/* cipher-cfb.c - Generic CFB mode implementation * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 * 2005, 2007, 2008, 2009, 2011 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include #include "g10lib.h" #include "cipher.h" #include "bufhelp.h" #include "./cipher-internal.h" gcry_err_code_t _gcry_cipher_cfb_encrypt (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen) { unsigned char *ivp; gcry_cipher_encrypt_t enc_fn = c->spec->encrypt; size_t blocksize = c->spec->blocksize; size_t blocksize_x_2 = blocksize + blocksize; unsigned int burn, nburn; if (outbuflen < inbuflen) return GPG_ERR_BUFFER_TOO_SHORT; if ( inbuflen <= c->unused ) { /* Short enough to be encoded by the remaining XOR mask. */ /* XOR the input with the IV and store input into IV. */ ivp = c->u_iv.iv + blocksize - c->unused; buf_xor_2dst(outbuf, ivp, inbuf, inbuflen); c->unused -= inbuflen; return 0; } burn = 0; if ( c->unused ) { /* XOR the input with the IV and store input into IV */ inbuflen -= c->unused; ivp = c->u_iv.iv + blocksize - c->unused; buf_xor_2dst(outbuf, ivp, inbuf, c->unused); outbuf += c->unused; inbuf += c->unused; c->unused = 0; } /* Now we can process complete blocks. We use a loop as long as we have at least 2 blocks and use conditions for the rest. This also allows to use a bulk encryption function if available. */ if (inbuflen >= blocksize_x_2 && c->bulk.cfb_enc) { size_t nblocks = inbuflen / blocksize; c->bulk.cfb_enc (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks); outbuf += nblocks * blocksize; inbuf += nblocks * blocksize; inbuflen -= nblocks * blocksize; } else { while ( inbuflen >= blocksize_x_2 ) { /* Encrypt the IV. */ nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; /* XOR the input with the IV and store input into IV. */ buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, blocksize); outbuf += blocksize; inbuf += blocksize; inbuflen -= blocksize; } } if ( inbuflen >= blocksize ) { /* Save the current IV and then encrypt the IV. */ buf_cpy( c->lastiv, c->u_iv.iv, blocksize ); nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; /* XOR the input with the IV and store input into IV */ buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, blocksize); outbuf += blocksize; inbuf += blocksize; inbuflen -= blocksize; } if ( inbuflen ) { /* Save the current IV and then encrypt the IV. */ buf_cpy( c->lastiv, c->u_iv.iv, blocksize ); nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; c->unused = blocksize; /* Apply the XOR. */ c->unused -= inbuflen; buf_xor_2dst(outbuf, c->u_iv.iv, inbuf, inbuflen); outbuf += inbuflen; inbuf += inbuflen; inbuflen = 0; } if (burn > 0) _gcry_burn_stack (burn + 4 * sizeof(void *)); return 0; } gcry_err_code_t _gcry_cipher_cfb_decrypt (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen) { unsigned char *ivp; gcry_cipher_encrypt_t enc_fn = c->spec->encrypt; size_t blocksize = c->spec->blocksize; size_t blocksize_x_2 = blocksize + blocksize; unsigned int burn, nburn; if (outbuflen < inbuflen) return GPG_ERR_BUFFER_TOO_SHORT; if (inbuflen <= c->unused) { /* Short enough to be encoded by the remaining XOR mask. */ /* XOR the input with the IV and store input into IV. */ ivp = c->u_iv.iv + blocksize - c->unused; buf_xor_n_copy(outbuf, ivp, inbuf, inbuflen); c->unused -= inbuflen; return 0; } burn = 0; if (c->unused) { /* XOR the input with the IV and store input into IV. */ inbuflen -= c->unused; ivp = c->u_iv.iv + blocksize - c->unused; buf_xor_n_copy(outbuf, ivp, inbuf, c->unused); outbuf += c->unused; inbuf += c->unused; c->unused = 0; } /* Now we can process complete blocks. We use a loop as long as we have at least 2 blocks and use conditions for the rest. This also allows to use a bulk encryption function if available. */ if (inbuflen >= blocksize_x_2 && c->bulk.cfb_dec) { size_t nblocks = inbuflen / blocksize; c->bulk.cfb_dec (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks); outbuf += nblocks * blocksize; inbuf += nblocks * blocksize; inbuflen -= nblocks * blocksize; } else { while (inbuflen >= blocksize_x_2 ) { /* Encrypt the IV. */ nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; /* XOR the input with the IV and store input into IV. */ buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, blocksize); outbuf += blocksize; inbuf += blocksize; inbuflen -= blocksize; } } if (inbuflen >= blocksize ) { /* Save the current IV and then encrypt the IV. */ buf_cpy ( c->lastiv, c->u_iv.iv, blocksize); nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; /* XOR the input with the IV and store input into IV */ buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, blocksize); outbuf += blocksize; inbuf += blocksize; inbuflen -= blocksize; } if (inbuflen) { /* Save the current IV and then encrypt the IV. */ buf_cpy ( c->lastiv, c->u_iv.iv, blocksize ); nburn = enc_fn ( &c->context.c, c->u_iv.iv, c->u_iv.iv ); burn = nburn > burn ? nburn : burn; c->unused = blocksize; /* Apply the XOR. */ c->unused -= inbuflen; buf_xor_n_copy(outbuf, c->u_iv.iv, inbuf, inbuflen); outbuf += inbuflen; inbuf += inbuflen; inbuflen = 0; } if (burn > 0) _gcry_burn_stack (burn + 4 * sizeof(void *)); return 0; }