/* serpent.c - Implementation of the Serpent encryption algorithm. * Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include #include #include #include "types.h" #include "g10lib.h" #include "cipher.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher-internal.h" #include "cipher-selftest.h" /* USE_SSE2 indicates whether to compile with AMD64 SSE2 code. */ #undef USE_SSE2 #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_SSE2 1 #endif /* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */ #undef USE_AVX2 #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # if defined(ENABLE_AVX2_SUPPORT) # define USE_AVX2 1 # endif #endif /* USE_NEON indicates whether to enable ARM NEON assembly code. */ #undef USE_NEON #ifdef ENABLE_NEON_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_NEON) # define USE_NEON 1 # endif #endif /*ENABLE_NEON_SUPPORT*/ /* Number of rounds per Serpent encrypt/decrypt operation. */ #define ROUNDS 32 /* Magic number, used during generating of the subkeys. */ #define PHI 0x9E3779B9 /* Serpent works on 128 bit blocks. */ typedef u32 serpent_block_t[4]; /* Serpent key, provided by the user. If the original key is shorter than 256 bits, it is padded. */ typedef u32 serpent_key_t[8]; /* The key schedule consists of 33 128 bit subkeys. */ typedef u32 serpent_subkeys_t[ROUNDS + 1][4]; /* A Serpent context. */ typedef struct serpent_context { serpent_subkeys_t keys; /* Generated subkeys. */ #ifdef USE_AVX2 int use_avx2; #endif #ifdef USE_NEON int use_neon; #endif } serpent_context_t; /* Assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #if defined(USE_SSE2) || defined(USE_AVX2) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # else # define ASM_FUNC_ABI # endif #endif #ifdef USE_SSE2 /* Assembler implementations of Serpent using SSE2. Process 8 block in parallel. */ extern void _gcry_serpent_sse2_ctr_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *ctr) ASM_FUNC_ABI; extern void _gcry_serpent_sse2_cbc_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_serpent_sse2_cfb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_serpent_sse2_ocb_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[8]) ASM_FUNC_ABI; extern void _gcry_serpent_sse2_ocb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[8]) ASM_FUNC_ABI; extern void _gcry_serpent_sse2_ocb_auth(serpent_context_t *ctx, const unsigned char *abuf, unsigned char *offset, unsigned char *checksum, const u64 Ls[8]) ASM_FUNC_ABI; #endif #ifdef USE_AVX2 /* Assembler implementations of Serpent using AVX2. Process 16 block in parallel. */ extern void _gcry_serpent_avx2_ctr_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *ctr) ASM_FUNC_ABI; extern void _gcry_serpent_avx2_cbc_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_serpent_avx2_cfb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_serpent_avx2_ocb_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; extern void _gcry_serpent_avx2_ocb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; extern void _gcry_serpent_avx2_ocb_auth(serpent_context_t *ctx, const unsigned char *abuf, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; #endif #ifdef USE_NEON /* Assembler implementations of Serpent using ARM NEON. Process 8 block in parallel. */ extern void _gcry_serpent_neon_ctr_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *ctr); extern void _gcry_serpent_neon_cbc_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv); extern void _gcry_serpent_neon_cfb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv); extern void _gcry_serpent_neon_ocb_enc(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const void *Ls[8]); extern void _gcry_serpent_neon_ocb_dec(serpent_context_t *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const void *Ls[8]); extern void _gcry_serpent_neon_ocb_auth(serpent_context_t *ctx, const unsigned char *abuf, unsigned char *offset, unsigned char *checksum, const void *Ls[8]); #endif /* A prototype. */ static const char *serpent_test (void); /* * These are the S-Boxes of Serpent from following research paper. * * D. A. Osvik, “Speeding up Serpent,” in Third AES Candidate Conference, * (New York, New York, USA), p. 317–329, National Institute of Standards and * Technology, 2000. * * Paper is also available at: http://www.ii.uib.no/~osvik/pub/aes3.pdf * */ #define SBOX0(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r3 ^= r0; r4 = r1; \ r1 &= r3; r4 ^= r2; \ r1 ^= r0; r0 |= r3; \ r0 ^= r4; r4 ^= r3; \ r3 ^= r2; r2 |= r1; \ r2 ^= r4; r4 = ~r4; \ r4 |= r1; r1 ^= r3; \ r1 ^= r4; r3 |= r0; \ r1 ^= r3; r4 ^= r3; \ \ w = r1; x = r4; y = r2; z = r0; \ } #define SBOX0_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r2 = ~r2; r4 = r1; \ r1 |= r0; r4 = ~r4; \ r1 ^= r2; r2 |= r4; \ r1 ^= r3; r0 ^= r4; \ r2 ^= r0; r0 &= r3; \ r4 ^= r0; r0 |= r1; \ r0 ^= r2; r3 ^= r4; \ r2 ^= r1; r3 ^= r0; \ r3 ^= r1; \ r2 &= r3; \ r4 ^= r2; \ \ w = r0; x = r4; y = r1; z = r3; \ } #define SBOX1(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r0 = ~r0; r2 = ~r2; \ r4 = r0; r0 &= r1; \ r2 ^= r0; r0 |= r3; \ r3 ^= r2; r1 ^= r0; \ r0 ^= r4; r4 |= r1; \ r1 ^= r3; r2 |= r0; \ r2 &= r4; r0 ^= r1; \ r1 &= r2; \ r1 ^= r0; r0 &= r2; \ r0 ^= r4; \ \ w = r2; x = r0; y = r3; z = r1; \ } #define SBOX1_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r1; r1 ^= r3; \ r3 &= r1; r4 ^= r2; \ r3 ^= r0; r0 |= r1; \ r2 ^= r3; r0 ^= r4; \ r0 |= r2; r1 ^= r3; \ r0 ^= r1; r1 |= r3; \ r1 ^= r0; r4 = ~r4; \ r4 ^= r1; r1 |= r0; \ r1 ^= r0; \ r1 |= r4; \ r3 ^= r1; \ \ w = r4; x = r0; y = r3; z = r2; \ } #define SBOX2(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r0; r0 &= r2; \ r0 ^= r3; r2 ^= r1; \ r2 ^= r0; r3 |= r4; \ r3 ^= r1; r4 ^= r2; \ r1 = r3; r3 |= r4; \ r3 ^= r0; r0 &= r1; \ r4 ^= r0; r1 ^= r3; \ r1 ^= r4; r4 = ~r4; \ \ w = r2; x = r3; y = r1; z = r4; \ } #define SBOX2_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r2 ^= r3; r3 ^= r0; \ r4 = r3; r3 &= r2; \ r3 ^= r1; r1 |= r2; \ r1 ^= r4; r4 &= r3; \ r2 ^= r3; r4 &= r0; \ r4 ^= r2; r2 &= r1; \ r2 |= r0; r3 = ~r3; \ r2 ^= r3; r0 ^= r3; \ r0 &= r1; r3 ^= r4; \ r3 ^= r0; \ \ w = r1; x = r4; y = r2; z = r3; \ } #define SBOX3(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r0; r0 |= r3; \ r3 ^= r1; r1 &= r4; \ r4 ^= r2; r2 ^= r3; \ r3 &= r0; r4 |= r1; \ r3 ^= r4; r0 ^= r1; \ r4 &= r0; r1 ^= r3; \ r4 ^= r2; r1 |= r0; \ r1 ^= r2; r0 ^= r3; \ r2 = r1; r1 |= r3; \ r1 ^= r0; \ \ w = r1; x = r2; y = r3; z = r4; \ } #define SBOX3_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r2; r2 ^= r1; \ r0 ^= r2; r4 &= r2; \ r4 ^= r0; r0 &= r1; \ r1 ^= r3; r3 |= r4; \ r2 ^= r3; r0 ^= r3; \ r1 ^= r4; r3 &= r2; \ r3 ^= r1; r1 ^= r0; \ r1 |= r2; r0 ^= r3; \ r1 ^= r4; \ r0 ^= r1; \ \ w = r2; x = r1; y = r3; z = r0; \ } #define SBOX4(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r1 ^= r3; r3 = ~r3; \ r2 ^= r3; r3 ^= r0; \ r4 = r1; r1 &= r3; \ r1 ^= r2; r4 ^= r3; \ r0 ^= r4; r2 &= r4; \ r2 ^= r0; r0 &= r1; \ r3 ^= r0; r4 |= r1; \ r4 ^= r0; r0 |= r3; \ r0 ^= r2; r2 &= r3; \ r0 = ~r0; r4 ^= r2; \ \ w = r1; x = r4; y = r0; z = r3; \ } #define SBOX4_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r2; r2 &= r3; \ r2 ^= r1; r1 |= r3; \ r1 &= r0; r4 ^= r2; \ r4 ^= r1; r1 &= r2; \ r0 = ~r0; r3 ^= r4; \ r1 ^= r3; r3 &= r0; \ r3 ^= r2; r0 ^= r1; \ r2 &= r0; r3 ^= r0; \ r2 ^= r4; \ r2 |= r3; r3 ^= r0; \ r2 ^= r1; \ \ w = r0; x = r3; y = r2; z = r4; \ } #define SBOX5(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r0 ^= r1; r1 ^= r3; \ r3 = ~r3; r4 = r1; \ r1 &= r0; r2 ^= r3; \ r1 ^= r2; r2 |= r4; \ r4 ^= r3; r3 &= r1; \ r3 ^= r0; r4 ^= r1; \ r4 ^= r2; r2 ^= r0; \ r0 &= r3; r2 = ~r2; \ r0 ^= r4; r4 |= r3; \ r2 ^= r4; \ \ w = r1; x = r3; y = r0; z = r2; \ } #define SBOX5_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r1 = ~r1; r4 = r3; \ r2 ^= r1; r3 |= r0; \ r3 ^= r2; r2 |= r1; \ r2 &= r0; r4 ^= r3; \ r2 ^= r4; r4 |= r0; \ r4 ^= r1; r1 &= r2; \ r1 ^= r3; r4 ^= r2; \ r3 &= r4; r4 ^= r1; \ r3 ^= r4; r4 = ~r4; \ r3 ^= r0; \ \ w = r1; x = r4; y = r3; z = r2; \ } #define SBOX6(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r2 = ~r2; r4 = r3; \ r3 &= r0; r0 ^= r4; \ r3 ^= r2; r2 |= r4; \ r1 ^= r3; r2 ^= r0; \ r0 |= r1; r2 ^= r1; \ r4 ^= r0; r0 |= r3; \ r0 ^= r2; r4 ^= r3; \ r4 ^= r0; r3 = ~r3; \ r2 &= r4; \ r2 ^= r3; \ \ w = r0; x = r1; y = r4; z = r2; \ } #define SBOX6_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r0 ^= r2; r4 = r2; \ r2 &= r0; r4 ^= r3; \ r2 = ~r2; r3 ^= r1; \ r2 ^= r3; r4 |= r0; \ r0 ^= r2; r3 ^= r4; \ r4 ^= r1; r1 &= r3; \ r1 ^= r0; r0 ^= r3; \ r0 |= r2; r3 ^= r1; \ r4 ^= r0; \ \ w = r1; x = r2; y = r4; z = r3; \ } #define SBOX7(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r1; r1 |= r2; \ r1 ^= r3; r4 ^= r2; \ r2 ^= r1; r3 |= r4; \ r3 &= r0; r4 ^= r2; \ r3 ^= r1; r1 |= r4; \ r1 ^= r0; r0 |= r4; \ r0 ^= r2; r1 ^= r4; \ r2 ^= r1; r1 &= r0; \ r1 ^= r4; r2 = ~r2; \ r2 |= r0; \ r4 ^= r2; \ \ w = r4; x = r3; y = r1; z = r0; \ } #define SBOX7_INVERSE(r0, r1, r2, r3, w, x, y, z) \ { \ u32 r4; \ \ r4 = r2; r2 ^= r0; \ r0 &= r3; r4 |= r3; \ r2 = ~r2; r3 ^= r1; \ r1 |= r0; r0 ^= r2; \ r2 &= r4; r3 &= r4; \ r1 ^= r2; r2 ^= r0; \ r0 |= r2; r4 ^= r1; \ r0 ^= r3; r3 ^= r4; \ r4 |= r0; r3 ^= r2; \ r4 ^= r2; \ \ w = r3; x = r0; y = r1; z = r4; \ } /* XOR BLOCK1 into BLOCK0. */ #define BLOCK_XOR(block0, block1) \ { \ block0[0] ^= block1[0]; \ block0[1] ^= block1[1]; \ block0[2] ^= block1[2]; \ block0[3] ^= block1[3]; \ } /* Copy BLOCK_SRC to BLOCK_DST. */ #define BLOCK_COPY(block_dst, block_src) \ { \ block_dst[0] = block_src[0]; \ block_dst[1] = block_src[1]; \ block_dst[2] = block_src[2]; \ block_dst[3] = block_src[3]; \ } /* Apply SBOX number WHICH to to the block found in ARRAY0, writing the output to the block found in ARRAY1. */ #define SBOX(which, array0, array1) \ SBOX##which (array0[0], array0[1], array0[2], array0[3], \ array1[0], array1[1], array1[2], array1[3]); /* Apply inverse SBOX number WHICH to to the block found in ARRAY0, writing the output to the block found in ARRAY1. */ #define SBOX_INVERSE(which, array0, array1) \ SBOX##which##_INVERSE (array0[0], array0[1], array0[2], array0[3], \ array1[0], array1[1], array1[2], array1[3]); /* Apply the linear transformation to BLOCK. */ #define LINEAR_TRANSFORMATION(block) \ { \ block[0] = rol (block[0], 13); \ block[2] = rol (block[2], 3); \ block[1] = block[1] ^ block[0] ^ block[2]; \ block[3] = block[3] ^ block[2] ^ (block[0] << 3); \ block[1] = rol (block[1], 1); \ block[3] = rol (block[3], 7); \ block[0] = block[0] ^ block[1] ^ block[3]; \ block[2] = block[2] ^ block[3] ^ (block[1] << 7); \ block[0] = rol (block[0], 5); \ block[2] = rol (block[2], 22); \ } /* Apply the inverse linear transformation to BLOCK. */ #define LINEAR_TRANSFORMATION_INVERSE(block) \ { \ block[2] = ror (block[2], 22); \ block[0] = ror (block[0] , 5); \ block[2] = block[2] ^ block[3] ^ (block[1] << 7); \ block[0] = block[0] ^ block[1] ^ block[3]; \ block[3] = ror (block[3], 7); \ block[1] = ror (block[1], 1); \ block[3] = block[3] ^ block[2] ^ (block[0] << 3); \ block[1] = block[1] ^ block[0] ^ block[2]; \ block[2] = ror (block[2], 3); \ block[0] = ror (block[0], 13); \ } /* Apply a Serpent round to BLOCK, using the SBOX number WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage. This macro increments `round'. */ #define ROUND(which, subkeys, block, block_tmp) \ { \ BLOCK_XOR (block, subkeys[round]); \ round++; \ SBOX (which, block, block_tmp); \ LINEAR_TRANSFORMATION (block_tmp); \ BLOCK_COPY (block, block_tmp); \ } /* Apply the last Serpent round to BLOCK, using the SBOX number WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage. The result will be stored in BLOCK_TMP. This macro increments `round'. */ #define ROUND_LAST(which, subkeys, block, block_tmp) \ { \ BLOCK_XOR (block, subkeys[round]); \ round++; \ SBOX (which, block, block_tmp); \ BLOCK_XOR (block_tmp, subkeys[round]); \ round++; \ } /* Apply an inverse Serpent round to BLOCK, using the SBOX number WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage. This macro increments `round'. */ #define ROUND_INVERSE(which, subkey, block, block_tmp) \ { \ LINEAR_TRANSFORMATION_INVERSE (block); \ SBOX_INVERSE (which, block, block_tmp); \ BLOCK_XOR (block_tmp, subkey[round]); \ round--; \ BLOCK_COPY (block, block_tmp); \ } /* Apply the first Serpent round to BLOCK, using the SBOX number WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage. The result will be stored in BLOCK_TMP. This macro increments `round'. */ #define ROUND_FIRST_INVERSE(which, subkeys, block, block_tmp) \ { \ BLOCK_XOR (block, subkeys[round]); \ round--; \ SBOX_INVERSE (which, block, block_tmp); \ BLOCK_XOR (block_tmp, subkeys[round]); \ round--; \ } /* Convert the user provided key KEY of KEY_LENGTH bytes into the internally used format. */ static void serpent_key_prepare (const byte *key, unsigned int key_length, serpent_key_t key_prepared) { int i; /* Copy key. */ key_length /= 4; for (i = 0; i < key_length; i++) key_prepared[i] = buf_get_le32 (key + i * 4); if (i < 8) { /* Key must be padded according to the Serpent specification. */ key_prepared[i] = 0x00000001; for (i++; i < 8; i++) key_prepared[i] = 0; } } /* Derive the 33 subkeys from KEY and store them in SUBKEYS. */ static void serpent_subkeys_generate (serpent_key_t key, serpent_subkeys_t subkeys) { u32 w[8]; /* The `prekey'. */ u32 ws[4]; u32 wt[4]; /* Initialize with key values. */ w[0] = key[0]; w[1] = key[1]; w[2] = key[2]; w[3] = key[3]; w[4] = key[4]; w[5] = key[5]; w[6] = key[6]; w[7] = key[7]; /* Expand to intermediate key using the affine recurrence. */ #define EXPAND_KEY4(wo, r) \ wo[0] = w[(r+0)%8] = \ rol (w[(r+0)%8] ^ w[(r+3)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ PHI ^ (r+0), 11); \ wo[1] = w[(r+1)%8] = \ rol (w[(r+1)%8] ^ w[(r+4)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ PHI ^ (r+1), 11); \ wo[2] = w[(r+2)%8] = \ rol (w[(r+2)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ w[(r+1)%8] ^ PHI ^ (r+2), 11); \ wo[3] = w[(r+3)%8] = \ rol (w[(r+3)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ w[(r+2)%8] ^ PHI ^ (r+3), 11); #define EXPAND_KEY(r) \ EXPAND_KEY4(ws, (r)); \ EXPAND_KEY4(wt, (r + 4)); /* Calculate subkeys via S-Boxes, in bitslice mode. */ EXPAND_KEY (0); SBOX (3, ws, subkeys[0]); SBOX (2, wt, subkeys[1]); EXPAND_KEY (8); SBOX (1, ws, subkeys[2]); SBOX (0, wt, subkeys[3]); EXPAND_KEY (16); SBOX (7, ws, subkeys[4]); SBOX (6, wt, subkeys[5]); EXPAND_KEY (24); SBOX (5, ws, subkeys[6]); SBOX (4, wt, subkeys[7]); EXPAND_KEY (32); SBOX (3, ws, subkeys[8]); SBOX (2, wt, subkeys[9]); EXPAND_KEY (40); SBOX (1, ws, subkeys[10]); SBOX (0, wt, subkeys[11]); EXPAND_KEY (48); SBOX (7, ws, subkeys[12]); SBOX (6, wt, subkeys[13]); EXPAND_KEY (56); SBOX (5, ws, subkeys[14]); SBOX (4, wt, subkeys[15]); EXPAND_KEY (64); SBOX (3, ws, subkeys[16]); SBOX (2, wt, subkeys[17]); EXPAND_KEY (72); SBOX (1, ws, subkeys[18]); SBOX (0, wt, subkeys[19]); EXPAND_KEY (80); SBOX (7, ws, subkeys[20]); SBOX (6, wt, subkeys[21]); EXPAND_KEY (88); SBOX (5, ws, subkeys[22]); SBOX (4, wt, subkeys[23]); EXPAND_KEY (96); SBOX (3, ws, subkeys[24]); SBOX (2, wt, subkeys[25]); EXPAND_KEY (104); SBOX (1, ws, subkeys[26]); SBOX (0, wt, subkeys[27]); EXPAND_KEY (112); SBOX (7, ws, subkeys[28]); SBOX (6, wt, subkeys[29]); EXPAND_KEY (120); SBOX (5, ws, subkeys[30]); SBOX (4, wt, subkeys[31]); EXPAND_KEY4 (ws, 128); SBOX (3, ws, subkeys[32]); wipememory (ws, sizeof (ws)); wipememory (wt, sizeof (wt)); wipememory (w, sizeof (w)); } /* Initialize CONTEXT with the key KEY of KEY_LENGTH bits. */ static void serpent_setkey_internal (serpent_context_t *context, const byte *key, unsigned int key_length) { serpent_key_t key_prepared; serpent_key_prepare (key, key_length, key_prepared); serpent_subkeys_generate (key_prepared, context->keys); #ifdef USE_AVX2 context->use_avx2 = 0; if ((_gcry_get_hw_features () & HWF_INTEL_AVX2)) { context->use_avx2 = 1; } #endif #ifdef USE_NEON context->use_neon = 0; if ((_gcry_get_hw_features () & HWF_ARM_NEON)) { context->use_neon = 1; } #endif wipememory (key_prepared, sizeof(key_prepared)); } /* Initialize CTX with the key KEY of KEY_LENGTH bytes. */ static gcry_err_code_t serpent_setkey (void *ctx, const byte *key, unsigned int key_length) { serpent_context_t *context = ctx; static const char *serpent_test_ret; static int serpent_init_done; gcry_err_code_t ret = GPG_ERR_NO_ERROR; if (! serpent_init_done) { /* Execute a self-test the first time, Serpent is used. */ serpent_init_done = 1; serpent_test_ret = serpent_test (); if (serpent_test_ret) log_error ("Serpent test failure: %s\n", serpent_test_ret); } if (serpent_test_ret) ret = GPG_ERR_SELFTEST_FAILED; else serpent_setkey_internal (context, key, key_length); return ret; } static void serpent_encrypt_internal (serpent_context_t *context, const byte *input, byte *output) { serpent_block_t b, b_next; int round = 0; b[0] = buf_get_le32 (input + 0); b[1] = buf_get_le32 (input + 4); b[2] = buf_get_le32 (input + 8); b[3] = buf_get_le32 (input + 12); ROUND (0, context->keys, b, b_next); ROUND (1, context->keys, b, b_next); ROUND (2, context->keys, b, b_next); ROUND (3, context->keys, b, b_next); ROUND (4, context->keys, b, b_next); ROUND (5, context->keys, b, b_next); ROUND (6, context->keys, b, b_next); ROUND (7, context->keys, b, b_next); ROUND (0, context->keys, b, b_next); ROUND (1, context->keys, b, b_next); ROUND (2, context->keys, b, b_next); ROUND (3, context->keys, b, b_next); ROUND (4, context->keys, b, b_next); ROUND (5, context->keys, b, b_next); ROUND (6, context->keys, b, b_next); ROUND (7, context->keys, b, b_next); ROUND (0, context->keys, b, b_next); ROUND (1, context->keys, b, b_next); ROUND (2, context->keys, b, b_next); ROUND (3, context->keys, b, b_next); ROUND (4, context->keys, b, b_next); ROUND (5, context->keys, b, b_next); ROUND (6, context->keys, b, b_next); ROUND (7, context->keys, b, b_next); ROUND (0, context->keys, b, b_next); ROUND (1, context->keys, b, b_next); ROUND (2, context->keys, b, b_next); ROUND (3, context->keys, b, b_next); ROUND (4, context->keys, b, b_next); ROUND (5, context->keys, b, b_next); ROUND (6, context->keys, b, b_next); ROUND_LAST (7, context->keys, b, b_next); buf_put_le32 (output + 0, b_next[0]); buf_put_le32 (output + 4, b_next[1]); buf_put_le32 (output + 8, b_next[2]); buf_put_le32 (output + 12, b_next[3]); } static void serpent_decrypt_internal (serpent_context_t *context, const byte *input, byte *output) { serpent_block_t b, b_next; int round = ROUNDS; b_next[0] = buf_get_le32 (input + 0); b_next[1] = buf_get_le32 (input + 4); b_next[2] = buf_get_le32 (input + 8); b_next[3] = buf_get_le32 (input + 12); ROUND_FIRST_INVERSE (7, context->keys, b_next, b); ROUND_INVERSE (6, context->keys, b, b_next); ROUND_INVERSE (5, context->keys, b, b_next); ROUND_INVERSE (4, context->keys, b, b_next); ROUND_INVERSE (3, context->keys, b, b_next); ROUND_INVERSE (2, context->keys, b, b_next); ROUND_INVERSE (1, context->keys, b, b_next); ROUND_INVERSE (0, context->keys, b, b_next); ROUND_INVERSE (7, context->keys, b, b_next); ROUND_INVERSE (6, context->keys, b, b_next); ROUND_INVERSE (5, context->keys, b, b_next); ROUND_INVERSE (4, context->keys, b, b_next); ROUND_INVERSE (3, context->keys, b, b_next); ROUND_INVERSE (2, context->keys, b, b_next); ROUND_INVERSE (1, context->keys, b, b_next); ROUND_INVERSE (0, context->keys, b, b_next); ROUND_INVERSE (7, context->keys, b, b_next); ROUND_INVERSE (6, context->keys, b, b_next); ROUND_INVERSE (5, context->keys, b, b_next); ROUND_INVERSE (4, context->keys, b, b_next); ROUND_INVERSE (3, context->keys, b, b_next); ROUND_INVERSE (2, context->keys, b, b_next); ROUND_INVERSE (1, context->keys, b, b_next); ROUND_INVERSE (0, context->keys, b, b_next); ROUND_INVERSE (7, context->keys, b, b_next); ROUND_INVERSE (6, context->keys, b, b_next); ROUND_INVERSE (5, context->keys, b, b_next); ROUND_INVERSE (4, context->keys, b, b_next); ROUND_INVERSE (3, context->keys, b, b_next); ROUND_INVERSE (2, context->keys, b, b_next); ROUND_INVERSE (1, context->keys, b, b_next); ROUND_INVERSE (0, context->keys, b, b_next); buf_put_le32 (output + 0, b_next[0]); buf_put_le32 (output + 4, b_next[1]); buf_put_le32 (output + 8, b_next[2]); buf_put_le32 (output + 12, b_next[3]); } static unsigned int serpent_encrypt (void *ctx, byte *buffer_out, const byte *buffer_in) { serpent_context_t *context = ctx; serpent_encrypt_internal (context, buffer_in, buffer_out); return /*burn_stack*/ (2 * sizeof (serpent_block_t)); } static unsigned int serpent_decrypt (void *ctx, byte *buffer_out, const byte *buffer_in) { serpent_context_t *context = ctx; serpent_decrypt_internal (context, buffer_in, buffer_out); return /*burn_stack*/ (2 * sizeof (serpent_block_t)); } /* Bulk encryption of complete blocks in CTR mode. This function is only intended for the bulk encryption feature of cipher.c. CTR is expected to be of size sizeof(serpent_block_t). */ void _gcry_serpent_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { serpent_context_t *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned char tmpbuf[sizeof(serpent_block_t)]; int burn_stack_depth = 2 * sizeof (serpent_block_t); int i; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_serpent_avx2_ctr_enc(ctx, outbuf, inbuf, ctr); nblocks -= 16; outbuf += 16 * sizeof(serpent_block_t); inbuf += 16 * sizeof(serpent_block_t); did_use_avx2 = 1; } if (did_use_avx2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic/sse2 code to handle smaller chunks... */ /* TODO: use caching instead? */ } #endif #ifdef USE_SSE2 { int did_use_sse2 = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_sse2_ctr_enc(ctx, outbuf, inbuf, ctr); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_sse2 = 1; } if (did_use_sse2) { /* serpent-sse2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ /* TODO: use caching instead? */ } #endif #ifdef USE_NEON if (ctx->use_neon) { int did_use_neon = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_neon_ctr_enc(ctx, outbuf, inbuf, ctr); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_neon = 1; } if (did_use_neon) { /* serpent-neon assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ /* TODO: use caching instead? */ } #endif for ( ;nblocks; nblocks-- ) { /* Encrypt the counter. */ serpent_encrypt_internal(ctx, ctr, tmpbuf); /* XOR the input with the encrypted counter and store in output. */ buf_xor(outbuf, tmpbuf, inbuf, sizeof(serpent_block_t)); outbuf += sizeof(serpent_block_t); inbuf += sizeof(serpent_block_t); /* Increment the counter. */ for (i = sizeof(serpent_block_t); i > 0; i--) { ctr[i-1]++; if (ctr[i-1]) break; } } wipememory(tmpbuf, sizeof(tmpbuf)); _gcry_burn_stack(burn_stack_depth); } /* Bulk decryption of complete blocks in CBC mode. This function is only intended for the bulk encryption feature of cipher.c. */ void _gcry_serpent_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { serpent_context_t *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned char savebuf[sizeof(serpent_block_t)]; int burn_stack_depth = 2 * sizeof (serpent_block_t); #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_serpent_avx2_cbc_dec(ctx, outbuf, inbuf, iv); nblocks -= 16; outbuf += 16 * sizeof(serpent_block_t); inbuf += 16 * sizeof(serpent_block_t); did_use_avx2 = 1; } if (did_use_avx2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic/sse2 code to handle smaller chunks... */ } #endif #ifdef USE_SSE2 { int did_use_sse2 = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_sse2_cbc_dec(ctx, outbuf, inbuf, iv); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_sse2 = 1; } if (did_use_sse2) { /* serpent-sse2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_NEON if (ctx->use_neon) { int did_use_neon = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_neon_cbc_dec(ctx, outbuf, inbuf, iv); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_neon = 1; } if (did_use_neon) { /* serpent-neon assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif for ( ;nblocks; nblocks-- ) { /* INBUF is needed later and it may be identical to OUTBUF, so store the intermediate result to SAVEBUF. */ serpent_decrypt_internal (ctx, inbuf, savebuf); buf_xor_n_copy_2(outbuf, savebuf, iv, inbuf, sizeof(serpent_block_t)); inbuf += sizeof(serpent_block_t); outbuf += sizeof(serpent_block_t); } wipememory(savebuf, sizeof(savebuf)); _gcry_burn_stack(burn_stack_depth); } /* Bulk decryption of complete blocks in CFB mode. This function is only intended for the bulk encryption feature of cipher.c. */ void _gcry_serpent_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { serpent_context_t *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; int burn_stack_depth = 2 * sizeof (serpent_block_t); #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_serpent_avx2_cfb_dec(ctx, outbuf, inbuf, iv); nblocks -= 16; outbuf += 16 * sizeof(serpent_block_t); inbuf += 16 * sizeof(serpent_block_t); did_use_avx2 = 1; } if (did_use_avx2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic/sse2 code to handle smaller chunks... */ } #endif #ifdef USE_SSE2 { int did_use_sse2 = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_sse2_cfb_dec(ctx, outbuf, inbuf, iv); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_sse2 = 1; } if (did_use_sse2) { /* serpent-sse2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_NEON if (ctx->use_neon) { int did_use_neon = 0; /* Process data in 8 block chunks. */ while (nblocks >= 8) { _gcry_serpent_neon_cfb_dec(ctx, outbuf, inbuf, iv); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_neon = 1; } if (did_use_neon) { /* serpent-neon assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif for ( ;nblocks; nblocks-- ) { serpent_encrypt_internal(ctx, iv, iv); buf_xor_n_copy(outbuf, iv, inbuf, sizeof(serpent_block_t)); outbuf += sizeof(serpent_block_t); inbuf += sizeof(serpent_block_t); } _gcry_burn_stack(burn_stack_depth); } /* Bulk encryption/decryption of complete blocks in OCB mode. */ size_t _gcry_serpent_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int encrypt) { #if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON) serpent_context_t *ctx = (void *)&c->context.c; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned char l_tmp[sizeof(serpent_block_t)]; int burn_stack_depth = 2 * sizeof (serpent_block_t); u64 blkn = c->u_mode.ocb.data_nblocks; #else (void)c; (void)outbuf_arg; (void)inbuf_arg; (void)encrypt; #endif #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; u64 Ls[16]; unsigned int n = 16 - (blkn % 16); u64 *l; int i; if (nblocks >= 16) { for (i = 0; i < 16; i += 8) { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; } Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3]; l = &Ls[(15 + n) % 16]; /* Process data in 16 block chunks. */ while (nblocks >= 16) { /* l_tmp will be used only every 65536-th block. */ blkn += 16; *l = (uintptr_t)(void *)ocb_get_l(c, l_tmp, blkn - blkn % 16); if (encrypt) _gcry_serpent_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); else _gcry_serpent_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); nblocks -= 16; outbuf += 16 * sizeof(serpent_block_t); inbuf += 16 * sizeof(serpent_block_t); did_use_avx2 = 1; } } if (did_use_avx2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_SSE2 { int did_use_sse2 = 0; u64 Ls[8]; unsigned int n = 8 - (blkn % 8); u64 *l; if (nblocks >= 8) { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; l = &Ls[(7 + n) % 8]; /* Process data in 8 block chunks. */ while (nblocks >= 8) { /* l_tmp will be used only every 65536-th block. */ blkn += 8; *l = (uintptr_t)(void *)ocb_get_l(c, l_tmp, blkn - blkn % 8); if (encrypt) _gcry_serpent_sse2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); else _gcry_serpent_sse2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_sse2 = 1; } } if (did_use_sse2) { /* serpent-sse2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_NEON if (ctx->use_neon) { int did_use_neon = 0; const void *Ls[8]; unsigned int n = 8 - (blkn % 8); const void **l; if (nblocks >= 8) { Ls[(0 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(1 + n) % 8] = c->u_mode.ocb.L[1]; Ls[(2 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(3 + n) % 8] = c->u_mode.ocb.L[2]; Ls[(4 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(5 + n) % 8] = c->u_mode.ocb.L[1]; Ls[(6 + n) % 8] = c->u_mode.ocb.L[0]; l = &Ls[(7 + n) % 8]; /* Process data in 8 block chunks. */ while (nblocks >= 8) { /* l_tmp will be used only every 65536-th block. */ blkn += 8; *l = ocb_get_l(c, l_tmp, blkn - blkn % 8); if (encrypt) _gcry_serpent_neon_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); else _gcry_serpent_neon_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); nblocks -= 8; outbuf += 8 * sizeof(serpent_block_t); inbuf += 8 * sizeof(serpent_block_t); did_use_neon = 1; } } if (did_use_neon) { /* serpent-neon assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON) c->u_mode.ocb.data_nblocks = blkn; wipememory(&l_tmp, sizeof(l_tmp)); if (burn_stack_depth) _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); #endif return nblocks; } /* Bulk authentication of complete blocks in OCB mode. */ size_t _gcry_serpent_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg, size_t nblocks) { #if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON) serpent_context_t *ctx = (void *)&c->context.c; const unsigned char *abuf = abuf_arg; unsigned char l_tmp[sizeof(serpent_block_t)]; int burn_stack_depth = 2 * sizeof(serpent_block_t); u64 blkn = c->u_mode.ocb.aad_nblocks; #else (void)c; (void)abuf_arg; #endif #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; u64 Ls[16]; unsigned int n = 16 - (blkn % 16); u64 *l; int i; if (nblocks >= 16) { for (i = 0; i < 16; i += 8) { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; } Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3]; l = &Ls[(15 + n) % 16]; /* Process data in 16 block chunks. */ while (nblocks >= 16) { /* l_tmp will be used only every 65536-th block. */ blkn += 16; *l = (uintptr_t)(void *)ocb_get_l(c, l_tmp, blkn - blkn % 16); _gcry_serpent_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, c->u_mode.ocb.aad_sum, Ls); nblocks -= 16; abuf += 16 * sizeof(serpent_block_t); did_use_avx2 = 1; } } if (did_use_avx2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_SSE2 { int did_use_sse2 = 0; u64 Ls[8]; unsigned int n = 8 - (blkn % 8); u64 *l; if (nblocks >= 8) { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; l = &Ls[(7 + n) % 8]; /* Process data in 8 block chunks. */ while (nblocks >= 8) { /* l_tmp will be used only every 65536-th block. */ blkn += 8; *l = (uintptr_t)(void *)ocb_get_l(c, l_tmp, blkn - blkn % 8); _gcry_serpent_sse2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, c->u_mode.ocb.aad_sum, Ls); nblocks -= 8; abuf += 8 * sizeof(serpent_block_t); did_use_sse2 = 1; } } if (did_use_sse2) { /* serpent-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #ifdef USE_NEON if (ctx->use_neon) { int did_use_neon = 0; const void *Ls[8]; unsigned int n = 8 - (blkn % 8); const void **l; if (nblocks >= 8) { Ls[(0 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(1 + n) % 8] = c->u_mode.ocb.L[1]; Ls[(2 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(3 + n) % 8] = c->u_mode.ocb.L[2]; Ls[(4 + n) % 8] = c->u_mode.ocb.L[0]; Ls[(5 + n) % 8] = c->u_mode.ocb.L[1]; Ls[(6 + n) % 8] = c->u_mode.ocb.L[0]; l = &Ls[(7 + n) % 8]; /* Process data in 8 block chunks. */ while (nblocks >= 8) { /* l_tmp will be used only every 65536-th block. */ blkn += 8; *l = ocb_get_l(c, l_tmp, blkn - blkn % 8); _gcry_serpent_neon_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, c->u_mode.ocb.aad_sum, Ls); nblocks -= 8; abuf += 8 * sizeof(serpent_block_t); did_use_neon = 1; } } if (did_use_neon) { /* serpent-neon assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif #if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON) c->u_mode.ocb.aad_nblocks = blkn; wipememory(&l_tmp, sizeof(l_tmp)); if (burn_stack_depth) _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); #endif return nblocks; } /* Run the self-tests for SERPENT-CTR-128, tests IV increment of bulk CTR encryption. Returns NULL on success. */ static const char* selftest_ctr_128 (void) { const int nblocks = 16+8+1; const int blocksize = sizeof(serpent_block_t); const int context_size = sizeof(serpent_context_t); return _gcry_selftest_helper_ctr("SERPENT", &serpent_setkey, &serpent_encrypt, &_gcry_serpent_ctr_enc, nblocks, blocksize, context_size); } /* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption. Returns NULL on success. */ static const char* selftest_cbc_128 (void) { const int nblocks = 16+8+2; const int blocksize = sizeof(serpent_block_t); const int context_size = sizeof(serpent_context_t); return _gcry_selftest_helper_cbc("SERPENT", &serpent_setkey, &serpent_encrypt, &_gcry_serpent_cbc_dec, nblocks, blocksize, context_size); } /* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption. Returns NULL on success. */ static const char* selftest_cfb_128 (void) { const int nblocks = 16+8+2; const int blocksize = sizeof(serpent_block_t); const int context_size = sizeof(serpent_context_t); return _gcry_selftest_helper_cfb("SERPENT", &serpent_setkey, &serpent_encrypt, &_gcry_serpent_cfb_dec, nblocks, blocksize, context_size); } /* Serpent test. */ static const char * serpent_test (void) { serpent_context_t context; unsigned char scratch[16]; unsigned int i; const char *r; static struct test { int key_length; unsigned char key[32]; unsigned char text_plain[16]; unsigned char text_cipher[16]; } test_data[] = { { 16, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xD2\x9D\x57\x6F\xCE\xA3\xA3\xA7\xED\x90\x99\xF2\x92\x73\xD7\x8E", "\xB2\x28\x8B\x96\x8A\xE8\xB0\x86\x48\xD1\xCE\x96\x06\xFD\x99\x2D" }, { 24, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\xD2\x9D\x57\x6F\xCE\xAB\xA3\xA7\xED\x98\x99\xF2\x92\x7B\xD7\x8E", "\x13\x0E\x35\x3E\x10\x37\xC2\x24\x05\xE8\xFA\xEF\xB2\xC3\xC3\xE9" }, { 32, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xD0\x95\x57\x6F\xCE\xA3\xE3\xA7\xED\x98\xD9\xF2\x90\x73\xD7\x8E", "\xB9\x0E\xE5\x86\x2D\xE6\x91\x68\xF2\xBD\xD5\x12\x5B\x45\x47\x2B" }, { 32, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00", "\x20\x61\xA4\x27\x82\xBD\x52\xEC\x69\x1E\xC3\x83\xB0\x3B\xA7\x7C" }, { 0 }, }; for (i = 0; test_data[i].key_length; i++) { serpent_setkey_internal (&context, test_data[i].key, test_data[i].key_length); serpent_encrypt_internal (&context, test_data[i].text_plain, scratch); if (memcmp (scratch, test_data[i].text_cipher, sizeof (serpent_block_t))) switch (test_data[i].key_length) { case 16: return "Serpent-128 test encryption failed."; case 24: return "Serpent-192 test encryption failed."; case 32: return "Serpent-256 test encryption failed."; } serpent_decrypt_internal (&context, test_data[i].text_cipher, scratch); if (memcmp (scratch, test_data[i].text_plain, sizeof (serpent_block_t))) switch (test_data[i].key_length) { case 16: return "Serpent-128 test decryption failed."; case 24: return "Serpent-192 test decryption failed."; case 32: return "Serpent-256 test decryption failed."; } } if ( (r = selftest_ctr_128 ()) ) return r; if ( (r = selftest_cbc_128 ()) ) return r; if ( (r = selftest_cfb_128 ()) ) return r; return NULL; } /* "SERPENT" is an alias for "SERPENT128". */ static const char *cipher_spec_serpent128_aliases[] = { "SERPENT", NULL }; gcry_cipher_spec_t _gcry_cipher_spec_serpent128 = { GCRY_CIPHER_SERPENT128, {0, 0}, "SERPENT128", cipher_spec_serpent128_aliases, NULL, 16, 128, sizeof (serpent_context_t), serpent_setkey, serpent_encrypt, serpent_decrypt }; gcry_cipher_spec_t _gcry_cipher_spec_serpent192 = { GCRY_CIPHER_SERPENT192, {0, 0}, "SERPENT192", NULL, NULL, 16, 192, sizeof (serpent_context_t), serpent_setkey, serpent_encrypt, serpent_decrypt }; gcry_cipher_spec_t _gcry_cipher_spec_serpent256 = { GCRY_CIPHER_SERPENT256, {0, 0}, "SERPENT256", NULL, NULL, 16, 256, sizeof (serpent_context_t), serpent_setkey, serpent_encrypt, serpent_decrypt };