed = 0; u32 seeprom_magic = 0; u32 seeprom_length = -1; u32 seeprom_offset = 0; u8 seeprom_value = 0; int seeprom_value_seen = 0; struct cmdline_info cmdline_seeprom[] = { { "magic", CMDL_U32, &seeprom_magic, NULL }, { "offset", CMDL_U32, &seeprom_offset, NULL }, { "length", CMDL_U32, &seeprom_length, NULL }, { "value", CMDL_U8, &seeprom_value, NULL, 0, &seeprom_value_seen }, }; int err; struct ethtool_drvinfo drvinfo; struct ethtool_eeprom *eeprom; parse_generic_cmdline(ctx, &seeprom_changed, cmdline_seeprom, ARRAY_SIZE(cmdline_seeprom)); drvinfo.cmd = ETHTOOL_GDRVINFO; err = send_ioctl(ctx, &drvinfo); if (err < 0) { perror("Cannot get driver information"); return 74; } if (seeprom_value_seen) seeprom_length = 1; if (seeprom_length == -1) seeprom_length = drvinfo.eedump_len; if (drvinfo.eedump_len < seeprom_offset + seeprom_length) seeprom_length = drvinfo.eedump_len - seeprom_offset; eeprom = calloc(1, sizeof(*eeprom)+seeprom_length); if (!eeprom) { perror("Cannot allocate memory for EEPROM data"); return 75; } eeprom->cmd = ETHTOOL_SEEPROM; eeprom->len = seeprom_length; eeprom->offset = seeprom_offset; eeprom->magic = seeprom_magic; eeprom->data[0] = seeprom_value; /* Multi-byte write: read input from stdin */ if (!seeprom_value_seen) eeprom->len = fread(eeprom->data, 1, eeprom->len, stdin); err = send_ioctl(ctx, eeprom); if (err < 0) { perror("Cannot set EEPROM data"); err = 87; } free(eeprom); return err; } static int do_test(struct cmd_context *ctx) { enum { ONLINE=0, OFFLINE, EXTERNAL_LB, } test_type; int err; struct ethtool_test *test; struct ethtool_gstrings *strings; if (ctx->argc > 1) exit_bad_args(); if (ctx->argc == 1) { if (!strcmp(ctx->argp[0], "online")) { test_type = ONLINE; } else if (!strcmp(*ctx->argp, "offline")) { test_type = OFFLINE; } else if (!strcmp(*ctx->argp, "external_lb")) { test_type = EXTERNAL_LB; } else { exit_bad_args(); } } else { test_type = OFFLINE; } strings = get_stringset(ctx, ETH_SS_TEST, offsetof(struct ethtool_drvinfo, testinfo_len)); if (!strings) { perror("Cannot get strings"); return 74; } test = calloc(1, sizeof(*test) + strings->len * sizeof(u64)); if (!test) { perror("Cannot allocate memory for test info"); free(strings); return 73; } memset(test->data, 0, strings->len * sizeof(u64)); test->cmd = ETHTOOL_TEST; test->len = strings->len; if (test_type == EXTERNAL_LB) test->flags = (ETH_TEST_FL_OFFLINE | ETH_TEST_FL_EXTERNAL_LB); else if (test_type == OFFLINE) test->flags = ETH_TEST_FL_OFFLINE; else test->flags = 0; err = send_ioctl(ctx, test); if (err < 0) { perror("Cannot test"); free (test); free(strings); return 74; } err = dump_test(test, strings); free(test); free(strings); return err; } static int do_phys_id(struct cmd_context *ctx) { int err; struct ethtool_value edata; int phys_id_time; if (ctx->argc > 1) exit_bad_args(); if (ctx->argc == 1) phys_id_time = get_int(*ctx->argp, 0); else phys_id_time = 0; edata.cmd = ETHTOOL_PHYS_ID; edata.data = phys_id_time; err = send_ioctl(ctx, &edata); if (err < 0) perror("Cannot identify NIC"); return err; } static int do_gstats(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct ethtool_stats *stats; unsigned int n_stats, sz_stats, i; int err; if (ctx->argc != 0) exit_bad_args(); strings = get_stringset(ctx, ETH_SS_STATS, offsetof(struct ethtool_drvinfo, n_stats)); if (!strings) { perror("Cannot get stats strings information"); return 96; } n_stats = strings->len; if (n_stats < 1) { fprintf(stderr, "no stats available\n"); free(strings); return 94; } sz_stats = n_stats * sizeof(u64); stats = calloc(1, sz_stats + sizeof(struct ethtool_stats)); if (!stats) { fprintf(stderr, "no memory available\n"); free(strings); return 95; } stats->cmd = ETHTOOL_GSTATS; stats->n_stats = n_stats; err = send_ioctl(ctx, stats); if (err < 0) { perror("Cannot get stats information"); free(strings); free(stats); return 97; } /* todo - pretty-print the strings per-driver */ fprintf(stdout, "NIC statistics:\n"); for (i = 0; i < n_stats; i++) { fprintf(stdout, " %.*s: %llu\n", ETH_GSTRING_LEN, &strings->data[i * ETH_GSTRING_LEN], stats->data[i]); } free(strings); free(stats); return 0; } static int do_srxclass(struct cmd_context *ctx) { int err; if (ctx->argc == 3 && !strcmp(ctx->argp[0], "rx-flow-hash")) { int rx_fhash_set; u32 rx_fhash_val; struct ethtool_rxnfc nfccmd; rx_fhash_set = rxflow_str_to_type(ctx->argp[1]); if (!rx_fhash_set) exit_bad_args(); if (parse_rxfhashopts(ctx->argp[2], &rx_fhash_val) < 0) exit_bad_args(); nfccmd.cmd = ETHTOOL_SRXFH; nfccmd.flow_type = rx_fhash_set; nfccmd.data = rx_fhash_val; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot change RX network flow hashing options"); } else { exit_bad_args(); } return 0; } static int do_grxclass(struct cmd_context *ctx) { struct ethtool_rxnfc nfccmd; int err; if (ctx->argc == 2 && !strcmp(ctx->argp[0], "rx-flow-hash")) { int rx_fhash_get; rx_fhash_get = rxflow_str_to_type(ctx->argp[1]); if (!rx_fhash_get) exit_bad_args(); nfccmd.cmd = ETHTOOL_GRXFH; nfccmd.flow_type = rx_fhash_get; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot get RX network flow hashing options"); else dump_rxfhash(rx_fhash_get, nfccmd.data); } else { exit_bad_args(); } return 0; } static int do_grxfhindir(struct cmd_context *ctx) { struct ethtool_rxnfc ring_count; struct ethtool_rxfh_indir indir_head; struct ethtool_rxfh_indir *indir; u32 i; int err; ring_count.cmd = ETHTOOL_GRXRINGS; err = send_ioctl(ctx, &ring_count); if (err < 0) { perror("Cannot get RX ring count"); return 102; } indir_head.cmd = ETHTOOL_GRXFHINDIR; indir_head.size = 0; err = send_ioctl(ctx, &indir_head); if (err < 0) { perror("Cannot get RX flow hash indirection table size"); return 103; } indir = malloc(sizeof(*indir) + indir_head.size * sizeof(*indir->ring_index)); indir->cmd = ETHTOOL_GRXFHINDIR; indir->size = indir_head.size; err = send_ioctl(ctx, indir); if (err < 0) { perror("Cannot get RX flow hash indirection table"); return 103; } printf("RX flow hash indirection table for %s with %llu RX ring(s):\n", ctx->devname, ring_count.data); for (i = 0; i < indir->size; i++) { if (i % 8 == 0) printf("%5u: ", i); printf(" %5u", indir->ring_index[i]); if (i % 8 == 7) fputc('\n', stdout); } return 0; } static int do_srxfhindir(struct cmd_context *ctx) { int rxfhindir_equal = 0; char **rxfhindir_weight = NULL; struct ethtool_rxfh_indir indir_head; struct ethtool_rxfh_indir *indir; u32 i; int err; if (ctx->argc < 2) exit_bad_args(); if (!strcmp(ctx->argp[0], "equal")) { if (ctx->argc != 2) exit_bad_args(); rxfhindir_equal = get_int_range(ctx->argp[1], 0, 1, INT_MAX); } else if (!strcmp(ctx->argp[0], "weight")) { rxfhindir_weight = ctx->argp + 1; } else { exit_bad_args(); } indir_head.cmd = ETHTOOL_GRXFHINDIR; indir_head.size = 0; err = send_ioctl(ctx, &indir_head); if (err < 0) { perror("Cannot get RX flow hash indirection table size"); return 104; } indir = malloc(sizeof(*indir) + indir_head.size * sizeof(*indir->ring_index)); indir->cmd = ETHTOOL_SRXFHINDIR; indir->size = indir_head.size; if (rxfhindir_equal) { for (i = 0; i < indir->size; i++) indir->ring_index[i] = i % rxfhindir_equal; } else { u32 j, weight, sum = 0, partial = 0; for (j = 0; rxfhindir_weight[j]; j++) { weight = get_u32(rxfhindir_weight[j], 0); sum += weight; } if (sum == 0) { fprintf(stderr, "At least one weight must be non-zero\n"); exit(1); } if (sum > indir->size) { fprintf(stderr, "Total weight exceeds the size of the " "indirection table\n"); exit(1); } j = -1; for (i = 0; i < indir->size; i++) { while (i >= indir->size * partial / sum) { j += 1; weight = get_u32(rxfhindir_weight[j], 0); partial += weight; } indir->ring_index[i] = j; } } err = send_ioctl(ctx, indir); if (err < 0) { perror("Cannot set RX flow hash indirection table"); return 105; } return 0; } static int do_flash(struct cmd_context *ctx) { char *flash_file; int flash_region; struct ethtool_flash efl; int err; if (ctx->argc < 1 || ctx->argc > 2) exit_bad_args(); flash_file = ctx->argp[0]; if (ctx->argc == 2) { flash_region = strtol(ctx->argp[1], NULL, 0); if (flash_region < 0) exit_bad_args(); } else { flash_region = -1; } if (strlen(flash_file) > ETHTOOL_FLASH_MAX_FILENAME - 1) { fprintf(stdout, "Filename too long\n"); return 99; } efl.cmd = ETHTOOL_FLASHDEV; strcpy(efl.data, flash_file); if (flash_region < 0) efl.region = ETHTOOL_FLASH_ALL_REGIONS; else efl.region = flash_region; err = send_ioctl(ctx, &efl); if (err < 0) perror("Flashing failed"); return err; } static int do_permaddr(struct cmd_context *ctx) { int i, err; struct ethtool_perm_addr *epaddr; epaddr = malloc(sizeof(struct ethtool_perm_addr) + MAX_ADDR_LEN); epaddr->cmd = ETHTOOL_GPERMADDR; epaddr->size = MAX_ADDR_LEN; err = send_ioctl(ctx, epaddr); if (err < 0) perror("Cannot read permanent address"); else { printf("Permanent address:"); for (i = 0; i < epaddr->size; i++) printf("%c%02x", (i == 0) ? ' ' : ':', epaddr->data[i]); printf("\n"); } free(epaddr); return err; } static int flow_spec_to_ntuple(struct ethtool_rx_flow_spec *fsp, struct ethtool_rx_ntuple_flow_spec *ntuple) { size_t i; /* verify location is not specified */ if (fsp->location != RX_CLS_LOC_UNSPEC) return -1; /* verify ring cookie can transfer to action */ if (fsp->ring_cookie > INT_MAX && fsp->ring_cookie < (u64)(-2)) return -1; /* verify only one field is setting data field */ if ((fsp->flow_type & FLOW_EXT) && (fsp->m_ext.data[0] || fsp->m_ext.data[1]) && fsp->m_ext.vlan_etype) return -1; /* Set entire ntuple to ~0 to guarantee all masks are set */ memset(ntuple, ~0, sizeof(*ntuple)); /* set non-filter values */ ntuple->flow_type = fsp->flow_type; ntuple->action = fsp->ring_cookie; /* * Copy over header union, they are identical in layout however * the ntuple union contains additional padding on the end */ memcpy(&ntuple->h_u, &fsp->h_u, sizeof(fsp->h_u)); /* * The same rule mentioned above applies to the mask union. However, * in addition we need to invert the mask bits to match the ntuple * mask which is 1 for masked, versus 0 for masked as seen in nfc. */ memcpy(&ntuple->m_u, &fsp->m_u, sizeof(fsp->m_u)); for (i = 0; i < sizeof(fsp->m_u); i++) ntuple->m_u.hdata[i] ^= 0xFF; /* copy extended fields */ if (fsp->flow_type & FLOW_EXT) { ntuple->vlan_tag = ntohs(fsp->h_ext.vlan_tci); ntuple->vlan_tag_mask = ~ntohs(fsp->m_ext.vlan_tci); if (fsp->m_ext.vlan_etype) { /* * vlan_etype and user data are mutually exclusive * in ntuple configuration as they occupy the same * space. */ if (fsp->m_ext.data[0] || fsp->m_ext.data[1]) return -1; ntuple->data = ntohl(fsp->h_ext.vlan_etype); ntuple->data_mask = ~(u64)ntohl(fsp->m_ext.vlan_etype); } else { ntuple->data = (u64)ntohl(fsp->h_ext.data[0]) << 32; ntuple->data |= (u64)ntohl(fsp->h_ext.data[1]); ntuple->data_mask = (u64)ntohl(~fsp->m_ext.data[0]) << 32; ntuple->data_mask |= (u64)ntohl(~fsp->m_ext.data[1]); } } /* Mask out the extended bit, because ntuple does not know it! */ ntuple->flow_type &= ~FLOW_EXT; return 0; } static int do_srxntuple(struct cmd_context *ctx, struct ethtool_rx_flow_spec *rx_rule_fs) { struct ethtool_rx_ntuple ntuplecmd; struct ethtool_value eval; int err; /* attempt to convert the flow classifier to an ntuple classifier */ err = flow_spec_to_ntuple(rx_rule_fs, &ntuplecmd.fs); if (err) return -1; /* * Check to see if the flag is set for N-tuple, this allows * us to avoid the possible EINVAL response for the N-tuple * flag not being set on the device */ eval.cmd = ETHTOOL_GFLAGS; err = send_ioctl(ctx, &eval); if (err || !(eval.data & ETH_FLAG_NTUPLE)) return -1; /* send rule via N-tuple */ ntuplecmd.cmd = ETHTOOL_SRXNTUPLE; err = send_ioctl(ctx, &ntuplecmd); /* * Display error only if reponse is something other than op not * supported. It is possible that the interface uses the network * flow classifier interface instead of N-tuple. */ if (err < 0) { if (errno != EOPNOTSUPP) perror("Cannot add new rule via N-tuple"); return -1; } return 0; } static int do_srxclsrule(struct cmd_context *ctx) { int err; if (ctx->argc < 2) exit_bad_args(); if (!strcmp(ctx->argp[0], "flow-type")) { struct ethtool_rx_flow_spec rx_rule_fs; ctx->argc--; ctx->argp++; if (rxclass_parse_ruleopts(ctx, &rx_rule_fs) < 0) exit_bad_args(); /* attempt to add rule via N-tuple specifier */ err = do_srxntuple(ctx, &rx_rule_fs); if (!err) return 0; /* attempt to add rule via network flow classifier */ err = rxclass_rule_ins(ctx, &rx_rule_fs); if (err < 0) { fprintf(stderr, "Cannot insert" " classification rule\n"); return 1; } } else if (!strcmp(ctx->argp[0], "delete")) { int rx_class_rule_del = get_uint_range(ctx->argp[1], 0, INT_MAX); err = rxclass_rule_del(ctx, rx_class_rule_del); if (err < 0) { fprintf(stderr, "Cannot delete" " classification rule\n"); return 1; } } else { exit_bad_args(); } return 0; } static int do_grxclsrule(struct cmd_context *ctx) { struct ethtool_rxnfc nfccmd; int err; if (ctx->argc == 2 && !strcmp(ctx->argp[0], "rule")) { int rx_class_rule_get = get_uint_range(ctx->argp[1], 0, INT_MAX); err = rxclass_rule_get(ctx, rx_class_rule_get); if (err < 0) fprintf(stderr, "Cannot get RX classification rule\n"); return err ? 1 : 0; } if (ctx->argc != 0) exit_bad_args(); nfccmd.cmd = ETHTOOL_GRXRINGS; err = send_ioctl(ctx, &nfccmd); if (err < 0) perror("Cannot get RX rings"); else fprintf(stdout, "%d RX rings available\n", (int)nfccmd.data); err = rxclass_rule_getall(ctx); if (err < 0) fprintf(stderr, "RX classification rule retrieval failed\n"); return err ? 1 : 0; } static int do_writefwdump(struct ethtool_dump *dump, const char *dump_file) { int err = 0; FILE *f; size_t bytes; f = fopen(dump_file, "wb+"); if (!f) { fprintf(stderr, "Can't open file %s: %s\n", dump_file, strerror(errno)); return 1; } bytes = fwrite(dump->data, 1, dump->len, f); if (bytes != dump->len) { fprintf(stderr, "Can not write all of dump data\n"); err = 1; } if (fclose(f)) { fprintf(stderr, "Can't close file %s: %s\n", dump_file, strerror(errno)); err = 1; } return err; } static int do_getfwdump(struct cmd_context *ctx) { u32 dump_flag; char *dump_file; int err; struct ethtool_dump edata; struct ethtool_dump *data; if (ctx->argc == 2 && !strcmp(ctx->argp[0], "data")) { dump_flag = ETHTOOL_GET_DUMP_DATA; dump_file = ctx->argp[1]; } else if (ctx->argc == 0) { dump_flag = 0; dump_file = NULL; } else { exit_bad_args(); } edata.cmd = ETHTOOL_GET_DUMP_FLAG; err = send_ioctl(ctx, &edata); if (err < 0) { perror("Can not get dump level\n"); return 1; } if (dump_flag != ETHTOOL_GET_DUMP_DATA) { fprintf(stdout, "flag: %u, version: %u, length: %u\n", edata.flag, edata.version, edata.len); return 0; } data = calloc(1, offsetof(struct ethtool_dump, data) + edata.len); if (!data) { perror("Can not allocate enough memory\n"); return 1; } data->cmd = ETHTOOL_GET_DUMP_DATA; data->len = edata.len; err = send_ioctl(ctx, data); if (err < 0) { perror("Can not get dump data\n"); err = 1; goto free; } err = do_writefwdump(data, dump_file); free: free(data); return err; } static int do_setfwdump(struct cmd_context *ctx) { u32 dump_flag; int err; struct ethtool_dump dump; if (ctx->argc != 1) exit_bad_args(); dump_flag = get_u32(ctx->argp[0], 0); dump.cmd = ETHTOOL_SET_DUMP; dump.flag = dump_flag; err = send_ioctl(ctx, &dump); if (err < 0) { perror("Can not set dump level\n"); return 1; } return 0; } static int do_gprivflags(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct ethtool_value flags; unsigned int i; if (ctx->argc != 0) exit_bad_args(); strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS, offsetof(struct ethtool_drvinfo, n_priv_flags)); if (!strings) { perror("Cannot get private flag names"); return 1; } if (strings->len == 0) { fprintf(stderr, "No private flags defined\n"); return 1; } if (strings->len > 32) { /* ETHTOOL_GPFLAGS can only cover 32 flags */ fprintf(stderr, "Only showing first 32 private flags\n"); strings->len = 32; } flags.cmd = ETHTOOL_GPFLAGS; if (send_ioctl(ctx, &flags)) { perror("Cannot get private flags"); return 1; } printf("Private flags for %s:\n", ctx->devname); for (i = 0; i < strings->len; i++) printf("%s: %s\n", (const char *)strings->data + i * ETH_GSTRING_LEN, (flags.data & (1U << i)) ? "on" : "off"); return 0; } static int do_sprivflags(struct cmd_context *ctx) { struct ethtool_gstrings *strings; struct cmdline_info *cmdline; struct ethtool_value flags; u32 wanted_flags = 0, seen_flags = 0; int any_changed; unsigned int i; strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS, offsetof(struct ethtool_drvinfo, n_priv_flags)); if (!strings) { perror("Cannot get private flag names"); return 1; } if (strings->len == 0) { fprintf(stderr, "No private flags defined\n"); return 1; } if (strings->len > 32) { /* ETHTOOL_{G,S}PFLAGS can only cover 32 flags */ fprintf(stderr, "Only setting first 32 private flags\n"); strings->len = 32; } cmdline = calloc(strings->len, sizeof(*cmdline)); if (!cmdline) { perror("Cannot parse arguments"); return 1; } for (i = 0; i < strings->len; i++) { cmdline[i].name = ((const char *)strings->data + i * ETH_GSTRING_LEN); cmdline[i].type = CMDL_FLAG; cmdline[i].wanted_val = &wanted_flags; cmdline[i].flag_val = 1U << i; cmdline[i].seen_val = &seen_flags; } parse_generic_cmdline(ctx, &any_changed, cmdline, strings->len); flags.cmd = ETHTOOL_GPFLAGS; if (send_ioctl(ctx, &flags)) { perror("Cannot get private flags"); return 1; } flags.cmd = ETHTOOL_SPFLAGS; flags.data = (flags.data & ~seen_flags) | wanted_flags; if (send_ioctl(ctx, &flags)) { perror("Cannot set private flags"); return 1; } return 0; } int send_ioctl(struct cmd_context *ctx, void *cmd) { #ifndef TEST_ETHTOOL ctx->ifr.ifr_data = cmd; return ioctl(ctx->fd, SIOCETHTOOL, &ctx->ifr); #else /* If we get this far then parsing succeeded */ exit(0); #endif } static int show_usage(struct cmd_context *ctx); static const struct option { const char *opts; int want_device; int (*func)(struct cmd_context *); char *help; char *opthelp; } args[] = { { "-s|--change", 1, do_sset, "Change generic options", " [ speed %d ]\n" " [ duplex half|full ]\n" " [ port tp|aui|bnc|mii|fibre ]\n" " [ autoneg on|off ]\n" " [ advertise %x ]\n" " [ phyad %d ]\n" " [ xcvr internal|external ]\n" " [ wol p|u|m|b|a|g|s|d... ]\n" " [ sopass %x:%x:%x:%x:%x:%x ]\n" " [ msglvl %d | msglvl type on|off ... ]\n" }, { "-a|--show-pause", 1, do_gpause, "Show pause options" }, { "-A|--pause", 1, do_spause, "Set pause options", " [ autoneg on|off ]\n" " [ rx on|off ]\n" " [ tx on|off ]\n" }, { "-c|--show-coalesce", 1, do_gcoalesce, "Show coalesce options" }, { "-C|--coalesce", 1, do_scoalesce, "Set coalesce options", " [adaptive-rx on|off]\n" " [adaptive-tx on|off]\n" " [rx-usecs N]\n" " [rx-frames N]\n" " [rx-usecs-irq N]\n" " [rx-frames-irq N]\n" " [tx-usecs N]\n" " [tx-frames N]\n" " [tx-usecs-irq N]\n" " [tx-frames-irq N]\n" " [stats-block-usecs N]\n" " [pkt-rate-low N]\n" " [rx-usecs-low N]\n" " [rx-frames-low N]\n" " [tx-usecs-low N]\n" " [tx-frames-low N]\n" " [pkt-rate-high N]\n" " [rx-usecs-high N]\n" " [rx-frames-high N]\n" " [tx-usecs-high N]\n" " [tx-frames-high N]\n" " [sample-interval N]\n" }, { "-g|--show-ring", 1, do_gring, "Query RX/TX ring parameters" }, { "-G|--set-ring", 1, do_sring, "Set RX/TX ring parameters", " [ rx N ]\n" " [ rx-mini N ]\n" " [ rx-jumbo N ]\n" " [ tx N ]\n" }, { "-k|--show-offload", 1, do_goffload, "Get protocol offload information" }, { "-K|--offload", 1, do_soffload, "Set protocol offload", " [ rx on|off ]\n" " [ tx on|off ]\n" " [ sg on|off ]\n" " [ tso on|off ]\n" " [ ufo on|off ]\n" " [ gso on|off ]\n" " [ gro on|off ]\n" " [ lro on|off ]\n" " [ rxvlan on|off ]\n" " [ txvlan on|off ]\n" " [ ntuple on|off ]\n" " [ rxhash on|off ]\n" }, { "-i|--driver", 1, do_gdrv, "Show driver information" }, { "-d|--register-dump", 1, do_gregs, "Do a register dump", " [ raw on|off ]\n" " [ file FILENAME ]\n" }, { "-e|--eeprom-dump", 1, do_geeprom, "Do a EEPROM dump", " [ raw on|off ]\n" " [ offset N ]\n" " [ length N ]\n" }, { "-E|--change-eeprom", 1, do_seeprom, "Change bytes in device EEPROM", " [ magic N ]\n" " [ offset N ]\n" " [ length N ]\n" " [ value N ]\n" }, { "-r|--negotiate", 1, do_nway_rst, "Restart N-WAY negotiation" }, { "-p|--identify", 1, do_phys_id, "Show visible port identification (e.g. blinking)", " [ TIME-IN-SECONDS ]\n" }, { "-t|--test", 1, do_test, "Execute adapter self test", " [ online | offline | external_lb ]\n" }, { "-S|--statistics", 1, do_gstats, "Show adapter statistics" }, { "-n|--show-nfc", 1, do_grxclass, "Show Rx network flow classification options", " [ rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|" "tcp6|udp6|ah6|esp6|sctp6 ]\n" }, { "-f|--flash", 1, do_flash, "Flash firmware image from the specified file to a region on the device", " FILENAME [ REGION-NUMBER-TO-FLASH ]\n" }, { "-N|--config-nfc", 1, do_srxclass, "Configure Rx network flow classification options", " [ rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|" "tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r... ]\n" }, { "-x|--show-rxfh-indir", 1, do_grxfhindir, "Show Rx flow hash indirection" }, { "-X|--set-rxfh-indir", 1, do_srxfhindir, "Set Rx flow hash indirection", " equal N | weight W0 W1 ...\n" }, { "-U|--config-ntuple", 1, do_srxclsrule, "Configure Rx ntuple filters and actions", " [ delete %d ] |\n" " [ flow-type ether|ip4|tcp4|udp4|sctp4|ah4|esp4\n" " [ src %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n" " [ dst %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n" " [ proto %d [m %x] ]\n" " [ src-ip %d.%d.%d.%d [m %d.%d.%d.%d] ]\n" " [ dst-ip %d.%d.%d.%d [m %d.%d.%d.%d] ]\n" " [ tos %d [m %x] ]\n" " [ l4proto %d [m %x] ]\n" " [ src-port %d [m %x] ]\n" " [ dst-port %d [m %x] ]\n" " [ spi %d [m %x] ]\n" " [ vlan-etype %x [m %x] ]\n" " [ vlan %x [m %x] ]\n" " [ user-def %x [m %x] ]\n" " [ action %d ]\n" " [ loc %d]]\n" }, { "-u|--show-ntuple", 1, do_grxclsrule, "Get Rx ntuple filters and actions", " [ rule %d ]\n"}, { "-P|--show-permaddr", 1, do_permaddr, "Show permanent hardware address" }, { "-w|--get-dump", 1, do_getfwdump, "Get dump flag, data", " [ data FILENAME ]\n" }, { "-W|--set-dump", 1, do_setfwdump, "Set dump flag of the device", " N\n"}, { "-l|--show-channels", 1, do_gchannels, "Query Channels" }, { "-L|--set-channels", 1, do_schannels, "Set Channels", " [ rx N ]\n" " [ tx N ]\n" " [ other N ]\n" " [ combined N ]\n" }, { "--show-priv-flags" , 1, do_gprivflags, "Query private flags" }, { "--set-priv-flags", 1, do_sprivflags, "Set private flags", " FLAG on|off ...\n" }, { "-h|--help", 0, show_usage, "Show this help" }, { "--version", 0, do_version, "Show version number" }, {} }; static int show_usage(struct cmd_context *ctx) { int i; /* ethtool -h */ fprintf(stdout, PACKAGE " version " VERSION "\n"); fprintf(stdout, "Usage:\n" " ethtool DEVNAME\t" "Display standard information about device\n"); for (i = 0; args[i].opts; i++) { fputs(" ethtool ", stdout); fprintf(stdout, "%s %s\t%s\n", args[i].opts, args[i].want_device ? "DEVNAME" : "\t", args[i].help); if (args[i].opthelp) fputs(args[i].opthelp, stdout); } return 0; } int main(int argc, char **argp, char **envp) { int (*func)(struct cmd_context *); int want_device; struct cmd_context ctx; int k; /* Skip command name */ argp++; argc--; /* First argument must be either a valid option or a device * name to get settings for (which we don't expect to begin * with '-'). */ if (argc == 0) exit_bad_args(); for (k = 0; args[k].opts; k++) { const char *opt; size_t len; opt = args[k].opts; for (;;) { len = strcspn(opt, "|"); if (strncmp(*argp, opt, len) == 0 && (*argp)[len] == 0) { argp++; argc--; func = args[k].func; want_device = args[k].want_device; goto opt_found; } if (opt[len] == 0) break; opt += len + 1; } } if ((*argp)[0] == '-') exit_bad_args(); func = do_gset; want_device = 1; opt_found: if (want_device) { ctx.devname = *argp++; argc--; if (ctx.devname == NULL) exit_bad_args(); if (strlen(ctx.devname) >= IFNAMSIZ) exit_bad_args(); /* Setup our control structures. */ memset(&ctx.ifr, 0, sizeof(ctx.ifr)); strcpy(ctx.ifr.ifr_name, ctx.devname); /* Open control socket. */ ctx.fd = socket(AF_INET, SOCK_DGRAM, 0); if (ctx.fd < 0) { perror("Cannot get control socket"); return 70; } } else { ctx.fd = -1; } ctx.argc = argc; ctx.argp = argp; return func(&ctx); }