/* Copyright 2001 Sun Microsystems (thockin@sun.com) */ #include #include "internal.h" #define PCI_VENDOR_NATSEMI 0x100b #define PCI_DEVICE_DP83815 0x0020 #define NATSEMI_MAGIC (PCI_VENDOR_NATSEMI | \ (PCI_DEVICE_DP83815<<16)) /* register indices in the ethtool_regs->data */ #define REG_CR 0 #define BIT_CR_TXE (1<<0) #define BIT_CR_RXE (1<<2) #define BIT_CR_RST (1<<8) #define REG_CFG 1 #define BIT_CFG_BEM (1<<0) #define BIT_CFG_BROM_DIS (1<<2) #define BIT_CFG_PHY_DIS (1<<9) #define BIT_CFG_PHY_RST (1<<10) #define BIT_CFG_EXT_PHY (1<<12) #define BIT_CFG_ANEG_EN (1<<13) #define BIT_CFG_ANEG_100 (1<<14) #define BIT_CFG_ANEG_FDUP (1<<15) #define BIT_CFG_PINT_ACEN (1<<17) #define BIT_CFG_PHY_CFG (0x3f<<18) #define BIT_CFG_ANEG_DN (1<<27) #define BIT_CFG_POL (1<<28) #define BIT_CFG_FDUP (1<<29) #define BIT_CFG_SPEED100 (1<<30) #define BIT_CFG_LNKSTS (1<<31) #define REG_MEAR 2 #define REG_PTSCR 3 #define BIT_PTSCR_EEBIST_FAIL (1<<0) #define BIT_PTSCR_EELOAD_EN (1<<2) #define BIT_PTSCR_RBIST_RXFFAIL (1<<3) #define BIT_PTSCR_RBIST_TXFAIL (1<<4) #define BIT_PTSCR_RBIST_RXFAIL (1<<5) #define REG_ISR 4 #define REG_IMR 5 #define BIT_INTR_RXOK (1<<0) #define NAME_INTR_RXOK "Rx Complete" #define BIT_INTR_RXDESC (1<<1) #define NAME_INTR_RXDESC "Rx Descriptor" #define BIT_INTR_RXERR (1<<2) #define NAME_INTR_RXERR "Rx Packet Error" #define BIT_INTR_RXEARLY (1<<3) #define NAME_INTR_RXEARLY "Rx Early Threshold" #define BIT_INTR_RXIDLE (1<<4) #define NAME_INTR_RXIDLE "Rx Idle" #define BIT_INTR_RXORN (1<<5) #define NAME_INTR_RXORN "Rx Overrun" #define BIT_INTR_TXOK (1<<6) #define NAME_INTR_TXOK "Tx Packet OK" #define BIT_INTR_TXDESC (1<<7) #define NAME_INTR_TXDESC "Tx Descriptor" #define BIT_INTR_TXERR (1<<8) #define NAME_INTR_TXERR "Tx Packet Error" #define BIT_INTR_TXIDLE (1<<9) #define NAME_INTR_TXIDLE "Tx Idle" #define BIT_INTR_TXURN (1<<10) #define NAME_INTR_TXURN "Tx Underrun" #define BIT_INTR_MIB (1<<11) #define NAME_INTR_MIB "MIB Service" #define BIT_INTR_SWI (1<<12) #define NAME_INTR_SWI "Software" #define BIT_INTR_PME (1<<13) #define NAME_INTR_PME "Power Management Event" #define BIT_INTR_PHY (1<<14) #define NAME_INTR_PHY "Phy" #define BIT_INTR_HIBERR (1<<15) #define NAME_INTR_HIBERR "High Bits Error" #define BIT_INTR_RXSOVR (1<<16) #define NAME_INTR_RXSOVR "Rx Status FIFO Overrun" #define BIT_INTR_RTABT (1<<20) #define NAME_INTR_RTABT "Received Target Abort" #define BIT_INTR_RMABT (1<<20) #define NAME_INTR_RMABT "Received Master Abort" #define BIT_INTR_SSERR (1<<20) #define NAME_INTR_SSERR "Signaled System Error" #define BIT_INTR_DPERR (1<<20) #define NAME_INTR_DPERR "Detected Parity Error" #define BIT_INTR_RXRCMP (1<<20) #define NAME_INTR_RXRCMP "Rx Reset Complete" #define BIT_INTR_TXRCMP (1<<20) #define NAME_INTR_TXRCMP "Tx Reset Complete" #define REG_IER 6 #define BIT_IER_IE (1<<0) #define REG_TXDP 8 #define REG_TXCFG 9 #define BIT_TXCFG_DRTH (0x3f<<0) #define BIT_TXCFG_FLTH (0x3f<<8) #define BIT_TXCFG_MXDMA (0x7<<20) #define BIT_TXCFG_ATP (1<<28) #define BIT_TXCFG_MLB (1<<29) #define BIT_TXCFG_HBI (1<<30) #define BIT_TXCFG_CSI (1<<31) #define REG_RXDP 12 #define REG_RXCFG 13 #define BIT_RXCFG_DRTH (0x1f<<1) #define BIT_RXCFG_MXDMA (0x7<<20) #define BIT_RXCFG_ALP (1<<27) #define BIT_RXCFG_ATX (1<<28) #define BIT_RXCFG_ARP (1<<30) #define BIT_RXCFG_AEP (1<<31) #define REG_CCSR 15 #define BIT_CCSR_CLKRUN_EN (1<<0) #define BIT_CCSR_PMEEN (1<<8) #define BIT_CCSR_PMESTS (1<<15) #define REG_WCSR 16 #define BIT_WCSR_WKPHY (1<<0) #define BIT_WCSR_WKUCP (1<<1) #define BIT_WCSR_WKMCP (1<<2) #define BIT_WCSR_WKBCP (1<<3) #define BIT_WCSR_WKARP (1<<4) #define BIT_WCSR_WKPAT0 (1<<5) #define BIT_WCSR_WKPAT1 (1<<6) #define BIT_WCSR_WKPAT2 (1<<7) #define BIT_WCSR_WKPAT3 (1<<8) #define BIT_WCSR_WKMAG (1<<9) #define BIT_WCSR_MPSOE (1<<10) #define BIT_WCSR_SOHACK (1<<20) #define BIT_WCSR_PHYINT (1<<22) #define BIT_WCSR_UCASTR (1<<23) #define BIT_WCSR_MCASTR (1<<24) #define BIT_WCSR_BCASTR (1<<25) #define BIT_WCSR_ARPR (1<<26) #define BIT_WCSR_PATM0 (1<<27) #define BIT_WCSR_PATM1 (1<<28) #define BIT_WCSR_PATM2 (1<<29) #define BIT_WCSR_PATM3 (1<<30) #define BIT_WCSR_MPR (1<<31) #define REG_PCR 17 #define BIT_PCR_PAUSE_CNT (0xffff<<0) #define BIT_PCR_PSNEG (1<<21) #define BIT_PCR_PS_RCVD (1<<22) #define BIT_PCR_PS_DA (1<<29) #define BIT_PCR_PSMCAST (1<<30) #define BIT_PCR_PSEN (1<<31) #define REG_RFCR 18 #define BIT_RFCR_UHEN (1<<20) #define BIT_RFCR_MHEN (1<<21) #define BIT_RFCR_AARP (1<<22) #define BIT_RFCR_APAT0 (1<<23) #define BIT_RFCR_APAT1 (1<<24) #define BIT_RFCR_APAT2 (1<<25) #define BIT_RFCR_APAT3 (1<<26) #define BIT_RFCR_APM (1<<27) #define BIT_RFCR_AAU (1<<28) #define BIT_RFCR_AAM (1<<29) #define BIT_RFCR_AAB (1<<30) #define BIT_RFCR_RFEN (1<<31) #define REG_RFDR 19 #define REG_BRAR 20 #define BIT_BRAR_AUTOINC (1<<31) #define REG_BRDR 21 #define REG_SRR 22 #define REG_MIBC 23 #define BIT_MIBC_WRN (1<<0) #define BIT_MIBC_FRZ (1<<1) #define REG_MIB0 24 #define REG_MIB1 25 #define REG_MIB2 26 #define REG_MIB3 27 #define REG_MIB4 28 #define REG_MIB5 29 #define REG_MIB6 30 #define REG_BMCR 32 #define BIT_BMCR_FDUP (1<<8) #define BIT_BMCR_ANRST (1<<9) #define BIT_BMCR_ISOL (1<<10) #define BIT_BMCR_PDOWN (1<<11) #define BIT_BMCR_ANEN (1<<12) #define BIT_BMCR_SPEED (1<<13) #define BIT_BMCR_LOOP (1<<14) #define BIT_BMCR_RST (1<<15) #define REG_BMSR 33 #define BIT_BMSR_JABBER (1<<1) #define BIT_BMSR_LNK (1<<2) #define BIT_BMSR_ANCAP (1<<3) #define BIT_BMSR_RFAULT (1<<4) #define BIT_BMSR_ANDONE (1<<5) #define BIT_BMSR_PREAMBLE (1<<6) #define BIT_BMSR_10HCAP (1<<11) #define BIT_BMSR_10FCAP (1<<12) #define BIT_BMSR_100HCAP (1<<13) #define BIT_BMSR_100FCAP (1<<14) #define BIT_BMSR_100T4CAP (1<<15) #define REG_PHYIDR1 34 #define REG_PHYIDR2 35 #define BIT_PHYIDR2_OUILSB (0x3f<<10) #define BIT_PHYIDR2_MODEL (0x3f<<4) #define BIT_PHYIDR2_REV (0xf) #define REG_ANAR 36 #define BIT_ANAR_PROTO (0x1f<<0) #define BIT_ANAR_10 (1<<5) #define BIT_ANAR_10_FD (1<<6) #define BIT_ANAR_TX (1<<7) #define BIT_ANAR_TXFD (1<<8) #define BIT_ANAR_T4 (1<<9) #define BIT_ANAR_PAUSE (1<<10) #define BIT_ANAR_RF (1<<13) #define BIT_ANAR_NP (1<<15) #define REG_ANLPAR 37 #define BIT_ANLPAR_PROTO (0x1f<<0) #define BIT_ANLPAR_10 (1<<5) #define BIT_ANLPAR_10_FD (1<<6) #define BIT_ANLPAR_TX (1<<7) #define BIT_ANLPAR_TXFD (1<<8) #define BIT_ANLPAR_T4 (1<<9) #define BIT_ANLPAR_PAUSE (1<<10) #define BIT_ANLPAR_RF (1<<13) #define BIT_ANLPAR_ACK (1<<14) #define BIT_ANLPAR_NP (1<<15) #define REG_ANER 38 #define BIT_ANER_LP_AN_ENABLE (1<<0) #define BIT_ANER_PAGE_RX (1<<1) #define BIT_ANER_NP_ABLE (1<<2) #define BIT_ANER_LP_NP_ABLE (1<<3) #define BIT_ANER_PDF (1<<4) #define REG_ANNPTR 39 #define REG_PHYSTS 48 #define BIT_PHYSTS_LNK (1<<0) #define BIT_PHYSTS_SPD10 (1<<1) #define BIT_PHYSTS_FDUP (1<<2) #define BIT_PHYSTS_LOOP (1<<3) #define BIT_PHYSTS_ANDONE (1<<4) #define BIT_PHYSTS_JABBER (1<<5) #define BIT_PHYSTS_RF (1<<6) #define BIT_PHYSTS_MINT (1<<7) #define BIT_PHYSTS_FC (1<<11) #define BIT_PHYSTS_POL (1<<12) #define BIT_PHYSTS_RXERR (1<<13) #define REG_MICR 49 #define BIT_MICR_INTEN (1<<1) #define REG_MISR 50 #define BIT_MISR_MSK_RHF (1<<9) #define BIT_MISR_MSK_FHF (1<<10) #define BIT_MISR_MSK_ANC (1<<11) #define BIT_MISR_MSK_RF (1<<12) #define BIT_MISR_MSK_JAB (1<<13) #define BIT_MISR_MSK_LNK (1<<14) #define BIT_MISR_MINT (1<<15) #define REG_PGSEL 51 #define REG_FCSCR 52 #define REG_RECR 53 #define REG_PCSR 54 #define BIT_PCSR_NRZI (1<<2) #define BIT_PCSR_FORCE_100 (1<<5) #define BIT_PCSR_SDOPT (1<<8) #define BIT_PCSR_SDFORCE (1<<9) #define BIT_PCSR_TQM (1<<10) #define BIT_PCSR_CLK (1<<11) #define BIT_PCSR_4B5B (1<<12) #define REG_PHYCR 57 #define BIT_PHYCR_PHYADDR (0x1f<<0) #define BIT_PHYCR_PAUSE_STS (1<<7) #define BIT_PHYCR_STRETCH (1<<8) #define BIT_PHYCR_BIST (1<<9) #define BIT_PHYCR_BIST_STAT (1<<10) #define BIT_PHYCR_PSR15 (1<<11) #define REG_TBTSCR 58 #define BIT_TBTSCR_JAB (1<<0) #define BIT_TBTSCR_BEAT (1<<1) #define BIT_TBTSCR_AUTOPOL (1<<3) #define BIT_TBTSCR_POL (1<<4) #define BIT_TBTSCR_FPOL (1<<5) #define BIT_TBTSCR_FORCE_10 (1<<6) #define BIT_TBTSCR_PULSE (1<<7) #define BIT_TBTSCR_LOOP (1<<8) #define REG_PMDCSR 64 #define REG_TSTDAT 65 #define REG_DSPCFG 66 #define REG_SDCFG 67 #define REG_PMATCH0 68 #define REG_PMATCH1 69 #define REG_PMATCH2 70 #define REG_PCOUNT0 71 #define REG_PCOUNT1 72 #define REG_SOPASS0 73 #define REG_SOPASS1 74 #define REG_SOPASS2 75 static void __print_intr(int d, int intr, const char *name, const char *s1, const char *s2) { if ((d) & intr) fprintf(stdout, " %s Interrupt: %s\n", name, s1); else if (s2) fprintf(stdout, " %s Interrupt: %s\n", name, s2); } #define PRINT_INTR(d, i, s1, s2) do { \ int intr = BIT_INTR_ ## i; \ const char *name = NAME_INTR_ ## i; \ __print_intr(d, intr, name, s1, s2); \ } while (0) #define PRINT_INTRS(d, s1, s2) do { \ PRINT_INTR((d), RXOK, s1, s2); \ PRINT_INTR((d), RXDESC, s1, s2); \ PRINT_INTR((d), RXERR, s1, s2); \ PRINT_INTR((d), RXEARLY, s1, s2); \ PRINT_INTR((d), RXIDLE, s1, s2); \ PRINT_INTR((d), RXORN, s1, s2); \ PRINT_INTR((d), TXOK, s1, s2); \ PRINT_INTR((d), TXDESC, s1, s2); \ PRINT_INTR((d), TXERR, s1, s2); \ PRINT_INTR((d), TXIDLE, s1, s2); \ PRINT_INTR((d), TXURN, s1, s2); \ PRINT_INTR((d), MIB, s1, s2); \ PRINT_INTR((d), SWI, s1, s2); \ PRINT_INTR((d), PME, s1, s2); \ PRINT_INTR((d), PHY, s1, s2); \ PRINT_INTR((d), HIBERR, s1, s2); \ PRINT_INTR((d), RXSOVR, s1, s2); \ PRINT_INTR((d), RTABT, s1, s2); \ PRINT_INTR((d), RMABT, s1, s2); \ PRINT_INTR((d), SSERR, s1, s2); \ PRINT_INTR((d), DPERR, s1, s2); \ PRINT_INTR((d), RXRCMP, s1, s2); \ PRINT_INTR((d), TXRCMP, s1, s2); \ } while (0) int natsemi_dump_regs(struct ethtool_drvinfo *info, struct ethtool_regs *regs) { u32 *data = (u32 *)regs->data; u32 tmp; fprintf(stdout, "Mac/BIU Registers\n"); fprintf(stdout, "-----------------\n"); /* command register */ fprintf(stdout, "0x00: CR (Command): 0x%08x\n", data[REG_CR]); fprintf(stdout, " Transmit %s\n" " Receive %s\n", data[REG_CR] & BIT_CR_TXE ? "Active" : "Idle", data[REG_CR] & BIT_CR_RXE ? "Active" : "Idle"); if (data[REG_CR] & BIT_CR_RST) fprintf(stdout, " Reset In Progress\n"); /* configuration register */ fprintf(stdout, "0x04: CFG (Configuration): 0x%08x\n", data[REG_CFG]); fprintf(stdout, " %s Endian\n" " Boot ROM %s\n" " Internal Phy %s\n" " Phy Reset %s\n" " External Phy %s\n" " Default Auto-Negotiation %s, %s %s Mb %s Duplex\n" " Phy Interrupt %sAuto-Cleared\n" " Phy Configuration = 0x%02x\n" " Auto-Negotiation %s\n" " %s Polarity\n" " %s Duplex\n" " %d Mb/s\n" " Link %s\n", data[REG_CFG] & BIT_CFG_BEM ? "Big" : "Little", data[REG_CFG] & BIT_CFG_BROM_DIS ? "Disabled" : "Enabled", data[REG_CFG] & BIT_CFG_PHY_DIS ? "Disabled" : "Enabled", data[REG_CFG] & BIT_CFG_PHY_RST ? "In Progress" : "Idle", data[REG_CFG] & BIT_CFG_EXT_PHY ? "Enabled" : "Disabled", data[REG_CFG] & BIT_CFG_ANEG_EN ? "Enabled" : "Disabled", data[REG_CFG] & BIT_CFG_ANEG_EN ? "Advertise" : "Force", data[REG_CFG] & BIT_CFG_ANEG_100 ? (data[REG_CFG] & BIT_CFG_ANEG_EN ? "10/100" : "100") : "10", data[REG_CFG] & BIT_CFG_ANEG_FDUP ? (data[REG_CFG] & BIT_CFG_ANEG_EN ? "Half/Full" : "Full") : "Half", data[REG_CFG] & BIT_CFG_PINT_ACEN ? "" : "Not ", data[REG_CFG] & BIT_CFG_PHY_CFG >> 18, data[REG_CFG] & BIT_CFG_ANEG_DN ? "Done" : "Not Done", data[REG_CFG] & BIT_CFG_POL ? "Reversed" : "Normal", data[REG_CFG] & BIT_CFG_FDUP ? "Full" : "Half", data[REG_CFG] & BIT_CFG_SPEED100 ? 100 : 10, data[REG_CFG] & BIT_CFG_LNKSTS ? "Up" : "Down"); /* EEPROM access register */ fprintf(stdout, "0x08: MEAR (EEPROM Access): 0x%08x\n", data[REG_MEAR]); /* PCI test control register */ fprintf(stdout, "0x0c: PTSCR (PCI Test Control): 0x%08x\n", data[REG_PTSCR]); fprintf(stdout, " EEPROM Self Test %s\n" " Rx Filter Self Test %s\n" " Tx FIFO Self Test %s\n" " Rx FIFO Self Test %s\n", data[REG_PTSCR] & BIT_PTSCR_EEBIST_FAIL ? "Failed" : "Passed", data[REG_PTSCR] & BIT_PTSCR_RBIST_RXFFAIL ? "Failed" : "Passed", data[REG_PTSCR] & BIT_PTSCR_RBIST_TXFAIL ? "Failed" : "Passed", data[REG_PTSCR] & BIT_PTSCR_RBIST_RXFAIL ? "Failed" : "Passed"); if (data[REG_PTSCR] & BIT_PTSCR_EELOAD_EN) fprintf(stdout, " EEPROM Reload In Progress\n"); /* Interrupt status register */ fprintf(stdout, "0x10: ISR (Interrupt Status): 0x%08x\n", data[REG_ISR]); if (data[REG_ISR]) PRINT_INTRS(data[REG_ISR], "Active", (char *)NULL); else fprintf(stdout, " No Interrupts Active\n"); /* Interrupt mask register */ fprintf(stdout, "0x14: IMR (Interrupt Mask): 0x%08x\n", data[REG_IMR]); PRINT_INTRS(data[REG_IMR], "Enabled", "Masked"); /* Interrupt enable register */ fprintf(stdout, "0x18: IER (Interrupt Enable): 0x%08x\n", data[REG_IER]); fprintf(stdout, " Interrupts %s\n", data[REG_IER] & BIT_IER_IE ? "Enabled" : "Disabled"); /* Tx descriptor pointer register */ fprintf(stdout, "0x20: TXDP (Tx Descriptor Pointer): 0x%08x\n", data[REG_TXDP]); /* Tx configuration register */ fprintf(stdout, "0x24: TXCFG (Tx Config): 0x%08x\n", data[REG_TXCFG]); tmp = (data[REG_TXCFG] & BIT_TXCFG_MXDMA)>>20; fprintf(stdout, " Drain Threshhold = %d bytes (%d)\n" " Fill Threshhold = %d bytes (%d)\n" " Max DMA Burst per Tx = %d bytes\n" " Automatic Tx Padding %s\n" " Mac Loopback %s\n" " Heartbeat Ignore %s\n" " Carrier Sense Ignore %s\n", (data[REG_TXCFG] & BIT_TXCFG_DRTH) * 32, data[REG_TXCFG] & BIT_TXCFG_DRTH, ((data[REG_TXCFG] & BIT_TXCFG_FLTH)>>8) * 32, data[REG_TXCFG] & BIT_TXCFG_FLTH, tmp ? (1<<(tmp-1))*4 : 512, data[REG_TXCFG] & BIT_TXCFG_ATP ? "Enabled" : "Disabled", data[REG_TXCFG] & BIT_TXCFG_MLB ? "Enabled" : "Disabled", data[REG_TXCFG] & BIT_TXCFG_HBI ? "Enabled" : "Disabled", data[REG_TXCFG] & BIT_TXCFG_CSI ? "Enabled" : "Disabled"); /* Rx descriptor pointer register */ fprintf(stdout, "0x30: RXDP (Rx Descriptor Pointer): 0x%08x\n", data[REG_RXDP]); /* Rx configuration register */ fprintf(stdout, "0x34: RXCFG (Rx Config): 0x%08x\n", data[REG_RXCFG]); tmp = (data[REG_RXCFG] & BIT_RXCFG_MXDMA)>>20; fprintf(stdout, " Drain Threshhold = %d bytes (%d)\n" " Max DMA Burst per Rx = %d bytes\n" " Long Packets %s\n" " Tx Packets %s\n" " Runt Packets %s\n" " Error Packets %s\n", ((data[REG_RXCFG] & BIT_RXCFG_DRTH) >> 1) * 8, (data[REG_RXCFG] & BIT_RXCFG_DRTH) >> 1, tmp ? (1<<(tmp-1))*4 : 512, data[REG_RXCFG] & BIT_RXCFG_ALP ? "Accepted" : "Rejected", data[REG_RXCFG] & BIT_RXCFG_ATX ? "Accepted" : "Rejected", data[REG_RXCFG] & BIT_RXCFG_ARP ? "Accepted" : "Rejected", data[REG_RXCFG] & BIT_RXCFG_AEP ? "Accepted" : "Rejected"); /* CLKRUN control/status register */ fprintf(stdout, "0x3c: CCSR (CLKRUN Control/Status): 0x%08x\n", data[REG_CCSR]); fprintf(stdout, " CLKRUNN %s\n" " Power Management %s\n", data[REG_CCSR] & BIT_CCSR_CLKRUN_EN ? "Enabled" : "Disabled", data[REG_CCSR] & BIT_CCSR_PMEEN ? "Enabled" : "Disabled"); if (data[REG_CCSR] & BIT_CCSR_PMESTS) fprintf(stdout, " Power Management Event Pending\n"); /* WoL control/status register */ fprintf(stdout, "0x40: WCSR (Wake-on-LAN Control/Status): 0x%08x\n", data[REG_WCSR]); if (data[REG_WCSR] & BIT_WCSR_WKPHY) fprintf(stdout, " Wake on Phy Interrupt Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKUCP) fprintf(stdout, " Wake on Unicast Packet Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKMCP) fprintf(stdout, " Wake on Multicast Packet Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKBCP) fprintf(stdout, " Wake on Broadcast Packet Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKARP) fprintf(stdout, " Wake on Arp Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKPAT0) fprintf(stdout, " Wake on Pattern 0 Match Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKPAT1) fprintf(stdout, " Wake on Pattern 1 Match Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKPAT2) fprintf(stdout, " Wake on Pattern 2 Match Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKPAT3) fprintf(stdout, " Wake on Pattern 3 Match Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_WKMAG) fprintf(stdout, " Wake on Magic Packet Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_MPSOE) fprintf(stdout, " Magic Packet SecureOn Enabled\n"); if (data[REG_WCSR] & BIT_WCSR_SOHACK) fprintf(stdout, " SecureOn Hack Detected\n"); if (data[REG_WCSR] & BIT_WCSR_PHYINT) fprintf(stdout, " Phy Interrupt Received\n"); if (data[REG_WCSR] & BIT_WCSR_UCASTR) fprintf(stdout, " Unicast Packet Received\n"); if (data[REG_WCSR] & BIT_WCSR_MCASTR) fprintf(stdout, " Multicast Packet Received\n"); if (data[REG_WCSR] & BIT_WCSR_BCASTR) fprintf(stdout, " Broadcast Packet Received\n"); if (data[REG_WCSR] & BIT_WCSR_ARPR) fprintf(stdout, " Arp Received\n"); if (data[REG_WCSR] & BIT_WCSR_PATM0) fprintf(stdout, " Pattern 0 Received\n"); if (data[REG_WCSR] & BIT_WCSR_PATM1) fprintf(stdout, " Pattern 1 Received\n"); if (data[REG_WCSR] & BIT_WCSR_PATM2) fprintf(stdout, " Pattern 2 Received\n"); if (data[REG_WCSR] & BIT_WCSR_PATM3) fprintf(stdout, " Pattern 3 Received\n"); if (data[REG_WCSR] & BIT_WCSR_MPR) fprintf(stdout, " Magic Packet Received\n"); /* Pause control/status register */ fprintf(stdout, "0x44: PCR (Pause Control/Status): 0x%08x\n", data[REG_PCR]); fprintf(stdout, " Pause Counter = %d\n" " Pause %sNegotiated\n" " Pause on DA %s\n" " Pause on Mulitcast %s\n" " Pause %s\n", data[REG_PCR] & BIT_PCR_PAUSE_CNT, data[REG_PCR] & BIT_PCR_PSNEG ? "" : "Not ", data[REG_PCR] & BIT_PCR_PS_DA ? "Enabled" : "Disabled", data[REG_PCR] & BIT_PCR_PSMCAST ? "Enabled" : "Disabled", data[REG_PCR] & BIT_PCR_PSEN ? "Enabled" : "Disabled"); if (data[REG_PCR] & BIT_PCR_PS_RCVD) fprintf(stdout, " PS_RCVD: Pause Frame Received\n"); /* Rx Filter Control */ fprintf(stdout, "0x48: RFCR (Rx Filter Control): 0x%08x\n", data[REG_RFCR]); fprintf(stdout, " Unicast Hash %s\n" " Multicast Hash %s\n" " Arp %s\n" " Pattern 0 Match %s\n" " Pattern 1 Match %s\n" " Pattern 2 Match %s\n" " Pattern 3 Match %s\n" " Perfect Match %s\n" " All Unicast %s\n" " All Multicast %s\n" " All Broadcast %s\n" " Rx Filter %s\n", data[REG_RFCR] & BIT_RFCR_UHEN ? "Enabled" : "Disabled", data[REG_RFCR] & BIT_RFCR_MHEN ? "Enabled" : "Disabled", data[REG_RFCR] & BIT_RFCR_AARP ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_APAT0 ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_APAT1 ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_APAT2 ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_APAT3 ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_APM ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_AAU ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_AAM ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_AAB ? "Accepted" : "Rejected", data[REG_RFCR] & BIT_RFCR_RFEN ? "Enabled" : "Disabled"); /* Rx filter data register */ fprintf(stdout, "0x4c: RFDR (Rx Filter Data): 0x%08x\n", data[REG_RFDR]); if (regs->version >= 1) fprintf(stdout, " PMATCH 1-0 = 0x%08x\n" " PMATCH 3-2 = 0x%08x\n" " PMATCH 5-4 = 0x%08x\n" " PCOUNT 1-0 = 0x%08x\n" " PCOUNT 3-2 = 0x%08x\n" " SOPASS 1-0 = 0x%08x\n" " SOPASS 3-2 = 0x%08x\n" " SOPASS 5-4 = 0x%08x\n", data[REG_PMATCH0], data[REG_PMATCH1], data[REG_PMATCH2], data[REG_PCOUNT0], data[REG_PCOUNT1], data[REG_SOPASS0], data[REG_SOPASS1], data[REG_SOPASS2]); /* Boot ROM address register */ fprintf(stdout, "0x50: BRAR (Boot ROM Address): 0x%08x\n", data[REG_BRAR]); if (data[REG_BRAR] & BIT_BRAR_AUTOINC) fprintf(stdout, " Automatically Increment Address\n"); /* Boot ROM data register */ fprintf(stdout, "0x54: BRDR (Boot ROM Data): 0x%08x\n", data[REG_BRDR]); /* Silicon revison register */ fprintf(stdout, "0x58: SRR (Silicon Revision): 0x%08x\n", data[REG_SRR]); /* Management information base control register */ fprintf(stdout, "0x5c: MIBC (Mgmt Info Base Control): 0x%08x\n", data[REG_MIBC]); if (data[REG_MIBC] & BIT_MIBC_WRN) fprintf(stdout, " Counter Overflow Warning\n"); if (data[REG_MIBC] & BIT_MIBC_FRZ) fprintf(stdout, " Counters Frozen\n"); /* MIB registers */ fprintf(stdout, "0x60: MIB[0] (Rx Errored Packets): 0x%04x\n", data[REG_MIB0]); fprintf(stdout, " Value = %d\n", data[REG_MIB0]); fprintf(stdout, "0x64: MIB[1] (Rx Frame Sequence Errors): 0x%02x\n", data[REG_MIB1]); fprintf(stdout, " Value = %d\n", data[REG_MIB1]); fprintf(stdout, "0x68: MIB[2] (Rx Missed Packets): 0x%02x\n", data[REG_MIB2]); fprintf(stdout, " Value = %d\n", data[REG_MIB2]); fprintf(stdout, "0x6c: MIB[3] (Rx Alignment Errors): 0x%02x\n", data[REG_MIB3]); fprintf(stdout, " Value = %d\n", data[REG_MIB3]); fprintf(stdout, "0x70: MIB[4] (Rx Symbol Errors): 0x%02x\n", data[REG_MIB4]); fprintf(stdout, " Value = %d\n", data[REG_MIB4]); fprintf(stdout, "0x74: MIB[5] (Rx Long Frame Errors): 0x%02x\n", data[REG_MIB5]); fprintf(stdout, " Value = %d\n", data[REG_MIB5]); fprintf(stdout, "0x78: MIB[6] (Tx Heartbeat Errors): 0x%02x\n", data[REG_MIB6]); fprintf(stdout, " Value = %d\n", data[REG_MIB6]); fprintf(stdout, "\n"); fprintf(stdout, "Internal Phy Registers\n"); fprintf(stdout, "----------------------\n"); /* Basic mode control register */ fprintf(stdout, "0x80: BMCR (Basic Mode Control): 0x%04x\n", data[REG_BMCR]); fprintf(stdout, " %s Duplex\n" " Port is Powered %s\n" " Auto-Negotiation %s\n" " %d Mb/s\n", data[REG_BMCR] & BIT_BMCR_FDUP ? "Full" : "Half", data[REG_BMCR] & BIT_BMCR_PDOWN ? "Down" : "Up", data[REG_BMCR] & BIT_BMCR_ANEN ? "Enabled" : "Disabled", data[REG_BMCR] & BIT_BMCR_SPEED ? 100 : 10); if (data[REG_BMCR] & BIT_BMCR_ANRST) fprintf(stdout, " Auto-Negotiation Restarting\n"); if (data[REG_BMCR] & BIT_BMCR_ISOL) fprintf(stdout, " Port Isolated\n"); if (data[REG_BMCR] & BIT_BMCR_LOOP) fprintf(stdout, " Loopback Enabled\n"); if (data[REG_BMCR] & BIT_BMCR_RST) fprintf(stdout, " Reset In Progress\n"); /* Basic mode status register */ fprintf(stdout, "0x84: BMSR (Basic Mode Status): 0x%04x\n", data[REG_BMSR]); fprintf(stdout, " Link %s\n" " %sCapable of Auto-Negotiation\n" " Auto-Negotiation %sComplete\n" " %sCapable of Preamble Suppression\n" " %sCapable of 10Base-T Half Duplex\n" " %sCapable of 10Base-T Full Duplex\n" " %sCapable of 100Base-TX Half Duplex\n" " %sCapable of 100Base-TX Full Duplex\n" " %sCapable of 100Base-T4\n", data[REG_BMSR] & BIT_BMSR_LNK ? "Up" : "Down", data[REG_BMSR] & BIT_BMSR_ANCAP ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_ANDONE ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_PREAMBLE ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_10HCAP ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_10FCAP ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_100HCAP ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_100FCAP ? "" : "Not ", data[REG_BMSR] & BIT_BMSR_100T4CAP ? "" : "Not "); if (data[REG_BMSR] & BIT_BMSR_JABBER) fprintf(stdout, " Jabber Condition Detected\n"); if (data[REG_BMSR] & BIT_BMSR_RFAULT) fprintf(stdout, " Remote Fault Detected\n"); /* PHY identification registers */ fprintf(stdout, "0x88: PHYIDR1 (PHY ID #1): 0x%04x\n", data[REG_PHYIDR1]); fprintf(stdout, "0x8c: PHYIDR2 (PHY ID #2): 0x%04x\n", data[REG_PHYIDR2]); fprintf(stdout, " OUI = 0x%06x\n" " Model = 0x%02x (%d)\n" " Revision = 0x%01x (%d)\n", (data[REG_PHYIDR1] << 6) | (data[REG_PHYIDR2] >> 10), (data[REG_PHYIDR2] & BIT_PHYIDR2_MODEL) >> 4 & 0x3f, (data[REG_PHYIDR2] & BIT_PHYIDR2_MODEL) >> 4 & 0x3f, data[REG_PHYIDR2] & BIT_PHYIDR2_REV, data[REG_PHYIDR2] & BIT_PHYIDR2_REV); /* autonegotiation advertising register */ fprintf(stdout, "0x90: ANAR (Autoneg Advertising): 0x%04x\n", data[REG_ANAR]); fprintf(stdout, " Protocol Selector = 0x%02x (%d)\n", data[REG_ANAR] & BIT_ANAR_PROTO, data[REG_ANAR] & BIT_ANAR_PROTO); if (data[REG_ANAR] & BIT_ANAR_10) fprintf(stdout, " Advertising 10Base-T Half Duplex\n"); if (data[REG_ANAR] & BIT_ANAR_10_FD) fprintf(stdout, " Advertising 10Base-T Full Duplex\n"); if (data[REG_ANAR] & BIT_ANAR_TX) fprintf(stdout, " Advertising 100Base-TX Half Duplex\n"); if (data[REG_ANAR] & BIT_ANAR_TXFD) fprintf(stdout, " Advertising 100Base-TX Full Duplex\n"); if (data[REG_ANAR] & BIT_ANAR_T4) fprintf(stdout, " Advertising 100Base-T4\n"); if (data[REG_ANAR] & BIT_ANAR_PAUSE) fprintf(stdout, " Advertising Pause\n"); if (data[REG_ANAR] & BIT_ANAR_RF) fprintf(stdout, " Indicating Remote Fault\n"); if (data[REG_ANAR] & BIT_ANAR_NP) fprintf(stdout, " Next Page Desired\n"); /* Autonegotiation link partner ability register */ fprintf(stdout, "0x94: ANLPAR (Autoneg Partner): 0x%04x\n", data[REG_ANLPAR]); fprintf(stdout, " Protocol Selector = 0x%02x (%d)\n", data[REG_ANLPAR] & BIT_ANLPAR_PROTO, data[REG_ANLPAR] & BIT_ANLPAR_PROTO); if (data[REG_ANLPAR] & BIT_ANLPAR_10) fprintf(stdout, " Supports 10Base-T Half Duplex\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_10_FD) fprintf(stdout, " Supports 10Base-T Full Duplex\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_TX) fprintf(stdout, " Supports 100Base-TX Half Duplex\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_TXFD) fprintf(stdout, " Supports 100Base-TX Full Duplex\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_T4) fprintf(stdout, " Supports 100Base-T4\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_PAUSE) fprintf(stdout, " Supports Pause\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_RF) fprintf(stdout, " Indicates Remote Fault\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_ACK) fprintf(stdout, " Indicates Acknowledgement\n"); if (data[REG_ANLPAR] & BIT_ANLPAR_NP) fprintf(stdout, " Next Page Desired\n"); /* Autonegotiation expansion register */ fprintf(stdout, "0x98: ANER (Autoneg Expansion): 0x%04x\n", data[REG_ANER]); fprintf(stdout, " Link Partner Can %sAuto-Negotiate\n" " Link Code Word %sReceived\n" " Next Page %sSupported\n" " Link Partner Next Page %sSupported\n", data[REG_ANER] & BIT_ANER_LP_AN_ENABLE ? "" : "Not ", data[REG_ANER] & BIT_ANER_PAGE_RX ? "" : "Not ", data[REG_ANER] & BIT_ANER_NP_ABLE ? "" : "Not ", data[REG_ANER] & BIT_ANER_LP_NP_ABLE ? "" : "Not "); if (data[REG_ANER] & BIT_ANER_PDF) fprintf(stdout, " Parallel Detection Fault\n"); /* Autonegotiation next-page tx register */ fprintf(stdout, "0x9c: ANNPTR (Autoneg Next Page Tx): 0x%04x\n", data[REG_ANNPTR]); /* Phy status register */ fprintf(stdout, "0xc0: PHYSTS (Phy Status): 0x%04x\n", data[REG_PHYSTS]); fprintf(stdout, " Link %s\n" " %d Mb/s\n" " %s Duplex\n" " Auto-Negotiation %sComplete\n" " %s Polarity\n", data[REG_PHYSTS] & BIT_PHYSTS_LNK ? "Up" : "Down", data[REG_PHYSTS] & BIT_PHYSTS_SPD10 ? 10 : 100, data[REG_PHYSTS] & BIT_PHYSTS_FDUP ? "Full" : "Half", data[REG_PHYSTS] & BIT_PHYSTS_ANDONE ? "" : "Not ", data[REG_PHYSTS] & BIT_PHYSTS_POL ? "Reverse" : "Normal"); if (data[REG_PHYSTS] & BIT_PHYSTS_LOOP) fprintf(stdout, " Loopback Enabled\n"); if (data[REG_PHYSTS] & BIT_PHYSTS_JABBER) fprintf(stdout, " Jabber Condition Detected\n"); if (data[REG_PHYSTS] & BIT_PHYSTS_RF) fprintf(stdout, " Remote Fault Detected\n"); if (data[REG_PHYSTS] & BIT_PHYSTS_MINT) fprintf(stdout, " MII Interrupt Detected\n"); if (data[REG_PHYSTS] & BIT_PHYSTS_FC) fprintf(stdout, " False Carrier Detected\n"); if (data[REG_PHYSTS] & BIT_PHYSTS_RXERR) fprintf(stdout, " Rx Error Detected\n"); fprintf(stdout, "0xc4: MICR (MII Interrupt Control): 0x%04x\n", data[REG_MICR]); fprintf(stdout, " MII Interrupts %s\n", data[REG_MICR] & BIT_MICR_INTEN ? "Enabled" : "Disabled"); fprintf(stdout, "0xc8: MISR (MII Interrupt Status): 0x%04x\n", data[REG_MISR]); fprintf(stdout, " Rx Error Counter Half-Full Interrupt %s\n" " False Carrier Counter Half-Full Interrupt %s\n" " Auto-Negotiation Complete Interrupt %s\n" " Remote Fault Interrupt %s\n" " Jabber Interrupt %s\n" " Link Change Interrupt %s\n", data[REG_MISR] & BIT_MISR_MSK_RHF ? "Masked" : "Enabled", data[REG_MISR] & BIT_MISR_MSK_FHF ? "Masked" : "Enabled", data[REG_MISR] & BIT_MISR_MSK_ANC ? "Masked" : "Enabled", data[REG_MISR] & BIT_MISR_MSK_RF ? "Masked" : "Enabled", data[REG_MISR] & BIT_MISR_MSK_JAB ? "Masked" : "Enabled", data[REG_MISR] & BIT_MISR_MSK_LNK ? "Masked" : "Enabled"); if (data[REG_MISR] & BIT_MISR_MINT) fprintf(stdout, " MII Interrupt Pending\n"); /* Page select register (from section of spec on 'suggested values') */ fprintf(stdout, "0xcc: PGSEL (Phy Register Page Select): 0x%04x\n", data[REG_PGSEL]); /* counters */ fprintf(stdout, "0xd0: FCSCR (False Carrier Counter): 0x%04x\n", data[REG_FCSCR]); fprintf(stdout, " Value = %d\n", data[REG_FCSCR] & 0xff); fprintf(stdout, "0xd4: RECR (Rx Error Counter): 0x%04x\n", data[REG_RECR]); fprintf(stdout, " Value = %d\n", data[REG_RECR] & 0xff); /* 100 Mbit configuration register */ fprintf(stdout, "0xd8: PCSR (100Mb/s PCS Config/Status): 0x%04x\n", data[REG_PCSR]); fprintf(stdout, " NRZI Bypass %s\n" " %s Signal Detect Algorithm\n" " %s Signal Detect Operation\n" " True Quiet Mode %s\n" " Rx Clock is %s\n" " 4B/5B Operation %s\n", data[REG_PCSR] & BIT_PCSR_NRZI ? "Enabled" : "Disabled", data[REG_PCSR] & BIT_PCSR_SDOPT ? "Enhanced" : "Reduced", data[REG_PCSR] & BIT_PCSR_SDFORCE ? "Forced" : "Normal", data[REG_PCSR] & BIT_PCSR_TQM ? "Enabled" : "Disabled", data[REG_PCSR] & BIT_PCSR_CLK ? "Free-Running" : "Phase-Adjusted", data[REG_PCSR] & BIT_PCSR_4B5B ? "Bypassed" : "Normal"); if (data[REG_PCSR] & BIT_PCSR_FORCE_100) fprintf(stdout, " Forced 100 Mb/s Good Link\n"); /* Phy control register */ fprintf(stdout, "0xe4: PHYCR (Phy Control): 0x%04x\n", data[REG_PHYCR]); fprintf(stdout, " Phy Address = 0x%x (%d)\n" " %sPause Compatible with Link Partner\n" " LED Stretching %s\n" " Phy Self Test %s\n" " Self Test Sequence = PSR%d\n", data[REG_PHYCR] & BIT_PHYCR_PHYADDR, data[REG_PHYCR] & BIT_PHYCR_PHYADDR, data[REG_PHYCR] & BIT_PHYCR_PAUSE_STS ? "" : "Not ", data[REG_PHYCR] & BIT_PHYCR_STRETCH ? "Bypassed" : "Enabled", data[REG_PHYCR] & BIT_PHYCR_BIST ? "In Progress" : data[REG_PHYCR] & BIT_PHYCR_BIST_STAT ? "Passed" : "Failed or Not Run", data[REG_PHYCR] & BIT_PHYCR_PSR15 ? 15 : 9); /* 10 Mbit control and status register */ fprintf(stdout, "0xe8: TBTSCR (10Base-T Status/Control): 0x%04x\n", data[REG_TBTSCR]); fprintf(stdout, " Jabber %s\n" " Heartbeat %s\n" " Polarity Auto-Sense/Correct %s\n" " %s Polarity %s\n" " Normal Link Pulse %s\n" " 10 Mb/s Loopback %s\n", data[REG_TBTSCR] & BIT_TBTSCR_JAB ? "Disabled" : "Enabled", data[REG_TBTSCR] & BIT_TBTSCR_BEAT ? "Disabled" : "Enabled", data[REG_TBTSCR] & BIT_TBTSCR_AUTOPOL ? "Disabled" : "Enabled", data[REG_TBTSCR] & BIT_TBTSCR_AUTOPOL ? data[REG_TBTSCR]&BIT_TBTSCR_FPOL ? "Reverse":"Normal" : data[REG_TBTSCR]&BIT_TBTSCR_POL ? "Reverse":"Normal", data[REG_TBTSCR] & BIT_TBTSCR_AUTOPOL ? "Forced" : "Detected", data[REG_TBTSCR] & BIT_TBTSCR_PULSE ? "Disabled" : "Enabled", data[REG_TBTSCR] & BIT_TBTSCR_LOOP ? "Enabled" : "Disabled"); if (data[REG_TBTSCR] & BIT_TBTSCR_FORCE_10) fprintf(stdout, " Forced 10 Mb/s Good Link\n"); /* the spec says to set these */ fprintf(stdout, "\n"); fprintf(stdout, "'Magic' Phy Registers\n"); fprintf(stdout, "---------------------\n"); fprintf(stdout, "0xe4: PMDCSR: 0x%04x\n", data[REG_PMDCSR]); fprintf(stdout, "0xf4: DSPCFG: 0x%04x\n", data[REG_DSPCFG]); fprintf(stdout, "0xf8: SDCFG: 0x%04x\n", data[REG_SDCFG]); fprintf(stdout, "0xfc: TSTDAT: 0x%04x\n", data[REG_TSTDAT]); return 0; } int natsemi_dump_eeprom(struct ethtool_drvinfo *info, struct ethtool_eeprom *ee) { int i; u16 *eebuf = (u16 *)ee->data; if (ee->magic != NATSEMI_MAGIC) { fprintf(stderr, "Magic number 0x%08x does not match 0x%08x\n", ee->magic, NATSEMI_MAGIC); return -1; } fprintf(stdout, "Address\tData\n"); fprintf(stdout, "-------\t------\n"); for (i = 0; i < ee->len/2; i++) { fprintf(stdout, "0x%02x \t0x%04x\n", i + ee->offset, eebuf[i]); } return 0; }