summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAnthony Liguori <aliguori@us.ibm.com>2010-12-17 08:25:17 -0600
committerAnthony Liguori <aliguori@us.ibm.com>2010-12-17 08:25:17 -0600
commit9d861fa595c93f22d1d55b723a691531c36c9672 (patch)
tree85140ebe32222b5cf367382fd9d72f8ab01b1a91
parent4a493c6fac4db5d9094906a1e9b6d19c1dfff1ed (diff)
parent72f24d155ceffa0eb888fd277fa09584bcd1b04c (diff)
downloadqemu-9d861fa595c93f22d1d55b723a691531c36c9672.tar.gz
Merge remote branch 'arm/for-anthony' into staging
-rw-r--r--fpu/softfloat-specialize.h38
-rw-r--r--fpu/softfloat.c136
-rw-r--r--fpu/softfloat.h16
-rw-r--r--linux-user/main.c2
-rw-r--r--target-arm/helper.c43
-rw-r--r--target-arm/translate.c119
6 files changed, 312 insertions, 42 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index 8e6aceb552..07468786f9 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -102,6 +102,25 @@ int float32_is_signaling_nan( float32 a_ )
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the single-precision floating point value `a' is a
+| signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+float32 float32_maybe_silence_nan( float32 a_ )
+{
+ if (float32_is_signaling_nan(a_)) {
+ uint32_t a = float32_val(a_);
+#if SNAN_BIT_IS_ONE
+ a &= ~(1 << 22);
+#else
+ a |= (1 << 22);
+#endif
+ return make_float32(a);
+ }
+ return a_;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
@@ -234,6 +253,25 @@ int float64_is_signaling_nan( float64 a_ )
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the double-precision floating point value `a' is a
+| signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+float64 float64_maybe_silence_nan( float64 a_ )
+{
+ if (float64_is_signaling_nan(a_)) {
+ bits64 a = float64_val(a_);
+#if SNAN_BIT_IS_ONE
+ a &= ~LIT64( 0x0008000000000000 );
+#else
+ a |= LIT64( 0x0008000000000000 );
+#endif
+ return make_float64(a);
+ }
+ return a_;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 0b8279798c..6f5b05d5fe 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -1355,6 +1355,55 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int16 float32_to_int16_round_to_zero( float32 a STATUS_PARAM )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x8E;
+ if ( 0 <= shiftCount ) {
+ if ( float32_val(a) != 0xC7000000 ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return 0x7FFF;
+ }
+ }
+ return (sbits32) 0xffff8000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return 0;
+ }
+ shiftCount -= 0x10;
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ if ( aSign ) {
+ z = - z;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
@@ -2412,6 +2461,57 @@ int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int16 float64_to_int16_round_to_zero( float64 a STATUS_PARAM )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( 0x40E < aExp ) {
+ if ( ( aExp == 0x7FF ) && aSig ) {
+ aSign = 0;
+ }
+ goto invalid;
+ }
+ else if ( aExp < 0x3FF ) {
+ if ( aExp || aSig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) {
+ z = - z;
+ }
+ if ( ( (int16_t)z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid STATUS_VAR);
+ return aSign ? (sbits32) 0xffff8000 : 0x7FFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
@@ -5632,6 +5732,24 @@ unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
return res;
}
+unsigned int float32_to_uint16_round_to_zero( float32 a STATUS_PARAM )
+{
+ int64_t v;
+ unsigned int res;
+
+ v = float32_to_int64_round_to_zero(a STATUS_VAR);
+ if (v < 0) {
+ res = 0;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else {
+ res = v;
+ }
+ return res;
+}
+
unsigned int float64_to_uint32( float64 a STATUS_PARAM )
{
int64_t v;
@@ -5668,6 +5786,24 @@ unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
return res;
}
+unsigned int float64_to_uint16_round_to_zero( float64 a STATUS_PARAM )
+{
+ int64_t v;
+ unsigned int res;
+
+ v = float64_to_int64_round_to_zero(a STATUS_VAR);
+ if (v < 0) {
+ res = 0;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else {
+ res = v;
+ }
+ return res;
+}
+
/* FIXME: This looks broken. */
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
{
diff --git a/fpu/softfloat.h b/fpu/softfloat.h
index 9528825522..1c1004de97 100644
--- a/fpu/softfloat.h
+++ b/fpu/softfloat.h
@@ -251,6 +251,8 @@ float32 float16_to_float32( bits16, flag STATUS_PARAM );
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
+int float32_to_int16_round_to_zero( float32 STATUS_PARAM );
+unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
int float32_to_int32( float32 STATUS_PARAM );
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
unsigned int float32_to_uint32( float32 STATUS_PARAM );
@@ -287,6 +289,7 @@ int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
int float32_is_nan( float32 );
int float32_is_signaling_nan( float32 );
+float32 float32_maybe_silence_nan( float32 );
float32 float32_scalbn( float32, int STATUS_PARAM );
INLINE float32 float32_abs(float32 a)
@@ -314,6 +317,11 @@ INLINE int float32_is_zero(float32 a)
return (float32_val(a) & 0x7fffffff) == 0;
}
+INLINE int float32_is_any_nan(float32 a)
+{
+ return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
+}
+
#define float32_zero make_float32(0)
#define float32_one make_float32(0x3f800000)
#define float32_ln2 make_float32(0x3f317218)
@@ -321,6 +329,8 @@ INLINE int float32_is_zero(float32 a)
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
+int float64_to_int16_round_to_zero( float64 STATUS_PARAM );
+unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
int float64_to_int32( float64 STATUS_PARAM );
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
unsigned int float64_to_uint32( float64 STATUS_PARAM );
@@ -359,6 +369,7 @@ int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
int float64_is_nan( float64 a );
int float64_is_signaling_nan( float64 );
+float64 float64_maybe_silence_nan( float64 );
float64 float64_scalbn( float64, int STATUS_PARAM );
INLINE float64 float64_abs(float64 a)
@@ -386,6 +397,11 @@ INLINE int float64_is_zero(float64 a)
return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
}
+INLINE int float64_is_any_nan(float64 a)
+{
+ return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
+}
+
#define float64_zero make_float64(0)
#define float64_one make_float64(0x3ff0000000000000LL)
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
diff --git a/linux-user/main.c b/linux-user/main.c
index 7d41d4ab88..0d627d68dd 100644
--- a/linux-user/main.c
+++ b/linux-user/main.c
@@ -589,7 +589,7 @@ static int do_strex(CPUARMState *env)
}
if (size == 3) {
val = env->regs[(env->exclusive_info >> 12) & 0xf];
- segv = put_user_u32(val, addr);
+ segv = put_user_u32(val, addr + 4);
if (segv) {
env->cp15.c6_data = addr + 4;
goto done;
diff --git a/target-arm/helper.c b/target-arm/helper.c
index 2a1f44860b..9ba2f4fe15 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -2463,53 +2463,85 @@ float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
/* Float to integer conversion. */
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
{
+ if (float32_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
{
+ if (float64_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
{
+ if (float32_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
{
+ if (float64_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
{
+ if (float32_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
{
+ if (float64_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
{
+ if (float32_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
{
+ if (float64_is_any_nan(x)) {
+ return float32_zero;
+ }
return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
}
/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
{
- return float32_to_float64(x, &env->vfp.fp_status);
+ float64 r = float32_to_float64(x, &env->vfp.fp_status);
+ /* ARM requires that S<->D conversion of any kind of NaN generates
+ * a quiet NaN by forcing the most significant frac bit to 1.
+ */
+ return float64_maybe_silence_nan(r);
}
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
{
- return float64_to_float32(x, &env->vfp.fp_status);
+ float32 r = float64_to_float32(x, &env->vfp.fp_status);
+ /* ARM requires that S<->D conversion of any kind of NaN generates
+ * a quiet NaN by forcing the most significant frac bit to 1.
+ */
+ return float32_maybe_silence_nan(r);
}
/* VFP3 fixed point conversion. */
@@ -2517,15 +2549,18 @@ float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
{ \
ftype tmp; \
- tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
+ tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \
&env->vfp.fp_status); \
return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
} \
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
{ \
ftype tmp; \
+ if (ftype##_is_any_nan(x)) { \
+ return ftype##_zero; \
+ } \
tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
- return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
+ return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \
&env->vfp.fp_status)); \
}
diff --git a/target-arm/translate.c b/target-arm/translate.c
index 99464ab730..d4a0666be5 100644
--- a/target-arm/translate.c
+++ b/target-arm/translate.c
@@ -2870,16 +2870,18 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
VFP_DREG_N(rn, insn);
}
- if (op == 15 && (rn == 15 || rn > 17)) {
+ if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18))) {
/* Integer or single precision destination. */
rd = VFP_SREG_D(insn);
} else {
VFP_DREG_D(rd, insn);
}
-
- if (op == 15 && (rn == 16 || rn == 17)) {
- /* Integer source. */
- rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1);
+ if (op == 15 &&
+ (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14))) {
+ /* VCVT from int is always from S reg regardless of dp bit.
+ * VCVT with immediate frac_bits has same format as SREG_M
+ */
+ rm = VFP_SREG_M(insn);
} else {
VFP_DREG_M(rm, insn);
}
@@ -2891,6 +2893,9 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
} else {
rd = VFP_SREG_D(insn);
}
+ /* NB that we implicitly rely on the encoding for the frac_bits
+ * in VCVT of fixed to float being the same as that of an SREG_M
+ */
rm = VFP_SREG_M(insn);
}
@@ -3179,8 +3184,8 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
/* Write back the result. */
if (op == 15 && (rn >= 8 && rn <= 11))
; /* Comparison, do nothing. */
- else if (op == 15 && rn > 17)
- /* Integer result. */
+ else if (op == 15 && dp && ((rn & 0x1c) == 0x18))
+ /* VCVT double to int: always integer result. */
gen_mov_vreg_F0(0, rd);
else if (op == 15 && rn == 15)
/* conversion */
@@ -4845,11 +4850,15 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn)
}
neon_store_reg64(cpu_V0, rd + pass);
}
- } else if (op == 15 || op == 16) {
+ } else if (op >= 14) {
/* VCVT fixed-point. */
+ /* We have already masked out the must-be-1 top bit of imm6,
+ * hence this 32-shift where the ARM ARM has 64-imm6.
+ */
+ shift = 32 - shift;
for (pass = 0; pass < (q ? 4 : 2); pass++) {
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass));
- if (op & 1) {
+ if (!(op & 1)) {
if (u)
gen_vfp_ulto(0, shift);
else
@@ -5655,16 +5664,16 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn)
gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env);
break;
case 60: /* VCVT.F32.S32 */
- gen_vfp_tosiz(0);
+ gen_vfp_sito(0);
break;
case 61: /* VCVT.F32.U32 */
- gen_vfp_touiz(0);
+ gen_vfp_uito(0);
break;
case 62: /* VCVT.S32.F32 */
- gen_vfp_sito(0);
+ gen_vfp_tosiz(0);
break;
case 63: /* VCVT.U32.F32 */
- gen_vfp_uito(0);
+ gen_vfp_touiz(0);
break;
default:
/* Reserved: 21, 29, 39-56 */
@@ -5926,8 +5935,10 @@ static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
tcg_gen_mov_i32(cpu_exclusive_val, tmp);
store_reg(s, rt, tmp);
if (size == 3) {
- tcg_gen_addi_i32(addr, addr, 4);
- tmp = gen_ld32(addr, IS_USER(s));
+ TCGv tmp2 = new_tmp();
+ tcg_gen_addi_i32(tmp2, addr, 4);
+ tmp = gen_ld32(tmp2, IS_USER(s));
+ dead_tmp(tmp2);
tcg_gen_mov_i32(cpu_exclusive_high, tmp);
store_reg(s, rt2, tmp);
}
@@ -5987,7 +5998,7 @@ static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
if (size == 3) {
TCGv tmp2 = new_tmp();
tcg_gen_addi_i32(tmp2, addr, 4);
- tmp = gen_ld32(addr, IS_USER(s));
+ tmp = gen_ld32(tmp2, IS_USER(s));
dead_tmp(tmp2);
tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_high, fail_label);
dead_tmp(tmp);
@@ -6346,7 +6357,14 @@ static void disas_arm_insn(CPUState * env, DisasContext *s)
dead_tmp(tmp2);
store_reg(s, rd, tmp);
break;
- case 7: /* bkpt */
+ case 7:
+ /* SMC instruction (op1 == 3)
+ and undefined instructions (op1 == 0 || op1 == 2)
+ will trap */
+ if (op1 != 1) {
+ goto illegal_op;
+ }
+ /* bkpt */
gen_set_condexec(s);
gen_set_pc_im(s->pc - 4);
gen_exception(EXCP_BKPT);
@@ -7601,27 +7619,54 @@ static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1)
}
}
break;
- case 5: /* Data processing register constant shift. */
- if (rn == 15) {
- tmp = new_tmp();
- tcg_gen_movi_i32(tmp, 0);
- } else {
- tmp = load_reg(s, rn);
- }
- tmp2 = load_reg(s, rm);
+ case 5:
+
op = (insn >> 21) & 0xf;
- shiftop = (insn >> 4) & 3;
- shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
- conds = (insn & (1 << 20)) != 0;
- logic_cc = (conds && thumb2_logic_op(op));
- gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
- if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2))
- goto illegal_op;
- dead_tmp(tmp2);
- if (rd != 15) {
+ if (op == 6) {
+ /* Halfword pack. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3);
+ if (insn & (1 << 5)) {
+ /* pkhtb */
+ if (shift == 0)
+ shift = 31;
+ tcg_gen_sari_i32(tmp2, tmp2, shift);
+ tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
+ tcg_gen_ext16u_i32(tmp2, tmp2);
+ } else {
+ /* pkhbt */
+ if (shift)
+ tcg_gen_shli_i32(tmp2, tmp2, shift);
+ tcg_gen_ext16u_i32(tmp, tmp);
+ tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
+ }
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ dead_tmp(tmp2);
store_reg(s, rd, tmp);
} else {
- dead_tmp(tmp);
+ /* Data processing register constant shift. */
+ if (rn == 15) {
+ tmp = new_tmp();
+ tcg_gen_movi_i32(tmp, 0);
+ } else {
+ tmp = load_reg(s, rn);
+ }
+ tmp2 = load_reg(s, rm);
+
+ shiftop = (insn >> 4) & 3;
+ shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
+ conds = (insn & (1 << 20)) != 0;
+ logic_cc = (conds && thumb2_logic_op(op));
+ gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
+ if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2))
+ goto illegal_op;
+ dead_tmp(tmp2);
+ if (rd != 15) {
+ store_reg(s, rd, tmp);
+ } else {
+ dead_tmp(tmp);
+ }
}
break;
case 13: /* Misc data processing. */
@@ -7686,9 +7731,9 @@ static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1)
/* Saturating add/subtract. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
- if (op & 2)
- gen_helper_double_saturate(tmp, tmp);
if (op & 1)
+ gen_helper_double_saturate(tmp, tmp);
+ if (op & 2)
gen_helper_sub_saturate(tmp, tmp2, tmp);
else
gen_helper_add_saturate(tmp, tmp, tmp2);