/* sha256.c - SHA256 hash function * Copyright (C) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors: "abc" SHA224: 23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7 SHA256: ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" SHA224: 75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525 SHA256: 248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1 "a" one million times SHA224: 20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67 SHA256: cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0 */ #include #include #include #include #include "g10lib.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher.h" #include "hash-common.h" /* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */ #undef USE_SSSE3 #if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) && \ defined(HAVE_GCC_INLINE_ASM_SSSE3) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) # define USE_SSSE3 1 #endif /* USE_AVX indicates whether to compile with Intel AVX code. */ #undef USE_AVX #if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) && \ defined(HAVE_GCC_INLINE_ASM_AVX) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) # define USE_AVX 1 #endif /* USE_AVX2 indicates whether to compile with Intel AVX2/BMI2 code. */ #undef USE_AVX2 #if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) && \ defined(HAVE_GCC_INLINE_ASM_AVX2) && defined(HAVE_GCC_INLINE_ASM_BMI2) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) # define USE_AVX2 1 #endif typedef struct { gcry_md_block_ctx_t bctx; u32 h0,h1,h2,h3,h4,h5,h6,h7; #ifdef USE_SSSE3 unsigned int use_ssse3:1; #endif #ifdef USE_AVX unsigned int use_avx:1; #endif #ifdef USE_AVX2 unsigned int use_avx2:1; #endif } SHA256_CONTEXT; static unsigned int transform (void *c, const unsigned char *data, size_t nblks); static void sha256_init (void *context, unsigned int flags) { SHA256_CONTEXT *hd = context; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = 0x6a09e667; hd->h1 = 0xbb67ae85; hd->h2 = 0x3c6ef372; hd->h3 = 0xa54ff53a; hd->h4 = 0x510e527f; hd->h5 = 0x9b05688c; hd->h6 = 0x1f83d9ab; hd->h7 = 0x5be0cd19; hd->bctx.nblocks = 0; hd->bctx.nblocks_high = 0; hd->bctx.count = 0; hd->bctx.blocksize = 64; hd->bctx.bwrite = transform; #ifdef USE_SSSE3 hd->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0; #endif #ifdef USE_AVX /* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs. * Therefore use this implementation on Intel CPUs only. */ hd->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_CPU); #endif #ifdef USE_AVX2 hd->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2); #endif (void)features; } static void sha224_init (void *context, unsigned int flags) { SHA256_CONTEXT *hd = context; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = 0xc1059ed8; hd->h1 = 0x367cd507; hd->h2 = 0x3070dd17; hd->h3 = 0xf70e5939; hd->h4 = 0xffc00b31; hd->h5 = 0x68581511; hd->h6 = 0x64f98fa7; hd->h7 = 0xbefa4fa4; hd->bctx.nblocks = 0; hd->bctx.nblocks_high = 0; hd->bctx.count = 0; hd->bctx.blocksize = 64; hd->bctx.bwrite = transform; #ifdef USE_SSSE3 hd->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0; #endif #ifdef USE_AVX /* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs. * Therefore use this implementation on Intel CPUs only. */ hd->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_CPU); #endif #ifdef USE_AVX2 hd->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2); #endif (void)features; } /* Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ #define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */ #define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */ #define R(a,b,c,d,e,f,g,h,k,w) do \ { \ t1 = (h) + Sum1((e)) + Cho((e),(f),(g)) + (k) + (w); \ t2 = Sum0((a)) + Maj((a),(b),(c)); \ h = g; \ g = f; \ f = e; \ e = d + t1; \ d = c; \ c = b; \ b = a; \ a = t1 + t2; \ } while (0) /* (4.2) same as SHA-1's F1. */ static inline u32 Cho (u32 x, u32 y, u32 z) { return (z ^ (x & (y ^ z))); } /* (4.3) same as SHA-1's F3 */ static inline u32 Maj (u32 x, u32 y, u32 z) { return ((x & y) | (z & (x|y))); } /* (4.4) */ static inline u32 Sum0 (u32 x) { return (ror (x, 2) ^ ror (x, 13) ^ ror (x, 22)); } /* (4.5) */ static inline u32 Sum1 (u32 x) { return (ror (x, 6) ^ ror (x, 11) ^ ror (x, 25)); } static unsigned int transform_blk (void *ctx, const unsigned char *data) { SHA256_CONTEXT *hd = ctx; static const u32 K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; u32 a,b,c,d,e,f,g,h,t1,t2; u32 w[64]; int i; a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; for (i=0; i < 16; i++) w[i] = buf_get_be32(data + i * 4); for (; i < 64; i++) w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16]; for (i=0; i < 64;) { #if 0 R(a,b,c,d,e,f,g,h,K[i],w[i]); i++; #else t1 = h + Sum1 (e) + Cho (e, f, g) + K[i] + w[i]; t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Cho (d, e, f) + K[i+1] + w[i+1]; t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Cho (c, d, e) + K[i+2] + w[i+2]; t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Cho (b, c, d) + K[i+3] + w[i+3]; t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Cho (a, b, c) + K[i+4] + w[i+4]; t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Cho (h, a, b) + K[i+5] + w[i+5]; t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Cho (g, h, a) + K[i+6] + w[i+6]; t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Cho (f, g, h) + K[i+7] + w[i+7]; t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; i += 8; #endif } hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; return /*burn_stack*/ 74*4+32; } #undef S0 #undef S1 #undef R #ifdef USE_SSSE3 unsigned int _gcry_sha256_transform_amd64_ssse3(const void *input_data, u32 state[8], size_t num_blks); #endif #ifdef USE_AVX unsigned int _gcry_sha256_transform_amd64_avx(const void *input_data, u32 state[8], size_t num_blks); #endif #ifdef USE_AVX2 unsigned int _gcry_sha256_transform_amd64_avx2(const void *input_data, u32 state[8], size_t num_blks); #endif static unsigned int transform (void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; unsigned int burn; #ifdef USE_AVX2 if (hd->use_avx2) return _gcry_sha256_transform_amd64_avx2 (data, &hd->h0, nblks) + 4 * sizeof(void*); #endif #ifdef USE_AVX if (hd->use_avx) return _gcry_sha256_transform_amd64_avx (data, &hd->h0, nblks) + 4 * sizeof(void*); #endif #ifdef USE_SSSE3 if (hd->use_ssse3) return _gcry_sha256_transform_amd64_ssse3 (data, &hd->h0, nblks) + 4 * sizeof(void*); #endif do { burn = transform_blk (hd, data); data += 64; } while (--nblks); return burn; } /* The routine finally terminates the computation and returns the digest. The handle is prepared for a new cycle, but adding bytes to the handle will the destroy the returned buffer. Returns: 32 bytes with the message the digest. */ static void sha256_final(void *context) { SHA256_CONTEXT *hd = context; u32 t, th, msb, lsb; byte *p; unsigned int burn; _gcry_md_block_write (hd, NULL, 0); /* flush */; t = hd->bctx.nblocks; if (sizeof t == sizeof hd->bctx.nblocks) th = hd->bctx.nblocks_high; else th = hd->bctx.nblocks >> 32; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = (th << 6) | (t >> 26); /* add the count */ t = lsb; if ((lsb += hd->bctx.count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (hd->bctx.count < 56) { /* enough room */ hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */ while (hd->bctx.count < 56) hd->bctx.buf[hd->bctx.count++] = 0; /* pad */ } else { /* need one extra block */ hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */ while (hd->bctx.count < 64) hd->bctx.buf[hd->bctx.count++] = 0; _gcry_md_block_write (hd, NULL, 0); /* flush */; memset (hd->bctx.buf, 0, 56 ); /* fill next block with zeroes */ } /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 56, msb); buf_put_be32(hd->bctx.buf + 60, lsb); burn = transform (hd, hd->bctx.buf, 1); _gcry_burn_stack (burn); p = hd->bctx.buf; #define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); X(5); X(6); X(7); #undef X } static byte * sha256_read (void *context) { SHA256_CONTEXT *hd = context; return hd->bctx.buf; } /* Self-test section. */ static gpg_err_code_t selftests_sha224 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 0, "abc", 3, "\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2\x55\xb3" "\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7", 28); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x75\x38\x8b\x16\x51\x27\x76\xcc\x5d\xba\x5d\xa1\xfd\x89\x01\x50" "\xb0\xc6\x45\x5c\xb4\xf5\x8b\x19\x52\x52\x25\x25", 28); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 1, NULL, 0, "\x20\x79\x46\x55\x98\x0c\x91\xd8\xbb\xb4\xc1\xea\x97\x61\x8a\x4b" "\xf0\x3f\x42\x58\x19\x48\xb2\xee\x4e\xe7\xad\x67", 28); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA224, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } static gpg_err_code_t selftests_sha256 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 0, "abc", 3, "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad", 32); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1", 32); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 1, NULL, 0, "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0", 32); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA256, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; switch (algo) { case GCRY_MD_SHA224: ec = selftests_sha224 (extended, report); break; case GCRY_MD_SHA256: ec = selftests_sha256 (extended, report); break; default: ec = GPG_ERR_DIGEST_ALGO; break; } return ec; } static byte asn224[19] = /* Object ID is 2.16.840.1.101.3.4.2.4 */ { 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C }; static gcry_md_oid_spec_t oid_spec_sha224[] = { /* From RFC3874, Section 4 */ { "2.16.840.1.101.3.4.2.4" }, { NULL }, }; static byte asn256[19] = /* Object ID is 2.16.840.1.101.3.4.2.1 */ { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static gcry_md_oid_spec_t oid_spec_sha256[] = { /* According to the OpenPGP draft rfc2440-bis06 */ { "2.16.840.1.101.3.4.2.1" }, /* PKCS#1 sha256WithRSAEncryption */ { "1.2.840.113549.1.1.11" }, { NULL }, }; gcry_md_spec_t _gcry_digest_spec_sha224 = { GCRY_MD_SHA224, {0, 1}, "SHA224", asn224, DIM (asn224), oid_spec_sha224, 28, sha224_init, _gcry_md_block_write, sha256_final, sha256_read, sizeof (SHA256_CONTEXT), run_selftests }; gcry_md_spec_t _gcry_digest_spec_sha256 = { GCRY_MD_SHA256, {0, 1}, "SHA256", asn256, DIM (asn256), oid_spec_sha256, 32, sha256_init, _gcry_md_block_write, sha256_final, sha256_read, sizeof (SHA256_CONTEXT), run_selftests };