/* sha512.c - SHA384 and SHA512 hash functions * Copyright (C) 2003, 2008, 2009 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors from FIPS-180-2: * * "abc" * 384: * CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163 * 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7 * 512: * DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A * 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F * * "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" * 384: * 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2 * 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039 * 512: * 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018 * 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909 * * "a" x 1000000 * 384: * 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852 * 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985 * 512: * E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB * DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B */ #include #include #include "g10lib.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher.h" #include "hash-common.h" /* USE_ARM_NEON_ASM indicates whether to enable ARM NEON assembly code. */ #undef USE_ARM_NEON_ASM #ifdef ENABLE_NEON_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_NEON) # define USE_ARM_NEON_ASM 1 # endif #endif /*ENABLE_NEON_SUPPORT*/ /* USE_ARM_ASM indicates whether to enable ARM assembly code. */ #undef USE_ARM_ASM #if defined(__ARMEL__) && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) # define USE_ARM_ASM 1 #endif /* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */ #undef USE_SSSE3 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_SSSE3 1 #endif /* USE_AVX indicates whether to compile with Intel AVX code. */ #undef USE_AVX #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX 1 #endif /* USE_AVX2 indicates whether to compile with Intel AVX2/rorx code. */ #undef USE_AVX2 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX2) && \ defined(HAVE_GCC_INLINE_ASM_BMI2) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX2 1 #endif typedef struct { u64 h0, h1, h2, h3, h4, h5, h6, h7; } SHA512_STATE; typedef struct { gcry_md_block_ctx_t bctx; SHA512_STATE state; #ifdef USE_ARM_NEON_ASM unsigned int use_neon:1; #endif #ifdef USE_SSSE3 unsigned int use_ssse3:1; #endif #ifdef USE_AVX unsigned int use_avx:1; #endif #ifdef USE_AVX2 unsigned int use_avx2:1; #endif } SHA512_CONTEXT; static unsigned int transform (void *context, const unsigned char *data, size_t nblks); static void sha512_init (void *context, unsigned int flags) { SHA512_CONTEXT *ctx = context; SHA512_STATE *hd = &ctx->state; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = U64_C(0x6a09e667f3bcc908); hd->h1 = U64_C(0xbb67ae8584caa73b); hd->h2 = U64_C(0x3c6ef372fe94f82b); hd->h3 = U64_C(0xa54ff53a5f1d36f1); hd->h4 = U64_C(0x510e527fade682d1); hd->h5 = U64_C(0x9b05688c2b3e6c1f); hd->h6 = U64_C(0x1f83d9abfb41bd6b); hd->h7 = U64_C(0x5be0cd19137e2179); ctx->bctx.nblocks = 0; ctx->bctx.nblocks_high = 0; ctx->bctx.count = 0; ctx->bctx.blocksize = 128; ctx->bctx.bwrite = transform; #ifdef USE_ARM_NEON_ASM ctx->use_neon = (features & HWF_ARM_NEON) != 0; #endif #ifdef USE_SSSE3 ctx->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0; #endif #ifdef USE_AVX ctx->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD); #endif #ifdef USE_AVX2 ctx->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2); #endif (void)features; } static void sha384_init (void *context, unsigned int flags) { SHA512_CONTEXT *ctx = context; SHA512_STATE *hd = &ctx->state; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = U64_C(0xcbbb9d5dc1059ed8); hd->h1 = U64_C(0x629a292a367cd507); hd->h2 = U64_C(0x9159015a3070dd17); hd->h3 = U64_C(0x152fecd8f70e5939); hd->h4 = U64_C(0x67332667ffc00b31); hd->h5 = U64_C(0x8eb44a8768581511); hd->h6 = U64_C(0xdb0c2e0d64f98fa7); hd->h7 = U64_C(0x47b5481dbefa4fa4); ctx->bctx.nblocks = 0; ctx->bctx.nblocks_high = 0; ctx->bctx.count = 0; ctx->bctx.blocksize = 128; ctx->bctx.bwrite = transform; #ifdef USE_ARM_NEON_ASM ctx->use_neon = (features & HWF_ARM_NEON) != 0; #endif #ifdef USE_SSSE3 ctx->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0; #endif #ifdef USE_AVX ctx->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD); #endif #ifdef USE_AVX2 ctx->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2); #endif (void)features; } static const u64 k[] = { U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd), U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc), U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019), U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118), U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe), U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2), U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1), U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694), U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3), U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65), U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483), U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5), U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210), U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4), U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725), U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70), U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926), U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df), U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8), U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b), U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001), U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30), U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910), U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8), U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53), U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8), U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb), U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3), U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60), U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec), U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9), U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b), U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207), U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178), U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6), U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b), U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493), U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c), U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a), U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817) }; #ifndef USE_ARM_ASM static inline u64 ROTR (u64 x, u64 n) { return ((x >> n) | (x << (64 - n))); } static inline u64 Ch (u64 x, u64 y, u64 z) { return ((x & y) ^ ( ~x & z)); } static inline u64 Maj (u64 x, u64 y, u64 z) { return ((x & y) ^ (x & z) ^ (y & z)); } static inline u64 Sum0 (u64 x) { return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39)); } static inline u64 Sum1 (u64 x) { return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41)); } /**************** * Transform the message W which consists of 16 64-bit-words */ static unsigned int transform_blk (SHA512_STATE *hd, const unsigned char *data) { u64 a, b, c, d, e, f, g, h; u64 w[16]; int t; /* get values from the chaining vars */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; for ( t = 0; t < 16; t++ ) w[t] = buf_get_be64(data + t * 8); #define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) #define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) for (t = 0; t < 80 - 16; ) { u64 t1, t2; /* Performance on a AMD Athlon(tm) Dual Core Processor 4050e with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes initialized to 0,1,2,3...255,0,... and 1000 iterations: Not unrolled with macros: 440ms Unrolled with macros: 350ms Unrolled with inline: 330ms */ #if 0 /* Not unrolled. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t%16]; w[t%16] += S1 (w[(t - 2)%16]) + w[(t - 7)%16] + S0 (w[(t - 15)%16]); t2 = Sum0 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; t++; #else /* Unrolled to interweave the chain variables. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[0]; w[0] += S1 (w[14]) + w[9] + S0 (w[1]); t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[1]; w[1] += S1 (w[15]) + w[10] + S0 (w[2]); t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[2]; w[2] += S1 (w[0]) + w[11] + S0 (w[3]); t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[3]; w[3] += S1 (w[1]) + w[12] + S0 (w[4]); t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[4]; w[4] += S1 (w[2]) + w[13] + S0 (w[5]); t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[5]; w[5] += S1 (w[3]) + w[14] + S0 (w[6]); t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[6]; w[6] += S1 (w[4]) + w[15] + S0 (w[7]); t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[7]; w[7] += S1 (w[5]) + w[0] + S0 (w[8]); t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; t1 = h + Sum1 (e) + Ch (e, f, g) + k[t+8] + w[8]; w[8] += S1 (w[6]) + w[1] + S0 (w[9]); t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+9] + w[9]; w[9] += S1 (w[7]) + w[2] + S0 (w[10]); t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+10] + w[10]; w[10] += S1 (w[8]) + w[3] + S0 (w[11]); t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+11] + w[11]; w[11] += S1 (w[9]) + w[4] + S0 (w[12]); t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+12] + w[12]; w[12] += S1 (w[10]) + w[5] + S0 (w[13]); t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+13] + w[13]; w[13] += S1 (w[11]) + w[6] + S0 (w[14]); t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+14] + w[14]; w[14] += S1 (w[12]) + w[7] + S0 (w[15]); t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+15] + w[15]; w[15] += S1 (w[13]) + w[8] + S0 (w[0]); t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; t += 16; #endif } for (; t < 80; ) { u64 t1, t2; #if 0 /* Not unrolled. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t%16]; t2 = Sum0 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; t++; #else /* Unrolled to interweave the chain variables. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[0]; t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[1]; t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[2]; t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[3]; t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[4]; t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[5]; t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[6]; t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[7]; t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; t1 = h + Sum1 (e) + Ch (e, f, g) + k[t+8] + w[8]; t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+9] + w[9]; t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+10] + w[10]; t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+11] + w[11]; t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+12] + w[12]; t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+13] + w[13]; t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+14] + w[14]; t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+15] + w[15]; t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; t += 16; #endif } /* Update chaining vars. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; return /* burn_stack */ (8 + 16) * sizeof(u64) + sizeof(u32) + 3 * sizeof(void*); } #endif /*!USE_ARM_ASM*/ /* AMD64 assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #undef ASM_EXTRA_STACK #if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_AVX2) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # define ASM_EXTRA_STACK (10 * 16) # else # define ASM_FUNC_ABI # define ASM_EXTRA_STACK 0 # endif #endif #ifdef USE_ARM_NEON_ASM void _gcry_sha512_transform_armv7_neon (SHA512_STATE *hd, const unsigned char *data, const u64 k[], size_t num_blks); #endif #ifdef USE_ARM_ASM unsigned int _gcry_sha512_transform_arm (SHA512_STATE *hd, const unsigned char *data, const u64 k[], size_t num_blks); #endif #ifdef USE_SSSE3 unsigned int _gcry_sha512_transform_amd64_ssse3(const void *input_data, void *state, size_t num_blks) ASM_FUNC_ABI; #endif #ifdef USE_AVX unsigned int _gcry_sha512_transform_amd64_avx(const void *input_data, void *state, size_t num_blks) ASM_FUNC_ABI; #endif #ifdef USE_AVX2 unsigned int _gcry_sha512_transform_amd64_avx2(const void *input_data, void *state, size_t num_blks) ASM_FUNC_ABI; #endif static unsigned int transform (void *context, const unsigned char *data, size_t nblks) { SHA512_CONTEXT *ctx = context; unsigned int burn; #ifdef USE_AVX2 if (ctx->use_avx2) return _gcry_sha512_transform_amd64_avx2 (data, &ctx->state, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_AVX if (ctx->use_avx) return _gcry_sha512_transform_amd64_avx (data, &ctx->state, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_SSSE3 if (ctx->use_ssse3) return _gcry_sha512_transform_amd64_ssse3 (data, &ctx->state, nblks) + 4 * sizeof(void*) + ASM_EXTRA_STACK; #endif #ifdef USE_ARM_NEON_ASM if (ctx->use_neon) { _gcry_sha512_transform_armv7_neon (&ctx->state, data, k, nblks); /* _gcry_sha512_transform_armv7_neon does not store sensitive data * to stack. */ return /* no burn_stack */ 0; } #endif #ifdef USE_ARM_ASM burn = _gcry_sha512_transform_arm (&ctx->state, data, k, nblks); #else do { burn = transform_blk (&ctx->state, data) + 3 * sizeof(void*); data += 128; } while (--nblks); #ifdef ASM_EXTRA_STACK /* 'transform_blk' is typically inlined and XMM6-XMM15 are stored at * the prologue of this function. Therefore need to add ASM_EXTRA_STACK to * here too. */ burn += ASM_EXTRA_STACK; #endif #endif return burn; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 64 bytes representing the digest. When used for sha384, * we take the leftmost 48 of those bytes. */ static void sha512_final (void *context) { SHA512_CONTEXT *hd = context; unsigned int stack_burn_depth; u64 t, th, msb, lsb; byte *p; _gcry_md_block_write (context, NULL, 0); /* flush */ ; t = hd->bctx.nblocks; /* if (sizeof t == sizeof hd->bctx.nblocks) */ th = hd->bctx.nblocks_high; /* else */ /* th = hd->bctx.nblocks >> 64; In case we ever use u128 */ /* multiply by 128 to make a byte count */ lsb = t << 7; msb = (th << 7) | (t >> 57); /* add the count */ t = lsb; if ((lsb += hd->bctx.count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 61; if (hd->bctx.count < 112) { /* enough room */ hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */ while (hd->bctx.count < 112) hd->bctx.buf[hd->bctx.count++] = 0; /* pad */ } else { /* need one extra block */ hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */ while (hd->bctx.count < 128) hd->bctx.buf[hd->bctx.count++] = 0; _gcry_md_block_write (context, NULL, 0); /* flush */ ; memset (hd->bctx.buf, 0, 112); /* fill next block with zeroes */ } /* append the 128 bit count */ buf_put_be64(hd->bctx.buf + 112, msb); buf_put_be64(hd->bctx.buf + 120, lsb); stack_burn_depth = transform (hd, hd->bctx.buf, 1); _gcry_burn_stack (stack_burn_depth); p = hd->bctx.buf; #define X(a) do { buf_put_be64(p, hd->state.h##a); p += 8; } while (0) X (0); X (1); X (2); X (3); X (4); X (5); /* Note that these last two chunks are included even for SHA384. We just ignore them. */ X (6); X (7); #undef X } static byte * sha512_read (void *context) { SHA512_CONTEXT *hd = (SHA512_CONTEXT *) context; return hd->bctx.buf; } /* Self-test section. */ static gpg_err_code_t selftests_sha384 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA384, 0, "abc", 3, "\xcb\x00\x75\x3f\x45\xa3\x5e\x8b\xb5\xa0\x3d\x69\x9a\xc6\x50\x07" "\x27\x2c\x32\xab\x0e\xde\xd1\x63\x1a\x8b\x60\x5a\x43\xff\x5b\xed" "\x80\x86\x07\x2b\xa1\xe7\xcc\x23\x58\xba\xec\xa1\x34\xc8\x25\xa7", 48); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA384, 0, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 112, "\x09\x33\x0C\x33\xF7\x11\x47\xE8\x3D\x19\x2F\xC7\x82\xCD\x1B\x47" "\x53\x11\x1B\x17\x3B\x3B\x05\xD2\x2F\xA0\x80\x86\xE3\xB0\xF7\x12" "\xFC\xC7\xC7\x1A\x55\x7E\x2D\xB9\x66\xC3\xE9\xFA\x91\x74\x60\x39", 48); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA384, 1, NULL, 0, "\x9D\x0E\x18\x09\x71\x64\x74\xCB\x08\x6E\x83\x4E\x31\x0A\x4A\x1C" "\xED\x14\x9E\x9C\x00\xF2\x48\x52\x79\x72\xCE\xC5\x70\x4C\x2A\x5B" "\x07\xB8\xB3\xDC\x38\xEC\xC4\xEB\xAE\x97\xDD\xD8\x7F\x3D\x89\x85", 48); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA384, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } static gpg_err_code_t selftests_sha512 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA512, 0, "abc", 3, "\xDD\xAF\x35\xA1\x93\x61\x7A\xBA\xCC\x41\x73\x49\xAE\x20\x41\x31" "\x12\xE6\xFA\x4E\x89\xA9\x7E\xA2\x0A\x9E\xEE\xE6\x4B\x55\xD3\x9A" "\x21\x92\x99\x2A\x27\x4F\xC1\xA8\x36\xBA\x3C\x23\xA3\xFE\xEB\xBD" "\x45\x4D\x44\x23\x64\x3C\xE8\x0E\x2A\x9A\xC9\x4F\xA5\x4C\xA4\x9F", 64); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA512, 0, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 112, "\x8E\x95\x9B\x75\xDA\xE3\x13\xDA\x8C\xF4\xF7\x28\x14\xFC\x14\x3F" "\x8F\x77\x79\xC6\xEB\x9F\x7F\xA1\x72\x99\xAE\xAD\xB6\x88\x90\x18" "\x50\x1D\x28\x9E\x49\x00\xF7\xE4\x33\x1B\x99\xDE\xC4\xB5\x43\x3A" "\xC7\xD3\x29\xEE\xB6\xDD\x26\x54\x5E\x96\xE5\x5B\x87\x4B\xE9\x09", 64); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA512, 1, NULL, 0, "\xE7\x18\x48\x3D\x0C\xE7\x69\x64\x4E\x2E\x42\xC7\xBC\x15\xB4\x63" "\x8E\x1F\x98\xB1\x3B\x20\x44\x28\x56\x32\xA8\x03\xAF\xA9\x73\xEB" "\xDE\x0F\xF2\x44\x87\x7E\xA6\x0A\x4C\xB0\x43\x2C\xE5\x77\xC3\x1B" "\xEB\x00\x9C\x5C\x2C\x49\xAA\x2E\x4E\xAD\xB2\x17\xAD\x8C\xC0\x9B", 64); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA512, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; switch (algo) { case GCRY_MD_SHA384: ec = selftests_sha384 (extended, report); break; case GCRY_MD_SHA512: ec = selftests_sha512 (extended, report); break; default: ec = GPG_ERR_DIGEST_ALGO; break; } return ec; } static byte sha512_asn[] = /* Object ID is 2.16.840.1.101.3.4.2.3 */ { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; static gcry_md_oid_spec_t oid_spec_sha512[] = { { "2.16.840.1.101.3.4.2.3" }, /* PKCS#1 sha512WithRSAEncryption */ { "1.2.840.113549.1.1.13" }, { NULL } }; gcry_md_spec_t _gcry_digest_spec_sha512 = { GCRY_MD_SHA512, {0, 1}, "SHA512", sha512_asn, DIM (sha512_asn), oid_spec_sha512, 64, sha512_init, _gcry_md_block_write, sha512_final, sha512_read, NULL, sizeof (SHA512_CONTEXT), run_selftests }; static byte sha384_asn[] = /* Object ID is 2.16.840.1.101.3.4.2.2 */ { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static gcry_md_oid_spec_t oid_spec_sha384[] = { { "2.16.840.1.101.3.4.2.2" }, /* PKCS#1 sha384WithRSAEncryption */ { "1.2.840.113549.1.1.12" }, { NULL }, }; gcry_md_spec_t _gcry_digest_spec_sha384 = { GCRY_MD_SHA384, {0, 1}, "SHA384", sha384_asn, DIM (sha384_asn), oid_spec_sha384, 48, sha384_init, _gcry_md_block_write, sha512_final, sha512_read, NULL, sizeof (SHA512_CONTEXT), run_selftests };