/* sha1.c - SHA1 hash function * Copyright (C) 1998, 2001, 2002, 2003, 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors: * * "abc" * A999 3E36 4706 816A BA3E 2571 7850 C26C 9CD0 D89D * * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 8498 3E44 1C3B D26E BAAE 4AA1 F951 29E5 E546 70F1 */ #include #include #include #include #ifdef HAVE_STDINT_H # include #endif #include "g10lib.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher.h" #include "hash-common.h" /* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */ #undef USE_SSSE3 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_SSSE3 1 #endif /* USE_AVX indicates whether to compile with Intel AVX code. */ #undef USE_AVX #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX 1 #endif /* USE_BMI2 indicates whether to compile with Intel AVX/BMI2 code. */ #undef USE_BMI2 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ defined(HAVE_GCC_INLINE_ASM_BMI2) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_BMI2 1 #endif /* USE_NEON indicates whether to enable ARM NEON assembly code. */ #undef USE_NEON #ifdef ENABLE_NEON_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_NEON) # define USE_NEON 1 # endif #endif /*ENABLE_NEON_SUPPORT*/ /* A macro to test whether P is properly aligned for an u32 type. Note that config.h provides a suitable replacement for uintptr_t if it does not exist in stdint.h. */ /* #if __GNUC__ >= 2 */ /* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % __alignof__ (u32))) */ /* #else */ /* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % sizeof (u32))) */ /* #endif */ typedef struct { gcry_md_block_ctx_t bctx; u32 h0,h1,h2,h3,h4; #ifdef USE_SSSE3 unsigned int use_ssse3:1; #endif #ifdef USE_AVX unsigned int use_avx:1; #endif #ifdef USE_BMI2 unsigned int use_bmi2:1; #endif #ifdef USE_NEON unsigned int use_neon:1; #endif } SHA1_CONTEXT; static unsigned int transform (void *c, const unsigned char *data, size_t nblks); static void sha1_init (void *context, unsigned int flags) { SHA1_CONTEXT *hd = context; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = 0x67452301; hd->h1 = 0xefcdab89; hd->h2 = 0x98badcfe; hd->h3 = 0x10325476; hd->h4 = 0xc3d2e1f0; hd->bctx.nblocks = 0; hd->bctx.nblocks_high = 0; hd->bctx.count = 0; hd->bctx.blocksize = 64; hd->bctx.bwrite = transform; #ifdef USE_SSSE3 hd->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0; #endif #ifdef USE_AVX /* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs. * Therefore use this implementation on Intel CPUs only. */ hd->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD); #endif #ifdef USE_BMI2 hd->use_bmi2 = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_BMI2); #endif #ifdef USE_NEON hd->use_neon = (features & HWF_ARM_NEON) != 0; #endif (void)features; } /* Round function macros. */ #define K1 0x5A827999L #define K2 0x6ED9EBA1L #define K3 0x8F1BBCDCL #define K4 0xCA62C1D6L #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) #define F2(x,y,z) ( x ^ y ^ z ) #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) #define F4(x,y,z) ( x ^ y ^ z ) #define M(i) ( tm = x[ i &0x0f] \ ^ x[(i-14)&0x0f] \ ^ x[(i-8) &0x0f] \ ^ x[(i-3) &0x0f], \ (x[i&0x0f] = rol(tm, 1))) #define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \ + f( b, c, d ) \ + k \ + m; \ b = rol( b, 30 ); \ } while(0) #ifdef USE_NEON unsigned int _gcry_sha1_transform_armv7_neon (void *state, const unsigned char *data, size_t nblks); #endif /* * Transform NBLOCKS of each 64 bytes (16 32-bit words) at DATA. */ static unsigned int transform_blk (void *ctx, const unsigned char *data) { SHA1_CONTEXT *hd = ctx; const u32 *idata = (const void *)data; register u32 a, b, c, d, e; /* Local copies of the chaining variables. */ register u32 tm; /* Helper. */ u32 x[16]; /* The array we work on. */ #define I(i) (x[i] = buf_get_be32(idata + i)) /* Get the values of the chaining variables. */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; /* Transform. */ R( a, b, c, d, e, F1, K1, I( 0) ); R( e, a, b, c, d, F1, K1, I( 1) ); R( d, e, a, b, c, F1, K1, I( 2) ); R( c, d, e, a, b, F1, K1, I( 3) ); R( b, c, d, e, a, F1, K1, I( 4) ); R( a, b, c, d, e, F1, K1, I( 5) ); R( e, a, b, c, d, F1, K1, I( 6) ); R( d, e, a, b, c, F1, K1, I( 7) ); R( c, d, e, a, b, F1, K1, I( 8) ); R( b, c, d, e, a, F1, K1, I( 9) ); R( a, b, c, d, e, F1, K1, I(10) ); R( e, a, b, c, d, F1, K1, I(11) ); R( d, e, a, b, c, F1, K1, I(12) ); R( c, d, e, a, b, F1, K1, I(13) ); R( b, c, d, e, a, F1, K1, I(14) ); R( a, b, c, d, e, F1, K1, I(15) ); R( e, a, b, c, d, F1, K1, M(16) ); R( d, e, a, b, c, F1, K1, M(17) ); R( c, d, e, a, b, F1, K1, M(18) ); R( b, c, d, e, a, F1, K1, M(19) ); R( a, b, c, d, e, F2, K2, M(20) ); R( e, a, b, c, d, F2, K2, M(21) ); R( d, e, a, b, c, F2, K2, M(22) ); R( c, d, e, a, b, F2, K2, M(23) ); R( b, c, d, e, a, F2, K2, M(24) ); R( a, b, c, d, e, F2, K2, M(25) ); R( e, a, b, c, d, F2, K2, M(26) ); R( d, e, a, b, c, F2, K2, M(27) ); R( c, d, e, a, b, F2, K2, M(28) ); R( b, c, d, e, a, F2, K2, M(29) ); R( a, b, c, d, e, F2, K2, M(30) ); R( e, a, b, c, d, F2, K2, M(31) ); R( d, e, a, b, c, F2, K2, M(32) ); R( c, d, e, a, b, F2, K2, M(33) ); R( b, c, d, e, a, F2, K2, M(34) ); R( a, b, c, d, e, F2, K2, M(35) ); R( e, a, b, c, d, F2, K2, M(36) ); R( d, e, a, b, c, F2, K2, M(37) ); R( c, d, e, a, b, F2, K2, M(38) ); R( b, c, d, e, a, F2, K2, M(39) ); R( a, b, c, d, e, F3, K3, M(40) ); R( e, a, b, c, d, F3, K3, M(41) ); R( d, e, a, b, c, F3, K3, M(42) ); R( c, d, e, a, b, F3, K3, M(43) ); R( b, c, d, e, a, F3, K3, M(44) ); R( a, b, c, d, e, F3, K3, M(45) ); R( e, a, b, c, d, F3, K3, M(46) ); R( d, e, a, b, c, F3, K3, M(47) ); R( c, d, e, a, b, F3, K3, M(48) ); R( b, c, d, e, a, F3, K3, M(49) ); R( a, b, c, d, e, F3, K3, M(50) ); R( e, a, b, c, d, F3, K3, M(51) ); R( d, e, a, b, c, F3, K3, M(52) ); R( c, d, e, a, b, F3, K3, M(53) ); R( b, c, d, e, a, F3, K3, M(54) ); R( a, b, c, d, e, F3, K3, M(55) ); R( e, a, b, c, d, F3, K3, M(56) ); R( d, e, a, b, c, F3, K3, M(57) ); R( c, d, e, a, b, F3, K3, M(58) ); R( b, c, d, e, a, F3, K3, M(59) ); R( a, b, c, d, e, F4, K4, M(60) ); R( e, a, b, c, d, F4, K4, M(61) ); R( d, e, a, b, c, F4, K4, M(62) ); R( c, d, e, a, b, F4, K4, M(63) ); R( b, c, d, e, a, F4, K4, M(64) ); R( a, b, c, d, e, F4, K4, M(65) ); R( e, a, b, c, d, F4, K4, M(66) ); R( d, e, a, b, c, F4, K4, M(67) ); R( c, d, e, a, b, F4, K4, M(68) ); R( b, c, d, e, a, F4, K4, M(69) ); R( a, b, c, d, e, F4, K4, M(70) ); R( e, a, b, c, d, F4, K4, M(71) ); R( d, e, a, b, c, F4, K4, M(72) ); R( c, d, e, a, b, F4, K4, M(73) ); R( b, c, d, e, a, F4, K4, M(74) ); R( a, b, c, d, e, F4, K4, M(75) ); R( e, a, b, c, d, F4, K4, M(76) ); R( d, e, a, b, c, F4, K4, M(77) ); R( c, d, e, a, b, F4, K4, M(78) ); R( b, c, d, e, a, F4, K4, M(79) ); /* Update the chaining variables. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; return /* burn_stack */ 88+4*sizeof(void*); } /* Assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #undef ASM_EXTRA_STACK #if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_BMI2) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # define ASM_EXTRA_STACK (10 * 16) # else # define ASM_FUNC_ABI # define ASM_EXTRA_STACK 0 # endif #endif #ifdef USE_SSSE3 unsigned int _gcry_sha1_transform_amd64_ssse3 (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; #endif #ifdef USE_AVX unsigned int _gcry_sha1_transform_amd64_avx (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; #endif #ifdef USE_BMI2 unsigned int _gcry_sha1_transform_amd64_avx_bmi2 (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; #endif static unsigned int transform (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; unsigned int burn; #ifdef USE_BMI2 if (hd->use_bmi2) return _gcry_sha1_transform_amd64_avx_bmi2 (&hd->h0, data, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_AVX if (hd->use_avx) return _gcry_sha1_transform_amd64_avx (&hd->h0, data, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_SSSE3 if (hd->use_ssse3) return _gcry_sha1_transform_amd64_ssse3 (&hd->h0, data, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_NEON if (hd->use_neon) return _gcry_sha1_transform_armv7_neon (&hd->h0, data, nblks) + 4 * sizeof(void*); #endif do { burn = transform_blk (hd, data); data += 64; } while (--nblks); #ifdef ASM_EXTRA_STACK /* 'transform_blk' is typically inlined and XMM6-XMM15 are stored at * the prologue of this function. Therefore need to add ASM_EXTRA_STACK to * here too. */ burn += ASM_EXTRA_STACK; #endif return burn; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 20 bytes representing the digest. */ static void sha1_final(void *context) { SHA1_CONTEXT *hd = context; u32 t, th, msb, lsb; unsigned char *p; unsigned int burn; _gcry_md_block_write (hd, NULL, 0); /* flush */; t = hd->bctx.nblocks; if (sizeof t == sizeof hd->bctx.nblocks) th = hd->bctx.nblocks_high; else th = hd->bctx.nblocks >> 32; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = (th << 6) | (t >> 26); /* add the count */ t = lsb; if( (lsb += hd->bctx.count) < t ) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if( hd->bctx.count < 56 ) /* enough room */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */ while( hd->bctx.count < 56 ) hd->bctx.buf[hd->bctx.count++] = 0; /* pad */ } else /* need one extra block */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */ while( hd->bctx.count < 64 ) hd->bctx.buf[hd->bctx.count++] = 0; _gcry_md_block_write(hd, NULL, 0); /* flush */; memset(hd->bctx.buf, 0, 56 ); /* fill next block with zeroes */ } /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 56, msb); buf_put_be32(hd->bctx.buf + 60, lsb); burn = transform( hd, hd->bctx.buf, 1 ); _gcry_burn_stack (burn); p = hd->bctx.buf; #define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); #undef X } static unsigned char * sha1_read( void *context ) { SHA1_CONTEXT *hd = context; return hd->bctx.buf; } /**************** * Shortcut functions which puts the hash value of the supplied buffer * into outbuf which must have a size of 20 bytes. */ void _gcry_sha1_hash_buffer (void *outbuf, const void *buffer, size_t length) { SHA1_CONTEXT hd; sha1_init (&hd, 0); _gcry_md_block_write (&hd, buffer, length); sha1_final (&hd); memcpy (outbuf, hd.bctx.buf, 20); } /* Variant of the above shortcut function using a multiple buffers. */ void _gcry_sha1_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt) { SHA1_CONTEXT hd; sha1_init (&hd, 0); for (;iovcnt > 0; iov++, iovcnt--) _gcry_md_block_write (&hd, (const char*)iov[0].data + iov[0].off, iov[0].len); sha1_final (&hd); memcpy (outbuf, hd.bctx.buf, 20); } /* Self-test section. */ static gpg_err_code_t selftests_sha1 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 0, "abc", 3, "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E" "\x25\x71\x78\x50\xC2\x6C\x9C\xD0\xD8\x9D", 20); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x84\x98\x3E\x44\x1C\x3B\xD2\x6E\xBA\xAE" "\x4A\xA1\xF9\x51\x29\xE5\xE5\x46\x70\xF1", 20); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 1, NULL, 0, "\x34\xAA\x97\x3C\xD4\xC4\xDA\xA4\xF6\x1E" "\xEB\x2B\xDB\xAD\x27\x31\x65\x34\x01\x6F", 20); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA1, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; switch (algo) { case GCRY_MD_SHA1: ec = selftests_sha1 (extended, report); break; default: ec = GPG_ERR_DIGEST_ALGO; break; } return ec; } static unsigned char asn[15] = /* Object ID is 1.3.14.3.2.26 */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static gcry_md_oid_spec_t oid_spec_sha1[] = { /* iso.member-body.us.rsadsi.pkcs.pkcs-1.5 (sha1WithRSAEncryption) */ { "1.2.840.113549.1.1.5" }, /* iso.member-body.us.x9-57.x9cm.3 (dsaWithSha1)*/ { "1.2.840.10040.4.3" }, /* from NIST's OIW (sha1) */ { "1.3.14.3.2.26" }, /* from NIST OIW (sha-1WithRSAEncryption) */ { "1.3.14.3.2.29" }, /* iso.member-body.us.ansi-x9-62.signatures.ecdsa-with-sha1 */ { "1.2.840.10045.4.1" }, { NULL }, }; gcry_md_spec_t _gcry_digest_spec_sha1 = { GCRY_MD_SHA1, {0, 1}, "SHA1", asn, DIM (asn), oid_spec_sha1, 20, sha1_init, _gcry_md_block_write, sha1_final, sha1_read, NULL, sizeof (SHA1_CONTEXT), run_selftests };