summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2014-10-24 12:40:28 +0100
committerPeter Maydell <peter.maydell@linaro.org>2014-10-24 12:40:29 +0100
commit71b7f54fdfa6a9bd56546b5c3996311b7b836636 (patch)
treebaddcc6aa7092b7dc6d01f97d244d0a4f9f20aae
parent8b135a288ae8dec2359e9bd410312039da2e7cd2 (diff)
parentdbe9d1636787dd226d3f9a61c07fbc27e0db5bbf (diff)
downloadqemu-71b7f54fdfa6a9bd56546b5c3996311b7b836636.tar.gz
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20141024' into staging
target-arm queue: * remove pointless 'info pcmcia' and a lot of now-dead code * register ARM cpu reset handlers even if not using -kernel * update to libvixl 1.6 * various minor code cleanups * support PSCI under TCG ('virt' machine can now be shut down, SMP configurations work) * correct the sense of the AArch64 DCZID DZP bit * report a valid L1Ip field in CTR_EL0 for CPU type "any" * correctly UNDEF writes to FPINST/FPINST2 from EL0 * more preparatory code refactoring for EL2/EL3 support # gpg: Signature made Fri 24 Oct 2014 12:35:52 BST using RSA key ID 14360CDE # gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" * remotes/pmaydell/tags/pull-target-arm-20141024: (23 commits) target-arm: A32: Emulate the SMC instruction target-arm: make arm_current_el() return EL3 target-arm: rename arm_current_pl to arm_current_el target-arm: reject switching to monitor mode target-arm: add arm_is_secure() function target-arm: increase arrays of registers R13 & R14 target-arm: correctly UNDEF writes to FPINST/FPINST2 from EL0 target-arm: Report a valid L1Ip field in CTR_EL0 for CPU type "any" target-arm: Correct sense of the DCZID DZP bit arm/virt: enable PSCI emulation support for system emulation target-arm: add emulation of PSCI calls for system emulation target-arm: Add support for A32 and T32 HVC and SMC insns target-arm: Handle SMC/HVC undef-if-no-ELx in pre_* helpers target-arm: add missing PSCI constants needed for PSCI emulation target-arm: do not set do_interrupt handlers for ARM and AArch64 user modes target-arm: add powered off cpu state omap_gpmc.c: Remove duplicate assignment disas/libvixl/a64/instructions-a64.h: Remove unused constants arm_gic: remove unused parameter. disas/libvixl: Update to libvixl 1.6 ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
-rw-r--r--disas/arm-a64.cc2
-rw-r--r--disas/libvixl/README2
-rw-r--r--disas/libvixl/a64/assembler-a64.h385
-rw-r--r--disas/libvixl/a64/decoder-a64.cc34
-rw-r--r--disas/libvixl/a64/decoder-a64.h102
-rw-r--r--disas/libvixl/a64/disasm-a64.cc259
-rw-r--r--disas/libvixl/a64/disasm-a64.h84
-rw-r--r--disas/libvixl/a64/instructions-a64.cc22
-rw-r--r--disas/libvixl/a64/instructions-a64.h64
-rw-r--r--disas/libvixl/code-buffer.h113
-rw-r--r--disas/libvixl/utils.cc1
-rw-r--r--disas/libvixl/utils.h3
-rw-r--r--hmp-commands.hx2
-rw-r--r--hw/arm/boot.c17
-rw-r--r--hw/arm/virt.c97
-rw-r--r--hw/ide/microdrive.c1
-rw-r--r--hw/intc/arm_gic.c4
-rw-r--r--hw/intc/armv7m_nvic.c2
-rw-r--r--hw/intc/gic_internal.h2
-rw-r--r--hw/misc/omap_gpmc.c2
-rw-r--r--hw/pcmcia/pxa2xx.c21
-rw-r--r--include/hw/pcmcia.h6
-rw-r--r--monitor.c8
-rw-r--r--target-arm/Makefile.objs1
-rw-r--r--target-arm/cpu-qom.h7
-rw-r--r--target-arm/cpu.c24
-rw-r--r--target-arm/cpu.h111
-rw-r--r--target-arm/cpu64.c4
-rw-r--r--target-arm/helper-a64.c15
-rw-r--r--target-arm/helper.c48
-rw-r--r--target-arm/internals.h24
-rw-r--r--target-arm/kvm-consts.h40
-rw-r--r--target-arm/machine.c9
-rw-r--r--target-arm/op_helper.c52
-rw-r--r--target-arm/psci.c242
-rw-r--r--target-arm/translate-a64.c16
-rw-r--r--target-arm/translate.c110
-rw-r--r--target-arm/translate.h6
-rw-r--r--vl.c44
39 files changed, 1395 insertions, 591 deletions
diff --git a/disas/arm-a64.cc b/disas/arm-a64.cc
index 162be0c420..ca29f6f253 100644
--- a/disas/arm-a64.cc
+++ b/disas/arm-a64.cc
@@ -39,7 +39,7 @@ public:
~QEMUDisassembler() { }
protected:
- void ProcessOutput(Instruction *instr) {
+ virtual void ProcessOutput(const Instruction *instr) {
fprintf(stream_, "%08" PRIx32 " %s",
instr->InstructionBits(), GetOutput());
}
diff --git a/disas/libvixl/README b/disas/libvixl/README
index 8301996e68..cba31b458b 100644
--- a/disas/libvixl/README
+++ b/disas/libvixl/README
@@ -2,7 +2,7 @@
The code in this directory is a subset of libvixl:
https://github.com/armvixl/vixl
(specifically, it is the set of files needed for disassembly only,
-taken from libvixl 1.5).
+taken from libvixl 1.6).
Bugfixes should preferably be sent upstream initially.
The disassembler does not currently support the entire A64 instruction
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h
index cc0b758dd3..16a704b7d4 100644
--- a/disas/libvixl/a64/assembler-a64.h
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -32,6 +32,7 @@
#include "globals.h"
#include "utils.h"
+#include "code-buffer.h"
#include "a64/instructions-a64.h"
namespace vixl {
@@ -168,6 +169,11 @@ class CPURegister {
return type_ == kFPRegister;
}
+ bool IsW() const { return IsValidRegister() && Is32Bits(); }
+ bool IsX() const { return IsValidRegister() && Is64Bits(); }
+ bool IsS() const { return IsValidFPRegister() && Is32Bits(); }
+ bool IsD() const { return IsValidFPRegister() && Is64Bits(); }
+
const Register& W() const;
const Register& X() const;
const FPRegister& S() const;
@@ -191,12 +197,12 @@ class CPURegister {
class Register : public CPURegister {
public:
- explicit Register() : CPURegister() {}
+ Register() : CPURegister() {}
inline explicit Register(const CPURegister& other)
: CPURegister(other.code(), other.size(), other.type()) {
VIXL_ASSERT(IsValidRegister());
}
- explicit Register(unsigned code, unsigned size)
+ Register(unsigned code, unsigned size)
: CPURegister(code, size, kRegister) {}
bool IsValid() const {
@@ -536,7 +542,7 @@ class Operand {
class MemOperand {
public:
explicit MemOperand(Register base,
- ptrdiff_t offset = 0,
+ int64_t offset = 0,
AddrMode addrmode = Offset);
explicit MemOperand(Register base,
Register regoffset,
@@ -552,7 +558,7 @@ class MemOperand {
const Register& base() const { return base_; }
const Register& regoffset() const { return regoffset_; }
- ptrdiff_t offset() const { return offset_; }
+ int64_t offset() const { return offset_; }
AddrMode addrmode() const { return addrmode_; }
Shift shift() const { return shift_; }
Extend extend() const { return extend_; }
@@ -565,7 +571,7 @@ class MemOperand {
private:
Register base_;
Register regoffset_;
- ptrdiff_t offset_;
+ int64_t offset_;
AddrMode addrmode_;
Shift shift_;
Extend extend_;
@@ -680,32 +686,80 @@ class Label {
};
-// TODO: Obtain better values for these, based on real-world data.
-const int kLiteralPoolCheckInterval = 4 * KBytes;
-const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
+// A literal is a 32-bit or 64-bit piece of data stored in the instruction
+// stream and loaded through a pc relative load. The same literal can be
+// referred to by multiple instructions but a literal can only reside at one
+// place in memory. A literal can be used by a load before or after being
+// placed in memory.
+//
+// Internally an offset of 0 is associated with a literal which has been
+// neither used nor placed. Then two possibilities arise:
+// 1) the label is placed, the offset (stored as offset + 1) is used to
+// resolve any subsequent load using the label.
+// 2) the label is not placed and offset is the offset of the last load using
+// the literal (stored as -offset -1). If multiple loads refer to this
+// literal then the last load holds the offset of the preceding load and
+// all loads form a chain. Once the offset is placed all the loads in the
+// chain are resolved and future loads fall back to possibility 1.
+class RawLiteral {
+ public:
+ RawLiteral() : size_(0), offset_(0), raw_value_(0) {}
+ size_t size() {
+ VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
+ VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
+ VIXL_ASSERT((size_ == kXRegSizeInBytes) || (size_ == kWRegSizeInBytes));
+ return size_;
+ }
+ uint64_t raw_value64() {
+ VIXL_ASSERT(size_ == kXRegSizeInBytes);
+ return raw_value_;
+ }
+ uint32_t raw_value32() {
+ VIXL_ASSERT(size_ == kWRegSizeInBytes);
+ VIXL_ASSERT(is_uint32(raw_value_) || is_int32(raw_value_));
+ return static_cast<uint32_t>(raw_value_);
+ }
+ bool IsUsed() { return offset_ < 0; }
+ bool IsPlaced() { return offset_ > 0; }
-// Control whether a branch over the literal pool should also be emitted. This
-// is needed if the literal pool has to be emitted in the middle of the JITted
-// code.
-enum LiteralPoolEmitOption {
- JumpRequired,
- NoJumpRequired
-};
+ protected:
+ ptrdiff_t offset() {
+ VIXL_ASSERT(IsPlaced());
+ return offset_ - 1;
+ }
+ void set_offset(ptrdiff_t offset) {
+ VIXL_ASSERT(offset >= 0);
+ VIXL_ASSERT(IsWordAligned(offset));
+ VIXL_ASSERT(!IsPlaced());
+ offset_ = offset + 1;
+ }
+ ptrdiff_t last_use() {
+ VIXL_ASSERT(IsUsed());
+ return -offset_ - 1;
+ }
+ void set_last_use(ptrdiff_t offset) {
+ VIXL_ASSERT(offset >= 0);
+ VIXL_ASSERT(IsWordAligned(offset));
+ VIXL_ASSERT(!IsPlaced());
+ offset_ = -offset - 1;
+ }
+ size_t size_;
+ ptrdiff_t offset_;
+ uint64_t raw_value_;
-// Literal pool entry.
-class Literal {
- public:
- Literal(Instruction* pc, uint64_t imm, unsigned size)
- : pc_(pc), value_(imm), size_(size) {}
+ friend class Assembler;
+};
- private:
- Instruction* pc_;
- int64_t value_;
- unsigned size_;
- friend class Assembler;
+template <typename T>
+class Literal : public RawLiteral {
+ public:
+ explicit Literal(T value) {
+ size_ = sizeof(value);
+ memcpy(&raw_value_, &value, sizeof(value));
+ }
};
@@ -750,7 +804,9 @@ enum LoadStoreScalingOption {
// Assembler.
class Assembler {
public:
- Assembler(byte* buffer, unsigned buffer_size,
+ Assembler(size_t capacity,
+ PositionIndependentCodeOption pic = PositionIndependentCode);
+ Assembler(byte* buffer, size_t capacity,
PositionIndependentCodeOption pic = PositionIndependentCode);
// The destructor asserts that one of the following is true:
@@ -763,9 +819,6 @@ class Assembler {
// Start generating code from the beginning of the buffer, discarding any code
// and data that has already been emitted into the buffer.
- //
- // In order to avoid any accidental transfer of state, Reset ASSERTs that the
- // constant pool is not blocked.
void Reset();
// Finalize a code buffer of generated instructions. This function must be
@@ -776,13 +829,47 @@ class Assembler {
// Bind a label to the current PC.
void bind(Label* label);
+ // Bind a label to a specified offset from the start of the buffer.
+ void BindToOffset(Label* label, ptrdiff_t offset);
+
+ // Place a literal at the current PC.
+ void place(RawLiteral* literal);
+
+ ptrdiff_t CursorOffset() const {
+ return buffer_->CursorOffset();
+ }
+
+ ptrdiff_t BufferEndOffset() const {
+ return static_cast<ptrdiff_t>(buffer_->capacity());
+ }
+
+ // Return the address of an offset in the buffer.
+ template <typename T>
+ inline T GetOffsetAddress(ptrdiff_t offset) {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return buffer_->GetOffsetAddress<T>(offset);
+ }
+
// Return the address of a bound label.
template <typename T>
inline T GetLabelAddress(const Label * label) {
VIXL_ASSERT(label->IsBound());
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- VIXL_STATIC_ASSERT(sizeof(*buffer_) == 1);
- return reinterpret_cast<T>(buffer_ + label->location());
+ return GetOffsetAddress<T>(label->location());
+ }
+
+ // Return the address of the cursor.
+ template <typename T>
+ inline T GetCursorAddress() {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return GetOffsetAddress<T>(CursorOffset());
+ }
+
+ // Return the address of the start of the buffer.
+ template <typename T>
+ inline T GetStartAddress() {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return GetOffsetAddress<T>(0);
}
// Instruction set functions.
@@ -1324,14 +1411,17 @@ class Assembler {
void stnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
- // Load literal to register.
- void ldr(const Register& rt, uint64_t imm);
+ // Load integer or FP register from literal pool.
+ void ldr(const CPURegister& rt, RawLiteral* literal);
+
+ // Load word with sign extension from literal pool.
+ void ldrsw(const Register& rt, RawLiteral* literal);
- // Load double precision floating point literal to FP register.
- void ldr(const FPRegister& ft, double imm);
+ // Load integer or FP register from pc + imm19 << 2.
+ void ldr(const CPURegister& rt, int imm19);
- // Load single precision floating point literal to FP register.
- void ldr(const FPRegister& ft, float imm);
+ // Load word with sign extension from pc + imm19 << 2.
+ void ldrsw(const Register& rt, int imm19);
// Store exclusive byte.
void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
@@ -1618,25 +1708,26 @@ class Assembler {
inline void dci(Instr raw_inst) { Emit(raw_inst); }
// Emit 32 bits of data into the instruction stream.
- inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
+ inline void dc32(uint32_t data) {
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit32(data);
+ }
// Emit 64 bits of data into the instruction stream.
- inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
+ inline void dc64(uint64_t data) {
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit64(data);
+ }
// Copy a string into the instruction stream, including the terminating NULL
- // character. The instruction pointer (pc_) is then aligned correctly for
+ // character. The instruction pointer is then aligned correctly for
// subsequent instructions.
- void EmitStringData(const char * string) {
+ void EmitString(const char * string) {
VIXL_ASSERT(string != NULL);
+ VIXL_ASSERT(buffer_monitor_ > 0);
- size_t len = strlen(string) + 1;
- EmitData(string, len);
-
- // Pad with NULL characters until pc_ is aligned.
- const char pad[] = {'\0', '\0', '\0', '\0'};
- VIXL_STATIC_ASSERT(sizeof(pad) == kInstructionSize);
- Instruction* next_pc = AlignUp(pc_, kInstructionSize);
- EmitData(&pad, next_pc - pc_);
+ buffer_->EmitString(string);
+ buffer_->Align();
}
// Code generation helpers.
@@ -1912,43 +2003,39 @@ class Assembler {
return scale << FPScale_offset;
}
- // Size of the code generated in bytes
- size_t SizeOfCodeGenerated() const {
- VIXL_ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
- return pc_ - buffer_;
- }
-
// Size of the code generated since label to the current position.
size_t SizeOfCodeGeneratedSince(Label* label) const {
- size_t pc_offset = SizeOfCodeGenerated();
-
VIXL_ASSERT(label->IsBound());
- VIXL_ASSERT(pc_offset >= static_cast<size_t>(label->location()));
- VIXL_ASSERT(pc_offset < buffer_size_);
-
- return pc_offset - label->location();
+ return buffer_->OffsetFrom(label->location());
}
+ size_t BufferCapacity() const { return buffer_->capacity(); }
- inline void BlockLiteralPool() {
- literal_pool_monitor_++;
- }
+ size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
- inline void ReleaseLiteralPool() {
- if (--literal_pool_monitor_ == 0) {
- // Has the literal pool been blocked for too long?
- VIXL_ASSERT(literals_.empty() ||
- (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
+ void EnsureSpaceFor(size_t amount) {
+ if (buffer_->RemainingBytes() < amount) {
+ size_t capacity = buffer_->capacity();
+ size_t size = buffer_->CursorOffset();
+ do {
+ // TODO(all): refine.
+ capacity *= 2;
+ } while ((capacity - size) < amount);
+ buffer_->Grow(capacity);
}
}
- inline bool IsLiteralPoolBlocked() {
- return literal_pool_monitor_ != 0;
+#ifdef DEBUG
+ void AcquireBuffer() {
+ VIXL_ASSERT(buffer_monitor_ >= 0);
+ buffer_monitor_++;
}
- void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
- void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
- size_t LiteralPoolSize();
+ void ReleaseBuffer() {
+ buffer_monitor_--;
+ VIXL_ASSERT(buffer_monitor_ >= 0);
+ }
+#endif
inline PositionIndependentCodeOption pic() {
return pic_;
@@ -1959,22 +2046,30 @@ class Assembler {
(pic() == PositionDependentCode);
}
- protected:
- inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
+ static inline const Register& AppropriateZeroRegFor(const CPURegister& reg) {
return reg.Is64Bits() ? xzr : wzr;
}
+ protected:
void LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op,
LoadStoreScalingOption option = PreferScaledOffset);
- static bool IsImmLSUnscaled(ptrdiff_t offset);
- static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
+ static bool IsImmLSUnscaled(int64_t offset);
+ static bool IsImmLSScaled(int64_t offset, LSDataSize size);
+
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ static bool IsImmLSPair(int64_t offset, LSDataSize size);
+ // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
+ // reports a bogus uninitialised warning then.
void Logical(const Register& rd,
const Register& rn,
- const Operand& operand,
+ const Operand operand,
LogicalOp op);
void LogicalImmediate(const Register& rd,
const Register& rn,
@@ -2035,6 +2130,7 @@ class Assembler {
const CPURegister& rt, const CPURegister& rt2);
static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2);
+ static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
private:
@@ -2053,10 +2149,6 @@ class Assembler {
const Operand& operand,
FlagsUpdate S,
Instr op);
- void LoadStorePair(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& addr,
- LoadStorePairOp op);
void LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
@@ -2088,8 +2180,6 @@ class Assembler {
const FPRegister& fa,
FPDataProcessing3SourceOp op);
- void RecordLiteral(int64_t imm, unsigned size);
-
// Link the current (not-yet-emitted) instruction to the specified label, then
// return an offset to be encoded in the instruction. If the label is not yet
// bound, an offset of 0 is returned.
@@ -2098,79 +2188,102 @@ class Assembler {
ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
// A common implementation for the LinkAndGet<Type>OffsetTo helpers.
- template <int element_size>
+ template <int element_shift>
ptrdiff_t LinkAndGetOffsetTo(Label* label);
- // Emit the instruction at pc_.
+ // Literal load offset are in words (32-bit).
+ ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
+
+ // Emit the instruction in buffer_.
void Emit(Instr instruction) {
- VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
- VIXL_ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
-
-#ifdef DEBUG
- finalized_ = false;
-#endif
-
- memcpy(pc_, &instruction, sizeof(instruction));
- pc_ += sizeof(instruction);
- CheckBufferSpace();
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit32(instruction);
}
- // Emit data inline in the instruction stream.
- void EmitData(void const * data, unsigned size) {
- VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
- VIXL_ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+ // Buffer where the code is emitted.
+ CodeBuffer* buffer_;
+ PositionIndependentCodeOption pic_;
#ifdef DEBUG
- finalized_ = false;
+ int64_t buffer_monitor_;
#endif
+};
- // TODO: Record this 'instruction' as data, so that it can be disassembled
- // correctly.
- memcpy(pc_, data, size);
- pc_ += size;
- CheckBufferSpace();
- }
-
- inline void CheckBufferSpace() {
- VIXL_ASSERT(pc_ < (buffer_ + buffer_size_));
- if (pc_ > next_literal_pool_check_) {
- CheckLiteralPool();
- }
- }
-
- // The buffer into which code and relocation info are generated.
- Instruction* buffer_;
- // Buffer size, in bytes.
- size_t buffer_size_;
- Instruction* pc_;
- std::list<Literal*> literals_;
- Instruction* next_literal_pool_check_;
- unsigned literal_pool_monitor_;
- PositionIndependentCodeOption pic_;
+// All Assembler emits MUST acquire/release the underlying code buffer. The
+// helper scope below will do so and optionally ensure the buffer is big enough
+// to receive the emit. It is possible to request the scope not to perform any
+// checks (kNoCheck) if for example it is known in advance the buffer size is
+// adequate or there is some other size checking mechanism in place.
+class CodeBufferCheckScope {
+ public:
+ // Tell whether or not the scope needs to ensure the associated CodeBuffer
+ // has enough space for the requested size.
+ enum CheckPolicy {
+ kNoCheck,
+ kCheck
+ };
- friend class Label;
- friend class BlockLiteralPoolScope;
+ // Tell whether or not the scope should assert the amount of code emitted
+ // within the scope is consistent with the requested amount.
+ enum AssertPolicy {
+ kNoAssert, // No assert required.
+ kExactSize, // The code emitted must be exactly size bytes.
+ kMaximumSize // The code emitted must be at most size bytes.
+ };
+ CodeBufferCheckScope(Assembler* assm,
+ size_t size,
+ CheckPolicy check_policy = kCheck,
+ AssertPolicy assert_policy = kMaximumSize)
+ : assm_(assm) {
+ if (check_policy == kCheck) assm->EnsureSpaceFor(size);
#ifdef DEBUG
- bool finalized_;
+ assm->bind(&start_);
+ size_ = size;
+ assert_policy_ = assert_policy;
+ assm->AcquireBuffer();
+#else
+ USE(assert_policy);
#endif
-};
+ }
-class BlockLiteralPoolScope {
- public:
- explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
- assm_->BlockLiteralPool();
+ // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
+ explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
+#ifdef DEBUG
+ size_ = 0;
+ assert_policy_ = kNoAssert;
+ assm->AcquireBuffer();
+#endif
}
- ~BlockLiteralPoolScope() {
- assm_->ReleaseLiteralPool();
+ ~CodeBufferCheckScope() {
+#ifdef DEBUG
+ assm_->ReleaseBuffer();
+ switch (assert_policy_) {
+ case kNoAssert: break;
+ case kExactSize:
+ VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
+ break;
+ case kMaximumSize:
+ VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+#endif
}
- private:
+ protected:
Assembler* assm_;
+#ifdef DEBUG
+ Label start_;
+ size_t size_;
+ AssertPolicy assert_policy_;
+#endif
};
+
} // namespace vixl
#endif // VIXL_A64_ASSEMBLER_A64_H_
diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc
index 5831b73024..82591ca309 100644
--- a/disas/libvixl/a64/decoder-a64.cc
+++ b/disas/libvixl/a64/decoder-a64.cc
@@ -29,8 +29,8 @@
#include "a64/decoder-a64.h"
namespace vixl {
-// Top-level instruction decode function.
-void Decoder::Decode(Instruction *instr) {
+
+void Decoder::DecodeInstruction(const Instruction *instr) {
if (instr->Bits(28, 27) == 0) {
VisitUnallocated(instr);
} else {
@@ -109,20 +109,17 @@ void Decoder::Decode(Instruction *instr) {
}
void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
- visitors_.remove(new_visitor);
- visitors_.push_front(new_visitor);
+ visitors_.push_back(new_visitor);
}
void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
- visitors_.remove(new_visitor);
- visitors_.push_back(new_visitor);
+ visitors_.push_front(new_visitor);
}
void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
DecoderVisitor* registered_visitor) {
- visitors_.remove(new_visitor);
std::list<DecoderVisitor*>::iterator it;
for (it = visitors_.begin(); it != visitors_.end(); it++) {
if (*it == registered_visitor) {
@@ -139,7 +136,6 @@ void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
DecoderVisitor* registered_visitor) {
- visitors_.remove(new_visitor);
std::list<DecoderVisitor*>::iterator it;
for (it = visitors_.begin(); it != visitors_.end(); it++) {
if (*it == registered_visitor) {
@@ -160,7 +156,7 @@ void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
}
-void Decoder::DecodePCRelAddressing(Instruction* instr) {
+void Decoder::DecodePCRelAddressing(const Instruction* instr) {
VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
// We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
// decode.
@@ -169,7 +165,7 @@ void Decoder::DecodePCRelAddressing(Instruction* instr) {
}
-void Decoder::DecodeBranchSystemException(Instruction* instr) {
+void Decoder::DecodeBranchSystemException(const Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
@@ -270,7 +266,7 @@ void Decoder::DecodeBranchSystemException(Instruction* instr) {
}
-void Decoder::DecodeLoadStore(Instruction* instr) {
+void Decoder::DecodeLoadStore(const Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
@@ -388,7 +384,7 @@ void Decoder::DecodeLoadStore(Instruction* instr) {
}
-void Decoder::DecodeLogical(Instruction* instr) {
+void Decoder::DecodeLogical(const Instruction* instr) {
VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
if (instr->Mask(0x80400000) == 0x00400000) {
@@ -407,7 +403,7 @@ void Decoder::DecodeLogical(Instruction* instr) {
}
-void Decoder::DecodeBitfieldExtract(Instruction* instr) {
+void Decoder::DecodeBitfieldExtract(const Instruction* instr) {
VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
if ((instr->Mask(0x80400000) == 0x80000000) ||
@@ -432,7 +428,7 @@ void Decoder::DecodeBitfieldExtract(Instruction* instr) {
}
-void Decoder::DecodeAddSubImmediate(Instruction* instr) {
+void Decoder::DecodeAddSubImmediate(const Instruction* instr) {
VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
if (instr->Bit(23) == 1) {
VisitUnallocated(instr);
@@ -442,7 +438,7 @@ void Decoder::DecodeAddSubImmediate(Instruction* instr) {
}
-void Decoder::DecodeDataProcessing(Instruction* instr) {
+void Decoder::DecodeDataProcessing(const Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
(instr->Bits(27, 24) == 0xB));
@@ -557,7 +553,7 @@ void Decoder::DecodeDataProcessing(Instruction* instr) {
}
-void Decoder::DecodeFP(Instruction* instr) {
+void Decoder::DecodeFP(const Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF));
@@ -684,14 +680,14 @@ void Decoder::DecodeFP(Instruction* instr) {
}
-void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
+void Decoder::DecodeAdvSIMDLoadStore(const Instruction* instr) {
// TODO: Implement Advanced SIMD load/store instruction decode.
VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
VisitUnimplemented(instr);
}
-void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
+void Decoder::DecodeAdvSIMDDataProcessing(const Instruction* instr) {
// TODO: Implement Advanced SIMD data processing instruction decode.
VIXL_ASSERT(instr->Bits(27, 25) == 0x7);
VisitUnimplemented(instr);
@@ -699,7 +695,7 @@ void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
#define DEFINE_VISITOR_CALLERS(A) \
- void Decoder::Visit##A(Instruction *instr) { \
+ void Decoder::Visit##A(const Instruction *instr) { \
VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed); \
std::list<DecoderVisitor*>::iterator it; \
for (it = visitors_.begin(); it != visitors_.end(); it++) { \
diff --git a/disas/libvixl/a64/decoder-a64.h b/disas/libvixl/a64/decoder-a64.h
index 72c15196ce..172594c89b 100644
--- a/disas/libvixl/a64/decoder-a64.h
+++ b/disas/libvixl/a64/decoder-a64.h
@@ -88,112 +88,152 @@ namespace vixl {
// must provide implementations for all of these functions.
class DecoderVisitor {
public:
- #define DECLARE(A) virtual void Visit##A(Instruction* instr) = 0;
+ enum VisitorConstness {
+ kConstVisitor,
+ kNonConstVisitor
+ };
+ explicit DecoderVisitor(VisitorConstness constness = kConstVisitor)
+ : constness_(constness) {}
+
+ virtual ~DecoderVisitor() {}
+
+ #define DECLARE(A) virtual void Visit##A(const Instruction* instr) = 0;
VISITOR_LIST(DECLARE)
#undef DECLARE
- virtual ~DecoderVisitor() {}
+ bool IsConstVisitor() const { return constness_ == kConstVisitor; }
+ Instruction* MutableInstruction(const Instruction* instr) {
+ VIXL_ASSERT(!IsConstVisitor());
+ return const_cast<Instruction*>(instr);
+ }
private:
- // Visitors are registered in a list.
- std::list<DecoderVisitor*> visitors_;
-
- friend class Decoder;
+ VisitorConstness constness_;
};
-class Decoder: public DecoderVisitor {
+class Decoder {
public:
Decoder() {}
- // Top-level instruction decoder function. Decodes an instruction and calls
- // the visitor functions registered with the Decoder class.
- void Decode(Instruction *instr);
+ // Top-level wrappers around the actual decoding function.
+ void Decode(const Instruction* instr) {
+ std::list<DecoderVisitor*>::iterator it;
+ for (it = visitors_.begin(); it != visitors_.end(); it++) {
+ VIXL_ASSERT((*it)->IsConstVisitor());
+ }
+ DecodeInstruction(instr);
+ }
+ void Decode(Instruction* instr) {
+ DecodeInstruction(const_cast<const Instruction*>(instr));
+ }
// Register a new visitor class with the decoder.
// Decode() will call the corresponding visitor method from all registered
// visitor classes when decoding reaches the leaf node of the instruction
// decode tree.
- // Visitors are called in the order.
- // A visitor can only be registered once.
- // Registering an already registered visitor will update its position.
+ // Visitors are called in order.
+ // A visitor can be registered multiple times.
//
// d.AppendVisitor(V1);
// d.AppendVisitor(V2);
- // d.PrependVisitor(V2); // Move V2 at the start of the list.
- // d.InsertVisitorBefore(V3, V2);
- // d.AppendVisitor(V4);
- // d.AppendVisitor(V4); // No effect.
+ // d.PrependVisitor(V2);
+ // d.AppendVisitor(V3);
//
// d.Decode(i);
//
- // will call in order visitor methods in V3, V2, V1, V4.
+ // will call in order visitor methods in V2, V1, V2, V3.
void AppendVisitor(DecoderVisitor* visitor);
void PrependVisitor(DecoderVisitor* visitor);
+ // These helpers register `new_visitor` before or after the first instance of
+ // `registered_visiter` in the list.
+ // So if
+ // V1, V2, V1, V2
+ // are registered in this order in the decoder, calls to
+ // d.InsertVisitorAfter(V3, V1);
+ // d.InsertVisitorBefore(V4, V2);
+ // will yield the order
+ // V1, V3, V4, V2, V1, V2
+ //
+ // For more complex modifications of the order of registered visitors, one can
+ // directly access and modify the list of visitors via the `visitors()'
+ // accessor.
void InsertVisitorBefore(DecoderVisitor* new_visitor,
DecoderVisitor* registered_visitor);
void InsertVisitorAfter(DecoderVisitor* new_visitor,
DecoderVisitor* registered_visitor);
- // Remove a previously registered visitor class from the list of visitors
- // stored by the decoder.
+ // Remove all instances of a previously registered visitor class from the list
+ // of visitors stored by the decoder.
void RemoveVisitor(DecoderVisitor* visitor);
- #define DECLARE(A) void Visit##A(Instruction* instr);
+ #define DECLARE(A) void Visit##A(const Instruction* instr);
VISITOR_LIST(DECLARE)
#undef DECLARE
+
+ std::list<DecoderVisitor*>* visitors() { return &visitors_; }
+
private:
+ // Decodes an instruction and calls the visitor functions registered with the
+ // Decoder class.
+ void DecodeInstruction(const Instruction* instr);
+
// Decode the PC relative addressing instruction, and call the corresponding
// visitors.
// On entry, instruction bits 27:24 = 0x0.
- void DecodePCRelAddressing(Instruction* instr);
+ void DecodePCRelAddressing(const Instruction* instr);
// Decode the add/subtract immediate instruction, and call the correspoding
// visitors.
// On entry, instruction bits 27:24 = 0x1.
- void DecodeAddSubImmediate(Instruction* instr);
+ void DecodeAddSubImmediate(const Instruction* instr);
// Decode the branch, system command, and exception generation parts of
// the instruction tree, and call the corresponding visitors.
// On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}.
- void DecodeBranchSystemException(Instruction* instr);
+ void DecodeBranchSystemException(const Instruction* instr);
// Decode the load and store parts of the instruction tree, and call
// the corresponding visitors.
// On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}.
- void DecodeLoadStore(Instruction* instr);
+ void DecodeLoadStore(const Instruction* instr);
// Decode the logical immediate and move wide immediate parts of the
// instruction tree, and call the corresponding visitors.
// On entry, instruction bits 27:24 = 0x2.
- void DecodeLogical(Instruction* instr);
+ void DecodeLogical(const Instruction* instr);
// Decode the bitfield and extraction parts of the instruction tree,
// and call the corresponding visitors.
// On entry, instruction bits 27:24 = 0x3.
- void DecodeBitfieldExtract(Instruction* instr);
+ void DecodeBitfieldExtract(const Instruction* instr);
// Decode the data processing parts of the instruction tree, and call the
// corresponding visitors.
// On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}.
- void DecodeDataProcessing(Instruction* instr);
+ void DecodeDataProcessing(const Instruction* instr);
// Decode the floating point parts of the instruction tree, and call the
// corresponding visitors.
// On entry, instruction bits 27:24 = {0xE, 0xF}.
- void DecodeFP(Instruction* instr);
+ void DecodeFP(const Instruction* instr);
// Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
// and call the corresponding visitors.
// On entry, instruction bits 29:25 = 0x6.
- void DecodeAdvSIMDLoadStore(Instruction* instr);
+ void DecodeAdvSIMDLoadStore(const Instruction* instr);
// Decode the Advanced SIMD (NEON) data processing part of the instruction
// tree, and call the corresponding visitors.
// On entry, instruction bits 27:25 = 0x7.
- void DecodeAdvSIMDDataProcessing(Instruction* instr);
+ void DecodeAdvSIMDDataProcessing(const Instruction* instr);
+
+ private:
+ // Visitors are registered in a list.
+ std::list<DecoderVisitor*> visitors_;
};
+
} // namespace vixl
#endif // VIXL_A64_DECODER_A64_H_
diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc
index 248ebfd436..e4a74aa57c 100644
--- a/disas/libvixl/a64/disasm-a64.cc
+++ b/disas/libvixl/a64/disasm-a64.cc
@@ -57,7 +57,7 @@ char* Disassembler::GetOutput() {
}
-void Disassembler::VisitAddSubImmediate(Instruction* instr) {
+void Disassembler::VisitAddSubImmediate(const Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
(instr->ImmAddSub() == 0) ? true : false;
@@ -102,7 +102,7 @@ void Disassembler::VisitAddSubImmediate(Instruction* instr) {
}
-void Disassembler::VisitAddSubShifted(Instruction* instr) {
+void Disassembler::VisitAddSubShifted(const Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
@@ -149,7 +149,7 @@ void Disassembler::VisitAddSubShifted(Instruction* instr) {
}
-void Disassembler::VisitAddSubExtended(Instruction* instr) {
+void Disassembler::VisitAddSubExtended(const Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
const char *mnemonic = "";
Extend mode = static_cast<Extend>(instr->ExtendMode());
@@ -187,7 +187,7 @@ void Disassembler::VisitAddSubExtended(Instruction* instr) {
}
-void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
+void Disassembler::VisitAddSubWithCarry(const Instruction* instr) {
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm";
@@ -222,7 +222,7 @@ void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
}
-void Disassembler::VisitLogicalImmediate(Instruction* instr) {
+void Disassembler::VisitLogicalImmediate(const Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
@@ -294,7 +294,7 @@ bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
}
-void Disassembler::VisitLogicalShifted(Instruction* instr) {
+void Disassembler::VisitLogicalShifted(const Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
@@ -345,7 +345,7 @@ void Disassembler::VisitLogicalShifted(Instruction* instr) {
}
-void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
+void Disassembler::VisitConditionalCompareRegister(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
@@ -360,7 +360,7 @@ void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
}
-void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
+void Disassembler::VisitConditionalCompareImmediate(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
@@ -375,7 +375,7 @@ void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
}
-void Disassembler::VisitConditionalSelect(Instruction* instr) {
+void Disassembler::VisitConditionalSelect(const Instruction* instr) {
bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
bool rn_is_rm = (instr->Rn() == instr->Rm());
const char *mnemonic = "";
@@ -428,7 +428,7 @@ void Disassembler::VisitConditionalSelect(Instruction* instr) {
}
-void Disassembler::VisitBitfield(Instruction* instr) {
+void Disassembler::VisitBitfield(const Instruction* instr) {
unsigned s = instr->ImmS();
unsigned r = instr->ImmR();
unsigned rd_size_minus_1 =
@@ -506,7 +506,7 @@ void Disassembler::VisitBitfield(Instruction* instr) {
}
-void Disassembler::VisitExtract(Instruction* instr) {
+void Disassembler::VisitExtract(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
@@ -527,7 +527,7 @@ void Disassembler::VisitExtract(Instruction* instr) {
}
-void Disassembler::VisitPCRelAddressing(Instruction* instr) {
+void Disassembler::VisitPCRelAddressing(const Instruction* instr) {
switch (instr->Mask(PCRelAddressingMask)) {
case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
@@ -536,7 +536,7 @@ void Disassembler::VisitPCRelAddressing(Instruction* instr) {
}
-void Disassembler::VisitConditionalBranch(Instruction* instr) {
+void Disassembler::VisitConditionalBranch(const Instruction* instr) {
switch (instr->Mask(ConditionalBranchMask)) {
case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
default: VIXL_UNREACHABLE();
@@ -544,7 +544,8 @@ void Disassembler::VisitConditionalBranch(Instruction* instr) {
}
-void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) {
+void Disassembler::VisitUnconditionalBranchToRegister(
+ const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Xn";
@@ -564,7 +565,7 @@ void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) {
}
-void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
+void Disassembler::VisitUnconditionalBranch(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'BImmUncn";
@@ -577,7 +578,7 @@ void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
}
-void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
+void Disassembler::VisitDataProcessing1Source(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Rn";
@@ -598,7 +599,7 @@ void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
}
-void Disassembler::VisitDataProcessing2Source(Instruction* instr) {
+void Disassembler::VisitDataProcessing2Source(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Rd, 'Rn, 'Rm";
@@ -619,7 +620,7 @@ void Disassembler::VisitDataProcessing2Source(Instruction* instr) {
}
-void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
+void Disassembler::VisitDataProcessing3Source(const Instruction* instr) {
bool ra_is_zr = RaIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
@@ -697,7 +698,7 @@ void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
}
-void Disassembler::VisitCompareBranch(Instruction* instr) {
+void Disassembler::VisitCompareBranch(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rt, 'BImmCmpa";
@@ -712,7 +713,7 @@ void Disassembler::VisitCompareBranch(Instruction* instr) {
}
-void Disassembler::VisitTestBranch(Instruction* instr) {
+void Disassembler::VisitTestBranch(const Instruction* instr) {
const char *mnemonic = "";
// If the top bit of the immediate is clear, the tested register is
// disassembled as Wt, otherwise Xt. As the top bit of the immediate is
@@ -729,7 +730,7 @@ void Disassembler::VisitTestBranch(Instruction* instr) {
}
-void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
+void Disassembler::VisitMoveWideImmediate(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'IMoveImm";
@@ -768,7 +769,7 @@ void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
V(LDR_s, "ldr", "'St") \
V(LDR_d, "ldr", "'Dt")
-void Disassembler::VisitLoadStorePreIndex(Instruction* instr) {
+void Disassembler::VisitLoadStorePreIndex(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePreIndex)";
@@ -782,7 +783,7 @@ void Disassembler::VisitLoadStorePreIndex(Instruction* instr) {
}
-void Disassembler::VisitLoadStorePostIndex(Instruction* instr) {
+void Disassembler::VisitLoadStorePostIndex(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePostIndex)";
@@ -796,7 +797,7 @@ void Disassembler::VisitLoadStorePostIndex(Instruction* instr) {
}
-void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+void Disassembler::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStoreUnsignedOffset)";
@@ -811,7 +812,7 @@ void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) {
}
-void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) {
+void Disassembler::VisitLoadStoreRegisterOffset(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStoreRegisterOffset)";
@@ -826,7 +827,7 @@ void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) {
}
-void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+void Disassembler::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Wt, ['Xns'ILS]";
const char *form_x = "'Xt, ['Xns'ILS]";
@@ -857,7 +858,7 @@ void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) {
}
-void Disassembler::VisitLoadLiteral(Instruction* instr) {
+void Disassembler::VisitLoadLiteral(const Instruction* instr) {
const char *mnemonic = "ldr";
const char *form = "(LoadLiteral)";
@@ -866,6 +867,11 @@ void Disassembler::VisitLoadLiteral(Instruction* instr) {
case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
+ case LDRSW_x_lit: {
+ mnemonic = "ldrsw";
+ form = "'Xt, 'ILLiteral 'LValue";
+ break;
+ }
default: mnemonic = "unimplemented";
}
Format(instr, mnemonic, form);
@@ -883,7 +889,7 @@ void Disassembler::VisitLoadLiteral(Instruction* instr) {
V(STP_d, "stp", "'Dt, 'Dt2", "8") \
V(LDP_d, "ldp", "'Dt, 'Dt2", "8")
-void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) {
+void Disassembler::VisitLoadStorePairPostIndex(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairPostIndex)";
@@ -897,7 +903,7 @@ void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) {
}
-void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) {
+void Disassembler::VisitLoadStorePairPreIndex(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairPreIndex)";
@@ -911,7 +917,7 @@ void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) {
}
-void Disassembler::VisitLoadStorePairOffset(Instruction* instr) {
+void Disassembler::VisitLoadStorePairOffset(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairOffset)";
@@ -925,7 +931,7 @@ void Disassembler::VisitLoadStorePairOffset(Instruction* instr) {
}
-void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
+void Disassembler::VisitLoadStorePairNonTemporal(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form;
@@ -944,7 +950,7 @@ void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
}
-void Disassembler::VisitLoadStoreExclusive(Instruction* instr) {
+void Disassembler::VisitLoadStoreExclusive(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form;
@@ -987,7 +993,7 @@ void Disassembler::VisitLoadStoreExclusive(Instruction* instr) {
}
-void Disassembler::VisitFPCompare(Instruction* instr) {
+void Disassembler::VisitFPCompare(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Fn, 'Fm";
const char *form_zero = "'Fn, #0.0";
@@ -1003,7 +1009,7 @@ void Disassembler::VisitFPCompare(Instruction* instr) {
}
-void Disassembler::VisitFPConditionalCompare(Instruction* instr) {
+void Disassembler::VisitFPConditionalCompare(const Instruction* instr) {
const char *mnemonic = "unmplemented";
const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
@@ -1018,7 +1024,7 @@ void Disassembler::VisitFPConditionalCompare(Instruction* instr) {
}
-void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
+void Disassembler::VisitFPConditionalSelect(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
@@ -1031,7 +1037,7 @@ void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
}
-void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) {
+void Disassembler::VisitFPDataProcessing1Source(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Fd, 'Fn";
@@ -1059,7 +1065,7 @@ void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) {
}
-void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
+void Disassembler::VisitFPDataProcessing2Source(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm";
@@ -1083,7 +1089,7 @@ void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
}
-void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
+void Disassembler::VisitFPDataProcessing3Source(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
@@ -1102,7 +1108,7 @@ void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
}
-void Disassembler::VisitFPImmediate(Instruction* instr) {
+void Disassembler::VisitFPImmediate(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "(FPImmediate)";
@@ -1115,7 +1121,7 @@ void Disassembler::VisitFPImmediate(Instruction* instr) {
}
-void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
+void Disassembler::VisitFPIntegerConvert(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(FPIntegerConvert)";
const char *form_rf = "'Rd, 'Fn";
@@ -1171,7 +1177,7 @@ void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
}
-void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
+void Disassembler::VisitFPFixedPointConvert(const Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Fn, 'IFPFBits";
const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
@@ -1199,7 +1205,7 @@ void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
}
-void Disassembler::VisitSystem(Instruction* instr) {
+void Disassembler::VisitSystem(const Instruction* instr) {
// Some system instructions hijack their Op and Cp fields to represent a
// range of immediates instead of indicating a different instruction. This
// makes the decoding tricky.
@@ -1267,7 +1273,7 @@ void Disassembler::VisitSystem(Instruction* instr) {
}
-void Disassembler::VisitException(Instruction* instr) {
+void Disassembler::VisitException(const Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'IDebug";
@@ -1286,22 +1292,75 @@ void Disassembler::VisitException(Instruction* instr) {
}
-void Disassembler::VisitUnimplemented(Instruction* instr) {
+void Disassembler::VisitUnimplemented(const Instruction* instr) {
Format(instr, "unimplemented", "(Unimplemented)");
}
-void Disassembler::VisitUnallocated(Instruction* instr) {
+void Disassembler::VisitUnallocated(const Instruction* instr) {
Format(instr, "unallocated", "(Unallocated)");
}
-void Disassembler::ProcessOutput(Instruction* /*instr*/) {
+void Disassembler::ProcessOutput(const Instruction* /*instr*/) {
// The base disasm does nothing more than disassembling into a buffer.
}
-void Disassembler::Format(Instruction* instr, const char* mnemonic,
+void Disassembler::AppendRegisterNameToOutput(const Instruction* instr,
+ const CPURegister& reg) {
+ USE(instr);
+ VIXL_ASSERT(reg.IsValid());
+ char reg_char;
+
+ if (reg.IsRegister()) {
+ reg_char = reg.Is64Bits() ? 'x' : 'w';
+ } else {
+ VIXL_ASSERT(reg.IsFPRegister());
+ reg_char = reg.Is64Bits() ? 'd' : 's';
+ }
+
+ if (reg.IsFPRegister() || !(reg.Aliases(sp) || reg.Aliases(xzr))) {
+ // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
+ AppendToOutput("%c%d", reg_char, reg.code());
+ } else if (reg.Aliases(sp)) {
+ // Disassemble w31/x31 as stack pointer wsp/sp.
+ AppendToOutput("%s", reg.Is64Bits() ? "sp" : "wsp");
+ } else {
+ // Disassemble w31/x31 as zero register wzr/xzr.
+ AppendToOutput("%czr", reg_char);
+ }
+}
+
+
+void Disassembler::AppendPCRelativeOffsetToOutput(const Instruction* instr,
+ int64_t offset) {
+ USE(instr);
+ char sign = (offset < 0) ? '-' : '+';
+ AppendToOutput("#%c0x%" PRIx64, sign, std::abs(offset));
+}
+
+
+void Disassembler::AppendAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ USE(instr);
+ AppendToOutput("(addr %p)", addr);
+}
+
+
+void Disassembler::AppendCodeAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ AppendAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::AppendDataAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ AppendAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::Format(const Instruction* instr, const char* mnemonic,
const char* format) {
VIXL_ASSERT(mnemonic != NULL);
ResetOutput();
@@ -1315,7 +1374,7 @@ void Disassembler::Format(Instruction* instr, const char* mnemonic,
}
-void Disassembler::Substitute(Instruction* instr, const char* string) {
+void Disassembler::Substitute(const Instruction* instr, const char* string) {
char chr = *string++;
while (chr != '\0') {
if (chr == '\'') {
@@ -1328,7 +1387,8 @@ void Disassembler::Substitute(Instruction* instr, const char* string) {
}
-int Disassembler::SubstituteField(Instruction* instr, const char* format) {
+int Disassembler::SubstituteField(const Instruction* instr,
+ const char* format) {
switch (format[0]) {
case 'R': // Register. X or W, selected by sf bit.
case 'F': // FP Register. S or D, selected by type field.
@@ -1354,7 +1414,7 @@ int Disassembler::SubstituteField(Instruction* instr, const char* format) {
}
-int Disassembler::SubstituteRegisterField(Instruction* instr,
+int Disassembler::SubstituteRegisterField(const Instruction* instr,
const char* format) {
unsigned reg_num = 0;
unsigned field_len = 2;
@@ -1381,34 +1441,47 @@ int Disassembler::SubstituteRegisterField(Instruction* instr,
field_len = 3;
}
- char reg_type;
+ CPURegister::RegisterType reg_type;
+ unsigned reg_size;
+
if (format[0] == 'R') {
// Register type is R: use sf bit to choose X and W.
- reg_type = instr->SixtyFourBits() ? 'x' : 'w';
+ reg_type = CPURegister::kRegister;
+ reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
} else if (format[0] == 'F') {
// Floating-point register: use type field to choose S or D.
- reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd';
+ reg_type = CPURegister::kFPRegister;
+ reg_size = ((instr->FPType() & 1) == 0) ? kSRegSize : kDRegSize;
} else {
- // Register type is specified. Make it lower case.
- reg_type = format[0] + 0x20;
+ // The register type is specified.
+ switch (format[0]) {
+ case 'W':
+ reg_type = CPURegister::kRegister; reg_size = kWRegSize; break;
+ case 'X':
+ reg_type = CPURegister::kRegister; reg_size = kXRegSize; break;
+ case 'S':
+ reg_type = CPURegister::kFPRegister; reg_size = kSRegSize; break;
+ case 'D':
+ reg_type = CPURegister::kFPRegister; reg_size = kDRegSize; break;
+ default:
+ VIXL_UNREACHABLE();
+ reg_type = CPURegister::kRegister;
+ reg_size = kXRegSize;
+ }
}
- if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) {
- // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
- AppendToOutput("%c%d", reg_type, reg_num);
- } else if (format[2] == 's') {
- // Disassemble w31/x31 as stack pointer wsp/sp.
- AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp");
- } else {
- // Disassemble w31/x31 as zero register wzr/xzr.
- AppendToOutput("%czr", reg_type);
+ if ((reg_type == CPURegister::kRegister) &&
+ (reg_num == kZeroRegCode) && (format[2] == 's')) {
+ reg_num = kSPRegInternalCode;
}
+ AppendRegisterNameToOutput(instr, CPURegister(reg_num, reg_size, reg_type));
+
return field_len;
}
-int Disassembler::SubstituteImmediateField(Instruction* instr,
+int Disassembler::SubstituteImmediateField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(format[0] == 'I');
@@ -1458,8 +1531,7 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
}
case 'C': { // ICondB - Immediate Conditional Branch.
int64_t offset = instr->ImmCondBranch() << 2;
- char sign = (offset >= 0) ? '+' : '-';
- AppendToOutput("#%c0x%" PRIx64, sign, offset);
+ AppendPCRelativeOffsetToOutput(instr, offset);
return 6;
}
case 'A': { // IAddSub.
@@ -1522,7 +1594,7 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
}
-int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
+int Disassembler::SubstituteBitfieldImmediateField(const Instruction* instr,
const char* format) {
VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
unsigned r = instr->ImmR();
@@ -1557,7 +1629,7 @@ int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
}
-int Disassembler::SubstituteLiteralField(Instruction* instr,
+int Disassembler::SubstituteLiteralField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
USE(format);
@@ -1565,16 +1637,21 @@ int Disassembler::SubstituteLiteralField(Instruction* instr,
switch (instr->Mask(LoadLiteralMask)) {
case LDR_w_lit:
case LDR_x_lit:
+ case LDRSW_x_lit:
case LDR_s_lit:
- case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break;
- default: VIXL_UNREACHABLE();
+ case LDR_d_lit:
+ AppendDataAddressToOutput(instr, instr->LiteralAddress());
+ break;
+ default:
+ VIXL_UNREACHABLE();
}
return 6;
}
-int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
+int Disassembler::SubstituteShiftField(const Instruction* instr,
+ const char* format) {
VIXL_ASSERT(format[0] == 'H');
VIXL_ASSERT(instr->ShiftDP() <= 0x3);
@@ -1597,7 +1674,7 @@ int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
}
-int Disassembler::SubstituteConditionField(Instruction* instr,
+int Disassembler::SubstituteConditionField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(format[0] == 'C');
const char* condition_code[] = { "eq", "ne", "hs", "lo",
@@ -1618,27 +1695,28 @@ int Disassembler::SubstituteConditionField(Instruction* instr,
}
-int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
+int Disassembler::SubstitutePCRelAddressField(const Instruction* instr,
const char* format) {
VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
(strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
int64_t offset = instr->ImmPCRel();
- Instruction * base = instr;
+ const Instruction * base = instr;
if (format[9] == 'P') {
offset *= kPageSize;
base = AlignDown(base, kPageSize);
}
- char sign = (offset < 0) ? '-' : '+';
- void * target = reinterpret_cast<void *>(base + offset);
- AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, std::abs(offset), target);
+ const void* target = reinterpret_cast<const void*>(base + offset);
+ AppendPCRelativeOffsetToOutput(instr, offset);
+ AppendToOutput(" ");
+ AppendAddressToOutput(instr, target);
return 13;
}
-int Disassembler::SubstituteBranchTargetField(Instruction* instr,
+int Disassembler::SubstituteBranchTargetField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(strncmp(format, "BImm", 4) == 0);
@@ -1655,19 +1733,18 @@ int Disassembler::SubstituteBranchTargetField(Instruction* instr,
default: VIXL_UNIMPLEMENTED();
}
offset <<= kInstructionSizeLog2;
- char sign = '+';
- if (offset < 0) {
- offset = -offset;
- sign = '-';
- }
+ const void* target_address = reinterpret_cast<const void*>(instr + offset);
VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
- void * address = reinterpret_cast<void *>(instr + offset);
- AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, address);
+
+ AppendPCRelativeOffsetToOutput(instr, offset);
+ AppendToOutput(" ");
+ AppendCodeAddressToOutput(instr, target_address);
+
return 8;
}
-int Disassembler::SubstituteExtendField(Instruction* instr,
+int Disassembler::SubstituteExtendField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
VIXL_ASSERT(instr->ExtendMode() <= 7);
@@ -1694,7 +1771,7 @@ int Disassembler::SubstituteExtendField(Instruction* instr,
}
-int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
+int Disassembler::SubstituteLSRegOffsetField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
@@ -1723,7 +1800,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
}
-int Disassembler::SubstitutePrefetchField(Instruction* instr,
+int Disassembler::SubstitutePrefetchField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(format[0] == 'P');
USE(format);
@@ -1738,7 +1815,7 @@ int Disassembler::SubstitutePrefetchField(Instruction* instr,
return 6;
}
-int Disassembler::SubstituteBarrierField(Instruction* instr,
+int Disassembler::SubstituteBarrierField(const Instruction* instr,
const char* format) {
VIXL_ASSERT(format[0] == 'M');
USE(format);
@@ -1770,7 +1847,7 @@ void Disassembler::AppendToOutput(const char* format, ...) {
}
-void PrintDisassembler::ProcessOutput(Instruction* instr) {
+void PrintDisassembler::ProcessOutput(const Instruction* instr) {
fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
reinterpret_cast<uint64_t>(instr),
instr->InstructionBits(),
diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h
index 06ee43fdeb..db043375c5 100644
--- a/disas/libvixl/a64/disasm-a64.h
+++ b/disas/libvixl/a64/disasm-a64.h
@@ -31,6 +31,7 @@
#include "utils.h"
#include "instructions-a64.h"
#include "decoder-a64.h"
+#include "assembler-a64.h"
namespace vixl {
@@ -42,48 +43,83 @@ class Disassembler: public DecoderVisitor {
char* GetOutput();
// Declare all Visitor functions.
- #define DECLARE(A) void Visit##A(Instruction* instr);
+ #define DECLARE(A) void Visit##A(const Instruction* instr);
VISITOR_LIST(DECLARE)
#undef DECLARE
protected:
- virtual void ProcessOutput(Instruction* instr);
+ virtual void ProcessOutput(const Instruction* instr);
+
+ // Default output functions. The functions below implement a default way of
+ // printing elements in the disassembly. A sub-class can override these to
+ // customize the disassembly output.
+
+ // Prints the name of a register.
+ virtual void AppendRegisterNameToOutput(const Instruction* instr,
+ const CPURegister& reg);
+
+ // Prints a PC-relative offset. This is used for example when disassembling
+ // branches to immediate offsets.
+ virtual void AppendPCRelativeOffsetToOutput(const Instruction* instr,
+ int64_t offset);
+
+ // Prints an address, in the general case. It can be code or data. This is
+ // used for example to print the target address of an ADR instruction.
+ virtual void AppendAddressToOutput(const Instruction* instr,
+ const void* addr);
+
+ // Prints the address of some code.
+ // This is used for example to print the target address of a branch to an
+ // immediate offset.
+ // A sub-class can for example override this method to lookup the address and
+ // print an appropriate name.
+ virtual void AppendCodeAddressToOutput(const Instruction* instr,
+ const void* addr);
+
+ // Prints the address of some data.
+ // This is used for example to print the source address of a load literal
+ // instruction.
+ virtual void AppendDataAddressToOutput(const Instruction* instr,
+ const void* addr);
private:
- void Format(Instruction* instr, const char* mnemonic, const char* format);
- void Substitute(Instruction* instr, const char* string);
- int SubstituteField(Instruction* instr, const char* format);
- int SubstituteRegisterField(Instruction* instr, const char* format);
- int SubstituteImmediateField(Instruction* instr, const char* format);
- int SubstituteLiteralField(Instruction* instr, const char* format);
- int SubstituteBitfieldImmediateField(Instruction* instr, const char* format);
- int SubstituteShiftField(Instruction* instr, const char* format);
- int SubstituteExtendField(Instruction* instr, const char* format);
- int SubstituteConditionField(Instruction* instr, const char* format);
- int SubstitutePCRelAddressField(Instruction* instr, const char* format);
- int SubstituteBranchTargetField(Instruction* instr, const char* format);
- int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
- int SubstitutePrefetchField(Instruction* instr, const char* format);
- int SubstituteBarrierField(Instruction* instr, const char* format);
-
- inline bool RdIsZROrSP(Instruction* instr) const {
+ void Format(
+ const Instruction* instr, const char* mnemonic, const char* format);
+ void Substitute(const Instruction* instr, const char* string);
+ int SubstituteField(const Instruction* instr, const char* format);
+ int SubstituteRegisterField(const Instruction* instr, const char* format);
+ int SubstituteImmediateField(const Instruction* instr, const char* format);
+ int SubstituteLiteralField(const Instruction* instr, const char* format);
+ int SubstituteBitfieldImmediateField(
+ const Instruction* instr, const char* format);
+ int SubstituteShiftField(const Instruction* instr, const char* format);
+ int SubstituteExtendField(const Instruction* instr, const char* format);
+ int SubstituteConditionField(const Instruction* instr, const char* format);
+ int SubstitutePCRelAddressField(const Instruction* instr, const char* format);
+ int SubstituteBranchTargetField(const Instruction* instr, const char* format);
+ int SubstituteLSRegOffsetField(const Instruction* instr, const char* format);
+ int SubstitutePrefetchField(const Instruction* instr, const char* format);
+ int SubstituteBarrierField(const Instruction* instr, const char* format);
+
+ inline bool RdIsZROrSP(const Instruction* instr) const {
return (instr->Rd() == kZeroRegCode);
}
- inline bool RnIsZROrSP(Instruction* instr) const {
+ inline bool RnIsZROrSP(const Instruction* instr) const {
return (instr->Rn() == kZeroRegCode);
}
- inline bool RmIsZROrSP(Instruction* instr) const {
+ inline bool RmIsZROrSP(const Instruction* instr) const {
return (instr->Rm() == kZeroRegCode);
}
- inline bool RaIsZROrSP(Instruction* instr) const {
+ inline bool RaIsZROrSP(const Instruction* instr) const {
return (instr->Ra() == kZeroRegCode);
}
bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
+ protected:
void ResetOutput();
void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
@@ -97,10 +133,10 @@ class Disassembler: public DecoderVisitor {
class PrintDisassembler: public Disassembler {
public:
explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
- ~PrintDisassembler() { }
+ virtual ~PrintDisassembler() { }
protected:
- virtual void ProcessOutput(Instruction* instr);
+ virtual void ProcessOutput(const Instruction* instr);
private:
FILE *stream_;
diff --git a/disas/libvixl/a64/instructions-a64.cc b/disas/libvixl/a64/instructions-a64.cc
index e9caceb37b..1f08c781eb 100644
--- a/disas/libvixl/a64/instructions-a64.cc
+++ b/disas/libvixl/a64/instructions-a64.cc
@@ -57,7 +57,7 @@ static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
-uint64_t Instruction::ImmLogical() {
+uint64_t Instruction::ImmLogical() const {
unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
int64_t n = BitN();
int64_t imm_s = ImmSetBits();
@@ -108,7 +108,7 @@ uint64_t Instruction::ImmLogical() {
}
-float Instruction::ImmFP32() {
+float Instruction::ImmFP32() const {
// ImmFP: abcdefgh (8 bits)
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
// where B is b ^ 1
@@ -122,7 +122,7 @@ float Instruction::ImmFP32() {
}
-double Instruction::ImmFP64() {
+double Instruction::ImmFP64() const {
// ImmFP: abcdefgh (8 bits)
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
@@ -148,8 +148,8 @@ LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
}
-Instruction* Instruction::ImmPCOffsetTarget() {
- Instruction * base = this;
+const Instruction* Instruction::ImmPCOffsetTarget() const {
+ const Instruction * base = this;
ptrdiff_t offset;
if (IsPCRelAddressing()) {
// ADR and ADRP.
@@ -182,7 +182,7 @@ inline int Instruction::ImmBranch() const {
}
-void Instruction::SetImmPCOffsetTarget(Instruction* target) {
+void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
if (IsPCRelAddressing()) {
SetPCRelImmTarget(target);
} else {
@@ -191,7 +191,7 @@ void Instruction::SetImmPCOffsetTarget(Instruction* target) {
}
-void Instruction::SetPCRelImmTarget(Instruction* target) {
+void Instruction::SetPCRelImmTarget(const Instruction* target) {
int32_t imm21;
if ((Mask(PCRelAddressingMask) == ADR)) {
imm21 = target - this;
@@ -207,7 +207,7 @@ void Instruction::SetPCRelImmTarget(Instruction* target) {
}
-void Instruction::SetBranchImmTarget(Instruction* target) {
+void Instruction::SetBranchImmTarget(const Instruction* target) {
VIXL_ASSERT(((target - this) & 3) == 0);
Instr branch_imm = 0;
uint32_t imm_mask = 0;
@@ -239,9 +239,9 @@ void Instruction::SetBranchImmTarget(Instruction* target) {
}
-void Instruction::SetImmLLiteral(Instruction* source) {
- VIXL_ASSERT(((source - this) & 3) == 0);
- int offset = (source - this) >> kLiteralEntrySizeLog2;
+void Instruction::SetImmLLiteral(const Instruction* source) {
+ VIXL_ASSERT(IsWordAligned(source));
+ ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
Instr imm = Assembler::ImmLLiteral(offset);
Instr mask = ImmLLiteral_mask;
diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h
index d5b90c52e1..29f972291b 100644
--- a/disas/libvixl/a64/instructions-a64.h
+++ b/disas/libvixl/a64/instructions-a64.h
@@ -44,6 +44,7 @@ const unsigned kMaxLoadLiteralRange = 1 * MBytes;
// This is the nominal page size (as used by the adrp instruction); the actual
// size of the memory pages allocated by the kernel is likely to differ.
const unsigned kPageSize = 4 * KBytes;
+const unsigned kPageSizeLog2 = 12;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
@@ -95,30 +96,6 @@ const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
-const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
-const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
-const double kFP64PositiveInfinity =
- rawbits_to_double(UINT64_C(0x7ff0000000000000));
-const double kFP64NegativeInfinity =
- rawbits_to_double(UINT64_C(0xfff0000000000000));
-
-// This value is a signalling NaN as both a double and as a float (taking the
-// least-significant word).
-static const double kFP64SignallingNaN =
- rawbits_to_double(UINT64_C(0x7ff000007f800001));
-static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
-
-// A similar value, but as a quiet NaN.
-static const double kFP64QuietNaN =
- rawbits_to_double(UINT64_C(0x7ff800007fc00001));
-static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
-
-// The default NaN values (for FPCR.DN=1).
-static const double kFP64DefaultNaN =
- rawbits_to_double(UINT64_C(0x7ff8000000000000));
-static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
-
-
enum LSDataSize {
LSByte = 0,
LSHalfword = 1,
@@ -201,9 +178,9 @@ class Instruction {
return signed_bitextract_32(width-1, 0, offset);
}
- uint64_t ImmLogical();
- float ImmFP32();
- double ImmFP64();
+ uint64_t ImmLogical() const;
+ float ImmFP32() const;
+ double ImmFP64() const;
inline LSDataSize SizeLSPair() const {
return CalcLSPairDataSize(
@@ -311,46 +288,49 @@ class Instruction {
// Find the target of this instruction. 'this' may be a branch or a
// PC-relative addressing instruction.
- Instruction* ImmPCOffsetTarget();
+ const Instruction* ImmPCOffsetTarget() const;
// Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
// a PC-relative addressing instruction.
- void SetImmPCOffsetTarget(Instruction* target);
+ void SetImmPCOffsetTarget(const Instruction* target);
// Patch a literal load instruction to load from 'source'.
- void SetImmLLiteral(Instruction* source);
+ void SetImmLLiteral(const Instruction* source);
- inline uint8_t* LiteralAddress() {
+ inline uint8_t* LiteralAddress() const {
int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
- return reinterpret_cast<uint8_t*>(this) + offset;
+ const uint8_t* address = reinterpret_cast<const uint8_t*>(this) + offset;
+ // Note that the result is safely mutable only if the backing buffer is
+ // safely mutable.
+ return const_cast<uint8_t*>(address);
}
- inline uint32_t Literal32() {
+ inline uint32_t Literal32() const {
uint32_t literal;
memcpy(&literal, LiteralAddress(), sizeof(literal));
return literal;
}
- inline uint64_t Literal64() {
+ inline uint64_t Literal64() const {
uint64_t literal;
memcpy(&literal, LiteralAddress(), sizeof(literal));
return literal;
}
- inline float LiteralFP32() {
+ inline float LiteralFP32() const {
return rawbits_to_float(Literal32());
}
- inline double LiteralFP64() {
+ inline double LiteralFP64() const {
return rawbits_to_double(Literal64());
}
- inline Instruction* NextInstruction() {
+ inline const Instruction* NextInstruction() const {
return this + kInstructionSize;
}
- inline Instruction* InstructionAtOffset(int64_t offset) {
+ inline const Instruction* InstructionAtOffset(int64_t offset) const {
VIXL_ASSERT(IsWordAligned(this + offset));
return this + offset;
}
@@ -359,11 +339,15 @@ class Instruction {
return reinterpret_cast<Instruction*>(src);
}
+ template<typename T> static inline const Instruction* CastConst(T src) {
+ return reinterpret_cast<const Instruction*>(src);
+ }
+
private:
inline int ImmBranch() const;
- void SetPCRelImmTarget(Instruction* target);
- void SetBranchImmTarget(Instruction* target);
+ void SetPCRelImmTarget(const Instruction* target);
+ void SetBranchImmTarget(const Instruction* target);
};
} // namespace vixl
diff --git a/disas/libvixl/code-buffer.h b/disas/libvixl/code-buffer.h
new file mode 100644
index 0000000000..da6233dd80
--- /dev/null
+++ b/disas/libvixl/code-buffer.h
@@ -0,0 +1,113 @@
+// Copyright 2014, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_CODE_BUFFER_H
+#define VIXL_CODE_BUFFER_H
+
+#include <string.h>
+#include "globals.h"
+
+namespace vixl {
+
+class CodeBuffer {
+ public:
+ explicit CodeBuffer(size_t capacity = 4 * KBytes);
+ CodeBuffer(void* buffer, size_t capacity);
+ ~CodeBuffer();
+
+ void Reset();
+
+ ptrdiff_t OffsetFrom(ptrdiff_t offset) const {
+ ptrdiff_t cursor_offset = cursor_ - buffer_;
+ VIXL_ASSERT((offset >= 0) && (offset <= cursor_offset));
+ return cursor_offset - offset;
+ }
+
+ ptrdiff_t CursorOffset() const {
+ return OffsetFrom(0);
+ }
+
+ template <typename T>
+ T GetOffsetAddress(ptrdiff_t offset) const {
+ VIXL_ASSERT((offset >= 0) && (offset <= (cursor_ - buffer_)));
+ return reinterpret_cast<T>(buffer_ + offset);
+ }
+
+ size_t RemainingBytes() const {
+ VIXL_ASSERT((cursor_ >= buffer_) && (cursor_ <= (buffer_ + capacity_)));
+ return (buffer_ + capacity_) - cursor_;
+ }
+
+ // A code buffer can emit:
+ // * 32-bit data: instruction and constant.
+ // * 64-bit data: constant.
+ // * string: debug info.
+ void Emit32(uint32_t data) { Emit(data); }
+
+ void Emit64(uint64_t data) { Emit(data); }
+
+ void EmitString(const char* string);
+
+ // Align to kInstructionSize.
+ void Align();
+
+ size_t capacity() const { return capacity_; }
+
+ bool IsManaged() const { return managed_; }
+
+ void Grow(size_t new_capacity);
+
+ bool IsDirty() const { return dirty_; }
+
+ void SetClean() { dirty_ = false; }
+
+ private:
+ template <typename T>
+ void Emit(T value) {
+ VIXL_ASSERT(RemainingBytes() >= sizeof(value));
+ dirty_ = true;
+ memcpy(cursor_, &value, sizeof(value));
+ cursor_ += sizeof(value);
+ }
+
+ // Backing store of the buffer.
+ byte* buffer_;
+ // If true the backing store is allocated and deallocated by the buffer. The
+ // backing store can then grow on demand. If false the backing store is
+ // provided by the user and cannot be resized internally.
+ bool managed_;
+ // Pointer to the next location to be written.
+ byte* cursor_;
+ // True if there has been any write since the buffer was created or cleaned.
+ bool dirty_;
+ // Capacity in bytes of the backing store.
+ size_t capacity_;
+};
+
+} // namespace vixl
+
+#endif // VIXL_CODE_BUFFER_H
+
diff --git a/disas/libvixl/utils.cc b/disas/libvixl/utils.cc
index 4d4fcbdad4..21965d7a1f 100644
--- a/disas/libvixl/utils.cc
+++ b/disas/libvixl/utils.cc
@@ -134,4 +134,5 @@ uint64_t LowestSetBit(uint64_t value) {
bool IsPowerOf2(int64_t value) {
return (value != 0) && ((value & (value - 1)) == 0);
}
+
} // namespace vixl
diff --git a/disas/libvixl/utils.h b/disas/libvixl/utils.h
index b472f0e6cd..1540c3060b 100644
--- a/disas/libvixl/utils.h
+++ b/disas/libvixl/utils.h
@@ -171,7 +171,7 @@ bool IsPowerOf2(int64_t value);
template<typename T>
bool IsWordAligned(T pointer) {
VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
- return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
+ return ((intptr_t)(pointer) & 3) == 0;
}
// Increment a pointer until it has the specified alignment.
@@ -204,7 +204,6 @@ T AlignDown(T pointer, size_t alignment) {
return (T)(pointer_raw - align_step);
}
-
} // namespace vixl
#endif // VIXL_UTILS_H
diff --git a/hmp-commands.hx b/hmp-commands.hx
index 0b1a4f778a..e37bc8b010 100644
--- a/hmp-commands.hx
+++ b/hmp-commands.hx
@@ -1748,8 +1748,6 @@ show information about active capturing
show list of VM snapshots
@item info status
show the current VM status (running|paused)
-@item info pcmcia
-show guest PCMCIA status
@item info mice
show which guest mouse is receiving events
@item info vnc
diff --git a/hw/arm/boot.c b/hw/arm/boot.c
index c8dc34f086..bffbea5e0e 100644
--- a/hw/arm/boot.c
+++ b/hw/arm/boot.c
@@ -478,7 +478,7 @@ static void do_cpu_reset(void *opaque)
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
- CPUState *cs = CPU(cpu);
+ CPUState *cs;
int kernel_size;
int initrd_size;
int is_linux = 0;
@@ -488,6 +488,15 @@ void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
int big_endian;
static const ARMInsnFixup *primary_loader;
+ /* CPU objects (unlike devices) are not automatically reset on system
+ * reset, so we must always register a handler to do so. If we're
+ * actually loading a kernel, the handler is also responsible for
+ * arranging that we start it correctly.
+ */
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
+ }
+
/* Load the kernel. */
if (!info->kernel_filename) {
@@ -652,9 +661,7 @@ void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
}
info->is_linux = is_linux;
- for (; cs; cs = CPU_NEXT(cs)) {
- cpu = ARM_CPU(cs);
- cpu->env.boot_info = info;
- qemu_register_reset(do_cpu_reset, cpu);
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ ARM_CPU(cs)->env.boot_info = info;
}
}
diff --git a/hw/arm/virt.c b/hw/arm/virt.c
index 8ea592e92d..78f618d3bb 100644
--- a/hw/arm/virt.c
+++ b/hw/arm/virt.c
@@ -191,47 +191,48 @@ static void create_fdt(VirtBoardInfo *vbi)
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
{
+ uint32_t cpu_suspend_fn;
+ uint32_t cpu_off_fn;
+ uint32_t cpu_on_fn;
+ uint32_t migrate_fn;
void *fdt = vbi->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
- /* No PSCI for TCG yet */
- if (kvm_enabled()) {
- uint32_t cpu_suspend_fn;
- uint32_t cpu_off_fn;
- uint32_t cpu_on_fn;
- uint32_t migrate_fn;
-
- qemu_fdt_add_subnode(fdt, "/psci");
- if (armcpu->psci_version == 2) {
- const char comp[] = "arm,psci-0.2\0arm,psci";
- qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
-
- cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
- if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
- cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
- cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
- migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
- } else {
- cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
- cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
- migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
- }
- } else {
- qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
+ qemu_fdt_add_subnode(fdt, "/psci");
+ if (armcpu->psci_version == 2) {
+ const char comp[] = "arm,psci-0.2\0arm,psci";
+ qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
- cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
- cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
- cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
- migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
+ cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
+ if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
+ cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
+ cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
+ } else {
+ cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
+ cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
+ } else {
+ qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
- qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
-
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
+ cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
+ cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
+ cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
+
+ /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
+ * to the instruction that should be used to invoke PSCI functions.
+ * However, the device tree binding uses 'method' instead, so that is
+ * what we should use here.
+ */
+ qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
+
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
@@ -240,14 +241,23 @@ static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
+ ARMCPU *armcpu;
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
qemu_fdt_add_subnode(vbi->fdt, "/timer");
- qemu_fdt_setprop_string(vbi->fdt, "/timer",
- "compatible", "arm,armv7-timer");
+
+ armcpu = ARM_CPU(qemu_get_cpu(0));
+ if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
+ const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
+ qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
+ compat, sizeof(compat));
+ } else {
+ qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
+ "arm,armv7-timer");
+ }
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
@@ -539,23 +549,12 @@ static void machvirt_init(MachineState *machine)
vbi->smp_cpus = smp_cpus;
- /*
- * Only supported method of starting secondary CPUs is PSCI and
- * PSCI is not yet supported with TCG, so limit smp_cpus to 1
- * if we're not using KVM.
- */
- if (!kvm_enabled() && smp_cpus > 1) {
- error_report("mach-virt: must enable KVM to use multiple CPUs");
- exit(1);
- }
-
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
- fdt_add_timer_nodes(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
@@ -567,6 +566,9 @@ static void machvirt_init(MachineState *machine)
}
cpuobj = object_new(object_class_get_name(oc));
+ object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
+ NULL);
+
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
@@ -579,6 +581,7 @@ static void machvirt_init(MachineState *machine)
object_property_set_bool(cpuobj, true, "realized", NULL);
}
+ fdt_add_timer_nodes(vbi);
fdt_add_cpu_nodes(vbi);
fdt_add_psci_node(vbi);
diff --git a/hw/ide/microdrive.c b/hw/ide/microdrive.c
index ed85185a74..6639dd4886 100644
--- a/hw/ide/microdrive.c
+++ b/hw/ide/microdrive.c
@@ -543,7 +543,6 @@ static int dscm1xxxx_attach(PCMCIACardState *card)
device_reset(DEVICE(md));
md_interrupt_update(md);
- card->slot->card_string = "DSCM-1xxxx Hitachi Microdrive";
return 0;
}
diff --git a/hw/intc/arm_gic.c b/hw/intc/arm_gic.c
index db9110c1c4..270ce05b58 100644
--- a/hw/intc/arm_gic.c
+++ b/hw/intc/arm_gic.c
@@ -769,7 +769,7 @@ static const MemoryRegionOps gic_cpu_ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
};
-void gic_init_irqs_and_distributor(GICState *s, int num_irq)
+void gic_init_irqs_and_distributor(GICState *s)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
int i;
@@ -808,7 +808,7 @@ static void arm_gic_realize(DeviceState *dev, Error **errp)
return;
}
- gic_init_irqs_and_distributor(s, s->num_irq);
+ gic_init_irqs_and_distributor(s);
/* Memory regions for the CPU interfaces (NVIC doesn't have these):
* a region for "CPU interface for this core", then a region for
diff --git a/hw/intc/armv7m_nvic.c b/hw/intc/armv7m_nvic.c
index 1a7af450a7..d0543d4b9d 100644
--- a/hw/intc/armv7m_nvic.c
+++ b/hw/intc/armv7m_nvic.c
@@ -488,7 +488,7 @@ static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
error_propagate(errp, local_err);
return;
}
- gic_init_irqs_and_distributor(&s->gic, s->num_irq);
+ gic_init_irqs_and_distributor(&s->gic);
/* The NVIC and system controller register area looks like this:
* 0..0xff : system control registers, including systick
* 0x100..0xcff : GIC-like registers
diff --git a/hw/intc/gic_internal.h b/hw/intc/gic_internal.h
index 48a58d7890..e87ef36d0c 100644
--- a/hw/intc/gic_internal.h
+++ b/hw/intc/gic_internal.h
@@ -59,7 +59,7 @@ void gic_set_pending_private(GICState *s, int cpu, int irq);
uint32_t gic_acknowledge_irq(GICState *s, int cpu);
void gic_complete_irq(GICState *s, int cpu, int irq);
void gic_update(GICState *s);
-void gic_init_irqs_and_distributor(GICState *s, int num_irq);
+void gic_init_irqs_and_distributor(GICState *s);
void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val);
static inline bool gic_test_pending(GICState *s, int irq, int cm)
diff --git a/hw/misc/omap_gpmc.c b/hw/misc/omap_gpmc.c
index fbbe2ff993..a0de52f9bf 100644
--- a/hw/misc/omap_gpmc.c
+++ b/hw/misc/omap_gpmc.c
@@ -466,8 +466,6 @@ void omap_gpmc_reset(struct omap_gpmc_s *s)
s->cs_file[i].config[3] = 0x10031003;
s->cs_file[i].config[4] = 0x10f1111;
s->cs_file[i].config[5] = 0;
- s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
-
s->cs_file[i].config[6] = 0xf00;
/* In theory we could probe attached devices for some CFG1
* bits here, but we just retain them across resets as they
diff --git a/hw/pcmcia/pxa2xx.c b/hw/pcmcia/pxa2xx.c
index 55e8a2a62e..a7e187743d 100644
--- a/hw/pcmcia/pxa2xx.c
+++ b/hw/pcmcia/pxa2xx.c
@@ -149,24 +149,11 @@ PXA2xxPCMCIAState *pxa2xx_pcmcia_init(MemoryRegion *sysmem,
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
s = PXA2XX_PCMCIA(dev);
- if (base == 0x30000000) {
- s->slot.slot_string = "PXA PC Card Socket 1";
- } else {
- s->slot.slot_string = "PXA PC Card Socket 0";
- }
-
qdev_init_nofail(dev);
return s;
}
-static void pxa2xx_pcmcia_realize(DeviceState *dev, Error **errp)
-{
- PXA2xxPCMCIAState *s = PXA2XX_PCMCIA(dev);
-
- pcmcia_socket_register(&s->slot);
-}
-
static void pxa2xx_pcmcia_initfn(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
@@ -262,19 +249,11 @@ void pxa2xx_pcmcia_set_irq_cb(void *opaque, qemu_irq irq, qemu_irq cd_irq)
s->cd_irq = cd_irq;
}
-static void pxa2xx_pcmcia_class_init(ObjectClass *oc, void *data)
-{
- DeviceClass *dc = DEVICE_CLASS(oc);
-
- dc->realize = pxa2xx_pcmcia_realize;
-}
-
static const TypeInfo pxa2xx_pcmcia_type_info = {
.name = TYPE_PXA2XX_PCMCIA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PXA2xxPCMCIAState),
.instance_init = pxa2xx_pcmcia_initfn,
- .class_init = pxa2xx_pcmcia_class_init,
};
static void pxa2xx_pcmcia_register_types(void)
diff --git a/include/hw/pcmcia.h b/include/hw/pcmcia.h
index 2695d3cba6..98406ffbc9 100644
--- a/include/hw/pcmcia.h
+++ b/include/hw/pcmcia.h
@@ -8,14 +8,8 @@
typedef struct PCMCIASocket {
qemu_irq irq;
bool attached;
- const char *slot_string;
- const char *card_string;
} PCMCIASocket;
-void pcmcia_socket_register(PCMCIASocket *socket);
-void pcmcia_socket_unregister(PCMCIASocket *socket);
-void pcmcia_info(Monitor *mon, const QDict *qdict);
-
#define TYPE_PCMCIA_CARD "pcmcia-card"
#define PCMCIA_CARD(obj) \
OBJECT_CHECK(PCMCIACardState, (obj), TYPE_PCMCIA_CARD)
diff --git a/monitor.c b/monitor.c
index 07fb36e717..1fc201ae82 100644
--- a/monitor.c
+++ b/monitor.c
@@ -25,7 +25,6 @@
#include "hw/hw.h"
#include "monitor/qdev.h"
#include "hw/usb.h"
-#include "hw/pcmcia.h"
#include "hw/i386/pc.h"
#include "hw/pci/pci.h"
#include "sysemu/watchdog.h"
@@ -2792,13 +2791,6 @@ static mon_cmd_t info_cmds[] = {
.mhandler.cmd = hmp_info_status,
},
{
- .name = "pcmcia",
- .args_type = "",
- .params = "",
- .help = "show guest PCMCIA status",
- .mhandler.cmd = pcmcia_info,
- },
- {
.name = "mice",
.args_type = "",
.params = "",
diff --git a/target-arm/Makefile.objs b/target-arm/Makefile.objs
index dcd167e0d8..9460b409a5 100644
--- a/target-arm/Makefile.objs
+++ b/target-arm/Makefile.objs
@@ -7,5 +7,6 @@ obj-$(call lnot,$(CONFIG_KVM)) += kvm-stub.o
obj-y += translate.o op_helper.o helper.o cpu.o
obj-y += neon_helper.o iwmmxt_helper.o
obj-y += gdbstub.o
+obj-$(CONFIG_SOFTMMU) += psci.o
obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o
obj-y += crypto_helper.o
diff --git a/target-arm/cpu-qom.h b/target-arm/cpu-qom.h
index 96a3da9a8f..dcfda7dfcf 100644
--- a/target-arm/cpu-qom.h
+++ b/target-arm/cpu-qom.h
@@ -98,6 +98,13 @@ typedef struct ARMCPU {
/* Should CPU start in PSCI powered-off state? */
bool start_powered_off;
+ /* CPU currently in PSCI powered-off state */
+ bool powered_off;
+
+ /* PSCI conduit used to invoke PSCI methods
+ * 0 - disabled, 1 - smc, 2 - hvc
+ */
+ uint32_t psci_conduit;
/* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
* QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
diff --git a/target-arm/cpu.c b/target-arm/cpu.c
index edfd5868b8..e0b82a6704 100644
--- a/target-arm/cpu.c
+++ b/target-arm/cpu.c
@@ -40,7 +40,10 @@ static void arm_cpu_set_pc(CPUState *cs, vaddr value)
static bool arm_cpu_has_work(CPUState *cs)
{
- return cs->interrupt_request &
+ ARMCPU *cpu = ARM_CPU(cs);
+
+ return !cpu->powered_off
+ && cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_EXITTB);
@@ -93,6 +96,9 @@ static void arm_cpu_reset(CPUState *s)
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
+ cpu->powered_off = cpu->start_powered_off;
+ s->halted = cpu->start_powered_off;
+
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
@@ -102,8 +108,8 @@ static void arm_cpu_reset(CPUState *s)
env->aarch64 = 1;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
- /* Userspace expects access to CTL_EL0 and the cache ops */
- env->cp15.c1_sys |= SCTLR_UCT | SCTLR_UCI;
+ /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
+ env->cp15.c1_sys |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* and to the FP/Neon instructions */
env->cp15.c1_coproc = deposit64(env->cp15.c1_coproc, 20, 2, 3);
#else
@@ -328,9 +334,12 @@ static void arm_cpu_initfn(Object *obj)
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
- if (tcg_enabled() && !inited) {
- inited = true;
- arm_translate_init();
+ if (tcg_enabled()) {
+ cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
+ if (!inited) {
+ inited = true;
+ arm_translate_init();
+ }
}
}
@@ -1084,6 +1093,7 @@ static const ARMCPUInfo arm_cpus[] = {
static Property arm_cpu_properties[] = {
DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
+ DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
DEFINE_PROP_END_OF_LIST()
};
@@ -1103,7 +1113,6 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
- cc->do_interrupt = arm_cpu_do_interrupt;
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
@@ -1112,6 +1121,7 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
#else
+ cc->do_interrupt = arm_cpu_do_interrupt;
cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
cc->vmsd = &vmstate_arm_cpu;
#endif
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
index 65a3417951..cb6ec5c59f 100644
--- a/target-arm/cpu.h
+++ b/target-arm/cpu.h
@@ -100,7 +100,7 @@ typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
struct arm_boot_info;
-#define NB_MMU_MODES 2
+#define NB_MMU_MODES 4
/* We currently assume float and double are IEEE single and double
precision respectively.
@@ -153,8 +153,8 @@ typedef struct CPUARMState {
/* Banked registers. */
uint64_t banked_spsr[8];
- uint32_t banked_r13[6];
- uint32_t banked_r14[6];
+ uint32_t banked_r13[8];
+ uint32_t banked_r14[8];
/* These hold r8-r12. */
uint32_t usr_regs[5];
@@ -753,14 +753,62 @@ static inline int arm_feature(CPUARMState *env, int feature)
return (env->features & (1ULL << feature)) != 0;
}
+#if !defined(CONFIG_USER_ONLY)
+/* Return true if exception levels below EL3 are in secure state,
+ * or would be following an exception return to that level.
+ * Unlike arm_is_secure() (which is always a question about the
+ * _current_ state of the CPU) this doesn't care about the current
+ * EL or mode.
+ */
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ return !(env->cp15.scr_el3 & SCR_NS);
+ } else {
+ /* If EL2 is not supported then the secure state is implementation
+ * defined, in which case QEMU defaults to non-secure.
+ */
+ return false;
+ }
+}
+
+/* Return true if the processor is in secure state */
+static inline bool arm_is_secure(CPUARMState *env)
+{
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
+ /* CPU currently in AArch64 state and EL3 */
+ return true;
+ } else if (!is_a64(env) &&
+ (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
+ /* CPU currently in AArch32 state and monitor mode */
+ return true;
+ }
+ }
+ return arm_is_secure_below_el3(env);
+}
+
+#else
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+ return false;
+}
+
+static inline bool arm_is_secure(CPUARMState *env)
+{
+ return false;
+}
+#endif
+
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
- /* We don't currently support EL2 or EL3, and this isn't valid for EL0
+ /* We don't currently support EL2, and this isn't valid for EL0
* (if we're in EL0, is_a64() is what you want, and if we're not in EL0
* then the state of EL0 isn't well defined.)
*/
- assert(el == 1);
+ assert(el == 1 || el == 3);
+
/* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
* is a QEMU-imposed simplification which we may wish to change later.
* If we in future support EL2 and/or EL3, then the state of lower
@@ -944,19 +992,32 @@ static inline bool cptype_valid(int cptype)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)
-static inline int arm_current_pl(CPUARMState *env)
+/* Return the current Exception Level (as per ARMv8; note that this differs
+ * from the ARMv7 Privilege Level).
+ */
+static inline int arm_current_el(CPUARMState *env)
{
- if (env->aarch64) {
+ if (is_a64(env)) {
return extract32(env->pstate, 2, 2);
}
- if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
+ switch (env->uncached_cpsr & 0x1f) {
+ case ARM_CPU_MODE_USR:
return 0;
+ case ARM_CPU_MODE_HYP:
+ return 2;
+ case ARM_CPU_MODE_MON:
+ return 3;
+ default:
+ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
+ /* If EL3 is 32-bit then all secure privileged modes run in
+ * EL3
+ */
+ return 3;
+ }
+
+ return 1;
}
- /* We don't currently implement the Virtualization or TrustZone
- * extensions, so PL2 and PL3 don't exist for us.
- */
- return 1;
}
typedef struct ARMCPRegInfo ARMCPRegInfo;
@@ -1117,10 +1178,10 @@ static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
-static inline bool cp_access_ok(int current_pl,
+static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
- return (ri->access >> ((current_pl * 2) + isread)) & 1;
+ return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/**
@@ -1184,7 +1245,7 @@ bool write_cpustate_to_list(ARMCPU *cpu);
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
{
CPUARMState *env = cs->env_ptr;
- unsigned int cur_el = arm_current_pl(env);
+ unsigned int cur_el = arm_current_el(env);
unsigned int target_el = arm_excp_target_el(cs, excp_idx);
/* FIXME: Use actual secure state. */
bool secure = false;
@@ -1256,7 +1317,7 @@ static inline CPUARMState *cpu_init(const char *cpu_model)
#define MMU_USER_IDX 0
static inline int cpu_mmu_index (CPUARMState *env)
{
- return arm_current_pl(env);
+ return arm_current_el(env);
}
/* Return the Exception Level targeted by debug exceptions;
@@ -1269,7 +1330,7 @@ static inline int arm_debug_target_el(CPUARMState *env)
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
- if (arm_current_pl(env) == arm_debug_target_el(env)) {
+ if (arm_current_el(env) == arm_debug_target_el(env)) {
if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
|| (env->daif & PSTATE_D)) {
return false;
@@ -1280,10 +1341,10 @@ static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
- if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
+ if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
return aa64_generate_debug_exceptions(env);
}
- return arm_current_pl(env) != 2;
+ return arm_current_el(env) != 2;
}
/* Return true if debugging exceptions are currently enabled.
@@ -1413,8 +1474,8 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
if (is_a64(env)) {
*pc = env->pc;
*flags = ARM_TBFLAG_AARCH64_STATE_MASK
- | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
- if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
+ | (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
+ if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
*flags |= ARM_TBFLAG_AA64_FPEN_MASK;
}
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
@@ -1450,7 +1511,7 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
|| arm_el_is_aa64(env, 1)) {
*flags |= ARM_TBFLAG_VFPEN_MASK;
}
- if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
+ if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
*flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
}
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
@@ -1484,4 +1545,10 @@ static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
}
}
+enum {
+ QEMU_PSCI_CONDUIT_DISABLED = 0,
+ QEMU_PSCI_CONDUIT_SMC = 1,
+ QEMU_PSCI_CONDUIT_HVC = 2,
+};
+
#endif
diff --git a/target-arm/cpu64.c b/target-arm/cpu64.c
index c30f47eca7..bb778b3d92 100644
--- a/target-arm/cpu64.c
+++ b/target-arm/cpu64.c
@@ -151,7 +151,7 @@ static void aarch64_any_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
- cpu->ctr = 0x80030003; /* 32 byte I and D cacheline size, VIPT icache */
+ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
}
#endif
@@ -196,7 +196,9 @@ static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
+#if !defined(CONFIG_USER_ONLY)
cc->do_interrupt = aarch64_cpu_do_interrupt;
+#endif
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->set_pc = aarch64_cpu_set_pc;
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
diff --git a/target-arm/helper-a64.c b/target-arm/helper-a64.c
index 8228e29486..81066ca936 100644
--- a/target-arm/helper-a64.c
+++ b/target-arm/helper-a64.c
@@ -438,6 +438,8 @@ uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
+#if !defined(CONFIG_USER_ONLY)
+
/* Handle a CPU exception. */
void aarch64_cpu_do_interrupt(CPUState *cs)
{
@@ -448,7 +450,7 @@ void aarch64_cpu_do_interrupt(CPUState *cs)
unsigned int new_mode = aarch64_pstate_mode(new_el, true);
int i;
- if (arm_current_pl(env) < new_el) {
+ if (arm_current_el(env) < new_el) {
if (env->aarch64) {
addr += 0x400;
} else {
@@ -459,13 +461,19 @@ void aarch64_cpu_do_interrupt(CPUState *cs)
}
arm_log_exception(cs->exception_index);
- qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_pl(env));
+ qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_el(env));
if (qemu_loglevel_mask(CPU_LOG_INT)
&& !excp_is_internal(cs->exception_index)) {
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n",
env->exception.syndrome);
}
+ if (arm_is_psci_call(cpu, cs->exception_index)) {
+ arm_handle_psci_call(cpu);
+ qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
+ return;
+ }
+
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
@@ -495,7 +503,7 @@ void aarch64_cpu_do_interrupt(CPUState *cs)
if (is_a64(env)) {
env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
- aarch64_save_sp(env, arm_current_pl(env));
+ aarch64_save_sp(env, arm_current_el(env));
env->elr_el[new_el] = env->pc;
} else {
env->banked_spsr[0] = cpsr_read(env);
@@ -518,3 +526,4 @@ void aarch64_cpu_do_interrupt(CPUState *cs)
env->pc = addr;
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
+#endif
diff --git a/target-arm/helper.c b/target-arm/helper.c
index 2669e15cb8..c47487a0af 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -571,7 +571,7 @@ static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
/* Performance monitor registers user accessibility is controlled
* by PMUSERENR.
*/
- if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -996,7 +996,7 @@ static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
- if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
+ if (arm_current_el(env) == 0 && (env->teecr & 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -1042,7 +1042,7 @@ static const ARMCPRegInfo v6k_cp_reginfo[] = {
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
- if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
+ if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -1051,7 +1051,7 @@ static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
/* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
- if (arm_current_pl(env) == 0 &&
+ if (arm_current_el(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
return CP_ACCESS_TRAP;
}
@@ -1063,7 +1063,7 @@ static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
/* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
* EL0[PV]TEN is zero.
*/
- if (arm_current_pl(env) == 0 &&
+ if (arm_current_el(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
return CP_ACCESS_TRAP;
}
@@ -1911,7 +1911,7 @@ static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
- if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
+ if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -1929,7 +1929,7 @@ static CPAccessResult aa64_cacheop_access(CPUARMState *env,
/* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
* SCTLR_EL1.UCI is set.
*/
- if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
+ if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -2006,7 +2006,7 @@ static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
/* We don't implement EL2, so the only control on DC ZVA is the
* bit in the SCTLR which can prohibit access for EL0.
*/
- if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
+ if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -2018,7 +2018,7 @@ static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
int dzp_bit = 1 << 4;
/* DZP indicates whether DC ZVA access is allowed */
- if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
+ if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
dzp_bit = 0;
}
return cpu->dcz_blocksize | dzp_bit;
@@ -2366,7 +2366,7 @@ static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
/* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
* but the AArch32 CTR has its own reginfo struct)
*/
- if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
+ if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
@@ -3531,6 +3531,8 @@ static int bad_mode_switch(CPUARMState *env, int mode)
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_FIQ:
return 0;
+ case ARM_CPU_MODE_MON:
+ return !arm_is_secure(env);
default:
return 1;
}
@@ -3644,11 +3646,6 @@ uint32_t HELPER(rbit)(uint32_t x)
#if defined(CONFIG_USER_ONLY)
-void arm_cpu_do_interrupt(CPUState *cs)
-{
- cs->exception_index = -1;
-}
-
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
int mmu_idx)
{
@@ -3771,7 +3768,7 @@ unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
- unsigned int cur_el = arm_current_pl(env);
+ unsigned int cur_el = arm_current_el(env);
unsigned int target_el;
/* FIXME: Use actual secure state. */
bool secure = false;
@@ -3975,6 +3972,12 @@ void arm_cpu_do_interrupt(CPUState *cs)
arm_log_exception(cs->exception_index);
+ if (arm_is_psci_call(cpu, cs->exception_index)) {
+ arm_handle_psci_call(cpu);
+ qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
+ return;
+ }
+
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
case EC_BREAKPOINT:
@@ -4088,6 +4091,12 @@ void arm_cpu_do_interrupt(CPUState *cs)
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 4;
break;
+ case EXCP_SMC:
+ new_mode = ARM_CPU_MODE_MON;
+ addr = 0x08;
+ mask = CPSR_A | CPSR_I | CPSR_F;
+ offset = 0;
+ break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
return; /* Never happens. Keep compiler happy. */
@@ -4106,6 +4115,11 @@ void arm_cpu_do_interrupt(CPUState *cs)
*/
addr += env->cp15.vbar_el[1];
}
+
+ if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
+ env->cp15.scr_el3 &= ~SCR_NS;
+ }
+
switch_mode (env, new_mode);
/* For exceptions taken to AArch32 we must clear the SS bit in both
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
@@ -4767,7 +4781,7 @@ int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
int prot;
int ret, is_user;
uint32_t syn;
- bool same_el = (arm_current_pl(env) != 0);
+ bool same_el = (arm_current_el(env) != 0);
is_user = mmu_idx == MMU_USER_IDX;
ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
diff --git a/target-arm/internals.h b/target-arm/internals.h
index b7547bbb76..2dff4ffb19 100644
--- a/target-arm/internals.h
+++ b/target-arm/internals.h
@@ -130,7 +130,7 @@ static inline void aarch64_restore_sp(CPUARMState *env, int el)
static inline void update_spsel(CPUARMState *env, uint32_t imm)
{
- unsigned int cur_el = arm_current_pl(env);
+ unsigned int cur_el = arm_current_el(env);
/* Update PSTATE SPSel bit; this requires us to update the
* working stack pointer in xregs[31].
*/
@@ -236,6 +236,16 @@ static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
| (is_thumb ? 0 : ARM_EL_IL);
}
+static inline uint32_t syn_aa32_hvc(uint32_t imm16)
+{
+ return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
+}
+
+static inline uint32_t syn_aa32_smc(void)
+{
+ return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
+}
+
static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
{
return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
@@ -356,4 +366,16 @@ void hw_breakpoint_update_all(ARMCPU *cpu);
/* Callback function for when a watchpoint or breakpoint triggers. */
void arm_debug_excp_handler(CPUState *cs);
+#ifdef CONFIG_USER_ONLY
+static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
+{
+ return false;
+}
+#else
+/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
+bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
+/* Actually handle a PSCI call */
+void arm_handle_psci_call(ARMCPU *cpu);
+#endif
+
#endif
diff --git a/target-arm/kvm-consts.h b/target-arm/kvm-consts.h
index 091c1267d6..aea12f1bc4 100644
--- a/target-arm/kvm-consts.h
+++ b/target-arm/kvm-consts.h
@@ -59,14 +59,21 @@ MISMATCH_CHECK(QEMU_PSCI_0_1_FN_MIGRATE, KVM_PSCI_FN_MIGRATE)
(QEMU_PSCI_0_2_FN_BASE + QEMU_PSCI_0_2_64BIT)
#define QEMU_PSCI_0_2_FN64(n) (QEMU_PSCI_0_2_FN64_BASE + (n))
+#define QEMU_PSCI_0_2_FN_PSCI_VERSION QEMU_PSCI_0_2_FN(0)
#define QEMU_PSCI_0_2_FN_CPU_SUSPEND QEMU_PSCI_0_2_FN(1)
#define QEMU_PSCI_0_2_FN_CPU_OFF QEMU_PSCI_0_2_FN(2)
#define QEMU_PSCI_0_2_FN_CPU_ON QEMU_PSCI_0_2_FN(3)
+#define QEMU_PSCI_0_2_FN_AFFINITY_INFO QEMU_PSCI_0_2_FN(4)
#define QEMU_PSCI_0_2_FN_MIGRATE QEMU_PSCI_0_2_FN(5)
+#define QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE QEMU_PSCI_0_2_FN(6)
+#define QEMU_PSCI_0_2_FN_MIGRATE_INFO_UP_CPU QEMU_PSCI_0_2_FN(7)
+#define QEMU_PSCI_0_2_FN_SYSTEM_OFF QEMU_PSCI_0_2_FN(8)
+#define QEMU_PSCI_0_2_FN_SYSTEM_RESET QEMU_PSCI_0_2_FN(9)
#define QEMU_PSCI_0_2_FN64_CPU_SUSPEND QEMU_PSCI_0_2_FN64(1)
#define QEMU_PSCI_0_2_FN64_CPU_OFF QEMU_PSCI_0_2_FN64(2)
#define QEMU_PSCI_0_2_FN64_CPU_ON QEMU_PSCI_0_2_FN64(3)
+#define QEMU_PSCI_0_2_FN64_AFFINITY_INFO QEMU_PSCI_0_2_FN64(4)
#define QEMU_PSCI_0_2_FN64_MIGRATE QEMU_PSCI_0_2_FN64(5)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN_CPU_SUSPEND, PSCI_0_2_FN_CPU_SUSPEND)
@@ -77,6 +84,39 @@ MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_CPU_SUSPEND, PSCI_0_2_FN64_CPU_SUSPEND)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_CPU_ON, PSCI_0_2_FN64_CPU_ON)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_MIGRATE, PSCI_0_2_FN64_MIGRATE)
+/* PSCI v0.2 return values used by TCG emulation of PSCI */
+
+/* No Trusted OS migration to worry about when offlining CPUs */
+#define QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED 2
+
+/* We implement version 0.2 only */
+#define QEMU_PSCI_0_2_RET_VERSION_0_2 2
+
+MISMATCH_CHECK(QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED, PSCI_0_2_TOS_MP)
+MISMATCH_CHECK(QEMU_PSCI_0_2_RET_VERSION_0_2,
+ (PSCI_VERSION_MAJOR(0) | PSCI_VERSION_MINOR(2)))
+
+/* PSCI return values (inclusive of all PSCI versions) */
+#define QEMU_PSCI_RET_SUCCESS 0
+#define QEMU_PSCI_RET_NOT_SUPPORTED -1
+#define QEMU_PSCI_RET_INVALID_PARAMS -2
+#define QEMU_PSCI_RET_DENIED -3
+#define QEMU_PSCI_RET_ALREADY_ON -4
+#define QEMU_PSCI_RET_ON_PENDING -5
+#define QEMU_PSCI_RET_INTERNAL_FAILURE -6
+#define QEMU_PSCI_RET_NOT_PRESENT -7
+#define QEMU_PSCI_RET_DISABLED -8
+
+MISMATCH_CHECK(QEMU_PSCI_RET_SUCCESS, PSCI_RET_SUCCESS)
+MISMATCH_CHECK(QEMU_PSCI_RET_NOT_SUPPORTED, PSCI_RET_NOT_SUPPORTED)
+MISMATCH_CHECK(QEMU_PSCI_RET_INVALID_PARAMS, PSCI_RET_INVALID_PARAMS)
+MISMATCH_CHECK(QEMU_PSCI_RET_DENIED, PSCI_RET_DENIED)
+MISMATCH_CHECK(QEMU_PSCI_RET_ALREADY_ON, PSCI_RET_ALREADY_ON)
+MISMATCH_CHECK(QEMU_PSCI_RET_ON_PENDING, PSCI_RET_ON_PENDING)
+MISMATCH_CHECK(QEMU_PSCI_RET_INTERNAL_FAILURE, PSCI_RET_INTERNAL_FAILURE)
+MISMATCH_CHECK(QEMU_PSCI_RET_NOT_PRESENT, PSCI_RET_NOT_PRESENT)
+MISMATCH_CHECK(QEMU_PSCI_RET_DISABLED, PSCI_RET_DISABLED)
+
/* Note that KVM uses overlapping values for AArch32 and AArch64
* target CPU numbers. AArch32 targets:
*/
diff --git a/target-arm/machine.c b/target-arm/machine.c
index ddb7d05c28..6437690af7 100644
--- a/target-arm/machine.c
+++ b/target-arm/machine.c
@@ -222,8 +222,8 @@ static int cpu_post_load(void *opaque, int version_id)
const VMStateDescription vmstate_arm_cpu = {
.name = "cpu",
- .version_id = 20,
- .minimum_version_id = 20,
+ .version_id = 21,
+ .minimum_version_id = 21,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
@@ -238,8 +238,8 @@ const VMStateDescription vmstate_arm_cpu = {
},
VMSTATE_UINT32(env.spsr, ARMCPU),
VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
- VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 6),
- VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 6),
+ VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
+ VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
@@ -263,6 +263,7 @@ const VMStateDescription vmstate_arm_cpu = {
VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
VMSTATE_TIMER(gt_timer[GTIMER_PHYS], ARMCPU),
VMSTATE_TIMER(gt_timer[GTIMER_VIRT], ARMCPU),
+ VMSTATE_BOOL(powered_off, ARMCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (VMStateSubsection[]) {
diff --git a/target-arm/op_helper.c b/target-arm/op_helper.c
index 03ac92afdc..62012c3a6e 100644
--- a/target-arm/op_helper.c
+++ b/target-arm/op_helper.c
@@ -361,7 +361,7 @@ void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
* Note that SPSel is never OK from EL0; we rely on handle_msr_i()
* to catch that case at translate time.
*/
- if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
+ if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
raise_exception(env, EXCP_UDEF);
}
@@ -387,15 +387,24 @@ void HELPER(clear_pstate_ss)(CPUARMState *env)
void HELPER(pre_hvc)(CPUARMState *env)
{
- int cur_el = arm_current_pl(env);
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
bool undef;
- /* We've already checked that EL2 exists at translation time.
- * EL3.HCE has priority over EL2.HCD.
- */
- if (arm_feature(env, ARM_FEATURE_EL3)) {
+ if (arm_is_psci_call(cpu, EXCP_HVC)) {
+ /* If PSCI is enabled and this looks like a valid PSCI call then
+ * that overrides the architecturally mandated HVC behaviour.
+ */
+ return;
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_EL2)) {
+ /* If EL2 doesn't exist, HVC always UNDEFs */
+ undef = true;
+ } else if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /* EL3.HCE has priority over EL2.HCD. */
undef = !(env->cp15.scr_el3 & SCR_HCE);
} else {
undef = env->cp15.hcr_el2 & HCR_HCD;
@@ -418,9 +427,9 @@ void HELPER(pre_hvc)(CPUARMState *env)
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
- int cur_el = arm_current_pl(env);
- /* FIXME: Use real secure state. */
- bool secure = false;
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ int cur_el = arm_current_el(env);
+ bool secure = arm_is_secure(env);
bool smd = env->cp15.scr_el3 & SCR_SMD;
/* On ARMv8 AArch32, SMD only applies to NS state.
* On ARMv7 SMD only applies to NS state and only if EL2 is available.
@@ -429,13 +438,22 @@ void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
*/
bool undef = is_a64(env) ? smd : (!secure && smd);
- /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
- if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
+ if (arm_is_psci_call(cpu, EXCP_SMC)) {
+ /* If PSCI is enabled and this looks like a valid PSCI call then
+ * that overrides the architecturally mandated SMC behaviour.
+ */
+ return;
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_EL3)) {
+ /* If we have no EL3 then SMC always UNDEFs */
+ undef = true;
+ } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
+ /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
env->exception.syndrome = syndrome;
raise_exception(env, EXCP_HYP_TRAP);
}
- /* We've already checked that EL3 exists at translation time. */
if (undef) {
env->exception.syndrome = syn_uncategorized();
raise_exception(env, EXCP_UDEF);
@@ -444,7 +462,7 @@ void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
void HELPER(exception_return)(CPUARMState *env)
{
- int cur_el = arm_current_pl(env);
+ int cur_el = arm_current_el(env);
unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
uint32_t spsr = env->banked_spsr[spsr_idx];
int new_el, i;
@@ -561,7 +579,7 @@ static bool linked_bp_matches(ARMCPU *cpu, int lbn)
switch (bt) {
case 3: /* linked context ID match */
- if (arm_current_pl(env) > 1) {
+ if (arm_current_el(env) > 1) {
/* Context matches never fire in EL2 or (AArch64) EL3 */
return false;
}
@@ -641,7 +659,7 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
* rely on this behaviour currently.
* For breakpoints we do want to use the current CPU state.
*/
- switch (arm_current_pl(env)) {
+ switch (arm_current_el(env)) {
case 3:
case 2:
if (!hmc) {
@@ -728,7 +746,7 @@ void arm_debug_excp_handler(CPUState *cs)
cs->watchpoint_hit = NULL;
if (check_watchpoints(cpu)) {
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
- bool same_el = arm_debug_target_el(env) == arm_current_pl(env);
+ bool same_el = arm_debug_target_el(env) == arm_current_el(env);
env->exception.syndrome = syn_watchpoint(same_el, 0, wnr);
if (extended_addresses_enabled(env)) {
@@ -744,7 +762,7 @@ void arm_debug_excp_handler(CPUState *cs)
}
} else {
if (check_breakpoints(cpu)) {
- bool same_el = (arm_debug_target_el(env) == arm_current_pl(env));
+ bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
env->exception.syndrome = syn_breakpoint(same_el);
if (extended_addresses_enabled(env)) {
env->exception.fsr = (1 << 9) | 0x22;
diff --git a/target-arm/psci.c b/target-arm/psci.c
new file mode 100644
index 0000000000..d8fafab2fe
--- /dev/null
+++ b/target-arm/psci.c
@@ -0,0 +1,242 @@
+/*
+ * Copyright (C) 2014 - Linaro
+ * Author: Rob Herring <rob.herring@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include <cpu.h>
+#include <cpu-qom.h>
+#include <exec/helper-proto.h>
+#include <kvm-consts.h>
+#include <sysemu/sysemu.h>
+#include "internals.h"
+
+bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
+{
+ /* Return true if the r0/x0 value indicates a PSCI call and
+ * the exception type matches the configured PSCI conduit. This is
+ * called before the SMC/HVC instruction is executed, to decide whether
+ * we should treat it as a PSCI call or with the architecturally
+ * defined behaviour for an SMC or HVC (which might be UNDEF or trap
+ * to EL2 or to EL3).
+ */
+ CPUARMState *env = &cpu->env;
+ uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
+
+ switch (excp_type) {
+ case EXCP_HVC:
+ if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
+ return false;
+ }
+ break;
+ case EXCP_SMC:
+ if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
+ return false;
+ }
+ break;
+ default:
+ return false;
+ }
+
+ switch (param) {
+ case QEMU_PSCI_0_2_FN_PSCI_VERSION:
+ case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
+ case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
+ case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
+ case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
+ case QEMU_PSCI_0_1_FN_CPU_ON:
+ case QEMU_PSCI_0_2_FN_CPU_ON:
+ case QEMU_PSCI_0_2_FN64_CPU_ON:
+ case QEMU_PSCI_0_1_FN_CPU_OFF:
+ case QEMU_PSCI_0_2_FN_CPU_OFF:
+ case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
+ case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
+ case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
+ case QEMU_PSCI_0_1_FN_MIGRATE:
+ case QEMU_PSCI_0_2_FN_MIGRATE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+void arm_handle_psci_call(ARMCPU *cpu)
+{
+ /*
+ * This function partially implements the logic for dispatching Power State
+ * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
+ * to the extent required for bringing up and taking down secondary cores,
+ * and for handling reset and poweroff requests.
+ * Additional information about the calling convention used is available in
+ * the document 'SMC Calling Convention' (ARM DEN 0028)
+ */
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+ uint64_t param[4];
+ uint64_t context_id, mpidr;
+ target_ulong entry;
+ int32_t ret = 0;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ /*
+ * All PSCI functions take explicit 32-bit or native int sized
+ * arguments so we can simply zero-extend all arguments regardless
+ * of which exact function we are about to call.
+ */
+ param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
+ }
+
+ if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
+ ret = QEMU_PSCI_RET_INVALID_PARAMS;
+ goto err;
+ }
+
+ switch (param[0]) {
+ CPUState *target_cpu_state;
+ ARMCPU *target_cpu;
+ CPUClass *target_cpu_class;
+
+ case QEMU_PSCI_0_2_FN_PSCI_VERSION:
+ ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
+ break;
+ case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
+ break;
+ case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
+ case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
+ mpidr = param[1];
+
+ switch (param[2]) {
+ case 0:
+ target_cpu_state = qemu_get_cpu(mpidr & 0xff);
+ if (!target_cpu_state) {
+ ret = QEMU_PSCI_RET_INVALID_PARAMS;
+ break;
+ }
+ target_cpu = ARM_CPU(target_cpu_state);
+ ret = target_cpu->powered_off ? 1 : 0;
+ break;
+ default:
+ /* Everything above affinity level 0 is always on. */
+ ret = 0;
+ }
+ break;
+ case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
+ qemu_system_reset_request();
+ /* QEMU reset and shutdown are async requests, but PSCI
+ * mandates that we never return from the reset/shutdown
+ * call, so power the CPU off now so it doesn't execute
+ * anything further.
+ */
+ goto cpu_off;
+ case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
+ qemu_system_shutdown_request();
+ goto cpu_off;
+ case QEMU_PSCI_0_1_FN_CPU_ON:
+ case QEMU_PSCI_0_2_FN_CPU_ON:
+ case QEMU_PSCI_0_2_FN64_CPU_ON:
+ mpidr = param[1];
+ entry = param[2];
+ context_id = param[3];
+
+ /* change to the cpu we are powering up */
+ target_cpu_state = qemu_get_cpu(mpidr & 0xff);
+ if (!target_cpu_state) {
+ ret = QEMU_PSCI_RET_INVALID_PARAMS;
+ break;
+ }
+ target_cpu = ARM_CPU(target_cpu_state);
+ if (!target_cpu->powered_off) {
+ ret = QEMU_PSCI_RET_ALREADY_ON;
+ break;
+ }
+ target_cpu_class = CPU_GET_CLASS(target_cpu);
+
+ /* Initialize the cpu we are turning on */
+ cpu_reset(target_cpu_state);
+ target_cpu->powered_off = false;
+ target_cpu_state->halted = 0;
+
+ /*
+ * The PSCI spec mandates that newly brought up CPUs enter the
+ * exception level of the caller in the same execution mode as
+ * the caller, with context_id in x0/r0, respectively.
+ *
+ * For now, it is sufficient to assert() that CPUs come out of
+ * reset in the same mode as the calling CPU, since we only
+ * implement EL1, which means that
+ * (a) there is no EL2 for the calling CPU to trap into to change
+ * its state
+ * (b) the newly brought up CPU enters EL1 immediately after coming
+ * out of reset in the default state
+ */
+ assert(is_a64(env) == is_a64(&target_cpu->env));
+ if (is_a64(env)) {
+ if (entry & 1) {
+ ret = QEMU_PSCI_RET_INVALID_PARAMS;
+ break;
+ }
+ target_cpu->env.xregs[0] = context_id;
+ } else {
+ target_cpu->env.regs[0] = context_id;
+ target_cpu->env.thumb = entry & 1;
+ }
+ target_cpu_class->set_pc(target_cpu_state, entry);
+
+ ret = 0;
+ break;
+ case QEMU_PSCI_0_1_FN_CPU_OFF:
+ case QEMU_PSCI_0_2_FN_CPU_OFF:
+ goto cpu_off;
+ case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
+ case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
+ case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
+ /* Affinity levels are not supported in QEMU */
+ if (param[1] & 0xfffe0000) {
+ ret = QEMU_PSCI_RET_INVALID_PARAMS;
+ break;
+ }
+ /* Powerdown is not supported, we always go into WFI */
+ if (is_a64(env)) {
+ env->xregs[0] = 0;
+ } else {
+ env->regs[0] = 0;
+ }
+ helper_wfi(env);
+ break;
+ case QEMU_PSCI_0_1_FN_MIGRATE:
+ case QEMU_PSCI_0_2_FN_MIGRATE:
+ ret = QEMU_PSCI_RET_NOT_SUPPORTED;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+err:
+ if (is_a64(env)) {
+ env->xregs[0] = ret;
+ } else {
+ env->regs[0] = ret;
+ }
+ return;
+
+cpu_off:
+ cpu->powered_off = true;
+ cs->halted = 1;
+ cs->exception_index = EXCP_HLT;
+ cpu_loop_exit(cs);
+ /* notreached */
+}
diff --git a/target-arm/translate-a64.c b/target-arm/translate-a64.c
index 35ae3ea281..3a3c48acf4 100644
--- a/target-arm/translate-a64.c
+++ b/target-arm/translate-a64.c
@@ -1226,7 +1226,7 @@ static void handle_msr_i(DisasContext *s, uint32_t insn,
int op = op1 << 3 | op2;
switch (op) {
case 0x05: /* SPSel */
- if (s->current_pl == 0) {
+ if (s->current_el == 0) {
unallocated_encoding(s);
return;
}
@@ -1323,7 +1323,7 @@ static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
}
/* Check access permissions */
- if (!cp_access_ok(s->current_pl, ri, isread)) {
+ if (!cp_access_ok(s->current_el, ri, isread)) {
unallocated_encoding(s);
return;
}
@@ -1362,7 +1362,7 @@ static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
* guaranteed to be constant by the tb flags.
*/
tcg_rt = cpu_reg(s, rt);
- tcg_gen_movi_i64(tcg_rt, s->current_pl << 2);
+ tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
return;
case ARM_CP_DC_ZVA:
/* Writes clear the aligned block of memory which rt points into. */
@@ -1485,7 +1485,7 @@ static void disas_exc(DisasContext *s, uint32_t insn)
gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16));
break;
case 2:
- if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_pl == 0) {
+ if (s->current_el == 0) {
unallocated_encoding(s);
break;
}
@@ -1498,7 +1498,7 @@ static void disas_exc(DisasContext *s, uint32_t insn)
gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16));
break;
case 3:
- if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->current_pl == 0) {
+ if (s->current_el == 0) {
unallocated_encoding(s);
break;
}
@@ -1575,7 +1575,7 @@ static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
break;
case 4: /* ERET */
- if (s->current_pl == 0) {
+ if (s->current_el == 0) {
unallocated_encoding(s);
return;
}
@@ -10930,7 +10930,7 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
dc->vec_len = 0;
dc->vec_stride = 0;
dc->cp_regs = cpu->cp_regs;
- dc->current_pl = arm_current_pl(env);
+ dc->current_el = arm_current_el(env);
dc->features = env->features;
/* Single step state. The code-generation logic here is:
@@ -10951,7 +10951,7 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
dc->ss_active = ARM_TBFLAG_AA64_SS_ACTIVE(tb->flags);
dc->pstate_ss = ARM_TBFLAG_AA64_PSTATE_SS(tb->flags);
dc->is_ldex = false;
- dc->ss_same_el = (arm_debug_target_el(env) == dc->current_pl);
+ dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
init_tmp_a64_array(dc);
diff --git a/target-arm/translate.c b/target-arm/translate.c
index 8a2994fcb4..1d52e4774f 100644
--- a/target-arm/translate.c
+++ b/target-arm/translate.c
@@ -941,6 +941,39 @@ static inline void gen_set_pc_im(DisasContext *s, target_ulong val)
tcg_gen_movi_i32(cpu_R[15], val);
}
+static inline void gen_hvc(DisasContext *s, int imm16)
+{
+ /* The pre HVC helper handles cases when HVC gets trapped
+ * as an undefined insn by runtime configuration (ie before
+ * the insn really executes).
+ */
+ gen_set_pc_im(s, s->pc - 4);
+ gen_helper_pre_hvc(cpu_env);
+ /* Otherwise we will treat this as a real exception which
+ * happens after execution of the insn. (The distinction matters
+ * for the PC value reported to the exception handler and also
+ * for single stepping.)
+ */
+ s->svc_imm = imm16;
+ gen_set_pc_im(s, s->pc);
+ s->is_jmp = DISAS_HVC;
+}
+
+static inline void gen_smc(DisasContext *s)
+{
+ /* As with HVC, we may take an exception either before or after
+ * the insn executes.
+ */
+ TCGv_i32 tmp;
+
+ gen_set_pc_im(s, s->pc - 4);
+ tmp = tcg_const_i32(syn_aa32_smc());
+ gen_helper_pre_smc(cpu_env, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_set_pc_im(s, s->pc);
+ s->is_jmp = DISAS_SMC;
+}
+
static inline void
gen_set_condexec (DisasContext *s)
{
@@ -3199,6 +3232,9 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
+ if (IS_USER(s)) {
+ return 1;
+ }
tmp = load_reg(s, rd);
store_cpu_field(tmp, vfp.xregs[rn]);
break;
@@ -7041,7 +7077,7 @@ static int disas_coproc_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
ENCODE_CP_REG(cpnum, is64, crn, crm, opc1, opc2));
if (ri) {
/* Check access permissions */
- if (!cp_access_ok(s->current_pl, ri, isread)) {
+ if (!cp_access_ok(s->current_el, ri, isread)) {
return 1;
}
@@ -7872,15 +7908,32 @@ static void disas_arm_insn(CPUARMState * env, DisasContext *s)
case 7:
{
int imm16 = extract32(insn, 0, 4) | (extract32(insn, 8, 12) << 4);
- /* SMC instruction (op1 == 3)
- and undefined instructions (op1 == 0 || op1 == 2)
- will trap */
- if (op1 != 1) {
+ switch (op1) {
+ case 1:
+ /* bkpt */
+ ARCH(5);
+ gen_exception_insn(s, 4, EXCP_BKPT,
+ syn_aa32_bkpt(imm16, false));
+ break;
+ case 2:
+ /* Hypervisor call (v7) */
+ ARCH(7);
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_hvc(s, imm16);
+ break;
+ case 3:
+ /* Secure monitor call (v6+) */
+ ARCH(6K);
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_smc(s);
+ break;
+ default:
goto illegal_op;
}
- /* bkpt */
- ARCH(5);
- gen_exception_insn(s, 4, EXCP_BKPT, syn_aa32_bkpt(imm16, false));
break;
}
case 0x8: /* signed multiply */
@@ -9710,10 +9763,23 @@ static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw
goto illegal_op;
if (insn & (1 << 26)) {
- /* Secure monitor call (v6Z) */
- qemu_log_mask(LOG_UNIMP,
- "arm: unimplemented secure monitor call\n");
- goto illegal_op; /* not implemented. */
+ if (!(insn & (1 << 20))) {
+ /* Hypervisor call (v7) */
+ int imm16 = extract32(insn, 16, 4) << 12
+ | extract32(insn, 0, 12);
+ ARCH(7);
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_hvc(s, imm16);
+ } else {
+ /* Secure monitor call (v6+) */
+ ARCH(6K);
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_smc(s);
+ }
} else {
op = (insn >> 20) & 7;
switch (op) {
@@ -10945,7 +11011,7 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
dc->vec_stride = ARM_TBFLAG_VECSTRIDE(tb->flags);
dc->c15_cpar = ARM_TBFLAG_XSCALE_CPAR(tb->flags);
dc->cp_regs = cpu->cp_regs;
- dc->current_pl = arm_current_pl(env);
+ dc->current_el = arm_current_el(env);
dc->features = env->features;
/* Single step state. The code-generation logic here is:
@@ -11148,6 +11214,12 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
if (dc->is_jmp == DISAS_SWI) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb));
+ } else if (dc->is_jmp == DISAS_HVC) {
+ gen_ss_advance(dc);
+ gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm));
+ } else if (dc->is_jmp == DISAS_SMC) {
+ gen_ss_advance(dc);
+ gen_exception(EXCP_SMC, syn_aa32_smc());
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
@@ -11163,6 +11235,12 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
if (dc->is_jmp == DISAS_SWI && !dc->condjmp) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb));
+ } else if (dc->is_jmp == DISAS_HVC && !dc->condjmp) {
+ gen_ss_advance(dc);
+ gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm));
+ } else if (dc->is_jmp == DISAS_SMC && !dc->condjmp) {
+ gen_ss_advance(dc);
+ gen_exception(EXCP_SMC, syn_aa32_smc());
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
@@ -11202,6 +11280,12 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
case DISAS_SWI:
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb));
break;
+ case DISAS_HVC:
+ gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm));
+ break;
+ case DISAS_SMC:
+ gen_exception(EXCP_SMC, syn_aa32_smc());
+ break;
}
if (dc->condjmp) {
gen_set_label(dc->condlabel);
diff --git a/target-arm/translate.h b/target-arm/translate.h
index 85c6f9dcb2..41a907157f 100644
--- a/target-arm/translate.h
+++ b/target-arm/translate.h
@@ -29,7 +29,7 @@ typedef struct DisasContext {
*/
uint32_t svc_imm;
int aarch64;
- int current_pl;
+ int current_el;
GHashTable *cp_regs;
uint64_t features; /* CPU features bits */
/* Because unallocated encodings generate different exception syndrome
@@ -68,7 +68,7 @@ static inline int arm_dc_feature(DisasContext *dc, int feature)
static inline int get_mem_index(DisasContext *s)
{
- return s->current_pl;
+ return s->current_el;
}
/* target-specific extra values for is_jmp */
@@ -84,6 +84,8 @@ static inline int get_mem_index(DisasContext *s)
#define DISAS_EXC 6
/* WFE */
#define DISAS_WFE 7
+#define DISAS_HVC 8
+#define DISAS_SMC 9
#ifdef TARGET_AARCH64
void a64_translate_init(void);
diff --git a/vl.c b/vl.c
index aee73e192f..2f81384726 100644
--- a/vl.c
+++ b/vl.c
@@ -63,7 +63,6 @@ int main(int argc, char **argv)
#include "hw/boards.h"
#include "sysemu/accel.h"
#include "hw/usb.h"
-#include "hw/pcmcia.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
#include "hw/bt.h"
@@ -1408,49 +1407,6 @@ void do_usb_del(Monitor *mon, const QDict *qdict)
}
/***********************************************************/
-/* PCMCIA/Cardbus */
-
-static struct pcmcia_socket_entry_s {
- PCMCIASocket *socket;
- struct pcmcia_socket_entry_s *next;
-} *pcmcia_sockets = 0;
-
-void pcmcia_socket_register(PCMCIASocket *socket)
-{
- struct pcmcia_socket_entry_s *entry;
-
- entry = g_malloc(sizeof(struct pcmcia_socket_entry_s));
- entry->socket = socket;
- entry->next = pcmcia_sockets;
- pcmcia_sockets = entry;
-}
-
-void pcmcia_socket_unregister(PCMCIASocket *socket)
-{
- struct pcmcia_socket_entry_s *entry, **ptr;
-
- ptr = &pcmcia_sockets;
- for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
- if (entry->socket == socket) {
- *ptr = entry->next;
- g_free(entry);
- }
-}
-
-void pcmcia_info(Monitor *mon, const QDict *qdict)
-{
- struct pcmcia_socket_entry_s *iter;
-
- if (!pcmcia_sockets)
- monitor_printf(mon, "No PCMCIA sockets\n");
-
- for (iter = pcmcia_sockets; iter; iter = iter->next)
- monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
- iter->socket->attached ? iter->socket->card_string :
- "Empty");
-}
-
-/***********************************************************/
/* machine registration */
MachineState *current_machine;