summaryrefslogtreecommitdiff
path: root/accel
diff options
context:
space:
mode:
authorYang Zhong <yang.zhong@intel.com>2017-06-02 14:06:44 +0800
committerPaolo Bonzini <pbonzini@redhat.com>2017-06-15 11:04:06 +0200
commitd9bb58e51068dfc48746c6af0179926c8dc05bce (patch)
treebd0c3683d7acdf7b2f67ac38b7d7571dbd103694 /accel
parenta9ded6017ea39ea845fb1acf5187528bd74acb04 (diff)
downloadqemu-d9bb58e51068dfc48746c6af0179926c8dc05bce.tar.gz
tcg: move tcg related files into accel/tcg/ subdirectory
move cputlb.c, cpu-exec-common.c and cpu-exec.c related tcg exec file into accel/tcg/ subdirectory. Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <1496383606-18060-3-git-send-email-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'accel')
-rw-r--r--accel/tcg/Makefile.objs2
-rw-r--r--accel/tcg/cpu-exec-common.c82
-rw-r--r--accel/tcg/cpu-exec.c683
-rw-r--r--accel/tcg/cputlb.c1051
-rw-r--r--accel/tcg/trace-events7
5 files changed, 1825 insertions, 0 deletions
diff --git a/accel/tcg/Makefile.objs b/accel/tcg/Makefile.objs
index 6e3211ade1..940379beb8 100644
--- a/accel/tcg/Makefile.objs
+++ b/accel/tcg/Makefile.objs
@@ -1 +1,3 @@
obj-$(CONFIG_SOFTMMU) += tcg-all.o
+obj-$(CONFIG_SOFTMMU) += cputlb.o
+obj-y += cpu-exec.o cpu-exec-common.o
diff --git a/accel/tcg/cpu-exec-common.c b/accel/tcg/cpu-exec-common.c
new file mode 100644
index 0000000000..e81da276bb
--- /dev/null
+++ b/accel/tcg/cpu-exec-common.c
@@ -0,0 +1,82 @@
+/*
+ * emulator main execution loop
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "sysemu/cpus.h"
+#include "exec/exec-all.h"
+#include "exec/memory-internal.h"
+
+/* exit the current TB, but without causing any exception to be raised */
+void cpu_loop_exit_noexc(CPUState *cpu)
+{
+ /* XXX: restore cpu registers saved in host registers */
+
+ cpu->exception_index = -1;
+ siglongjmp(cpu->jmp_env, 1);
+}
+
+#if defined(CONFIG_SOFTMMU)
+void cpu_reloading_memory_map(void)
+{
+ if (qemu_in_vcpu_thread() && current_cpu->running) {
+ /* The guest can in theory prolong the RCU critical section as long
+ * as it feels like. The major problem with this is that because it
+ * can do multiple reconfigurations of the memory map within the
+ * critical section, we could potentially accumulate an unbounded
+ * collection of memory data structures awaiting reclamation.
+ *
+ * Because the only thing we're currently protecting with RCU is the
+ * memory data structures, it's sufficient to break the critical section
+ * in this callback, which we know will get called every time the
+ * memory map is rearranged.
+ *
+ * (If we add anything else in the system that uses RCU to protect
+ * its data structures, we will need to implement some other mechanism
+ * to force TCG CPUs to exit the critical section, at which point this
+ * part of this callback might become unnecessary.)
+ *
+ * This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which
+ * only protects cpu->as->dispatch. Since we know our caller is about
+ * to reload it, it's safe to split the critical section.
+ */
+ rcu_read_unlock();
+ rcu_read_lock();
+ }
+}
+#endif
+
+void cpu_loop_exit(CPUState *cpu)
+{
+ siglongjmp(cpu->jmp_env, 1);
+}
+
+void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc)
+{
+ if (pc) {
+ cpu_restore_state(cpu, pc);
+ }
+ siglongjmp(cpu->jmp_env, 1);
+}
+
+void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc)
+{
+ cpu->exception_index = EXCP_ATOMIC;
+ cpu_loop_exit_restore(cpu, pc);
+}
diff --git a/accel/tcg/cpu-exec.c b/accel/tcg/cpu-exec.c
new file mode 100644
index 0000000000..3581618bc0
--- /dev/null
+++ b/accel/tcg/cpu-exec.c
@@ -0,0 +1,683 @@
+/*
+ * emulator main execution loop
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "trace.h"
+#include "disas/disas.h"
+#include "exec/exec-all.h"
+#include "tcg.h"
+#include "qemu/atomic.h"
+#include "sysemu/qtest.h"
+#include "qemu/timer.h"
+#include "exec/address-spaces.h"
+#include "qemu/rcu.h"
+#include "exec/tb-hash.h"
+#include "exec/log.h"
+#include "qemu/main-loop.h"
+#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
+#include "hw/i386/apic.h"
+#endif
+#include "sysemu/cpus.h"
+#include "sysemu/replay.h"
+
+/* -icount align implementation. */
+
+typedef struct SyncClocks {
+ int64_t diff_clk;
+ int64_t last_cpu_icount;
+ int64_t realtime_clock;
+} SyncClocks;
+
+#if !defined(CONFIG_USER_ONLY)
+/* Allow the guest to have a max 3ms advance.
+ * The difference between the 2 clocks could therefore
+ * oscillate around 0.
+ */
+#define VM_CLOCK_ADVANCE 3000000
+#define THRESHOLD_REDUCE 1.5
+#define MAX_DELAY_PRINT_RATE 2000000000LL
+#define MAX_NB_PRINTS 100
+
+static void align_clocks(SyncClocks *sc, const CPUState *cpu)
+{
+ int64_t cpu_icount;
+
+ if (!icount_align_option) {
+ return;
+ }
+
+ cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
+ sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
+ sc->last_cpu_icount = cpu_icount;
+
+ if (sc->diff_clk > VM_CLOCK_ADVANCE) {
+#ifndef _WIN32
+ struct timespec sleep_delay, rem_delay;
+ sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
+ sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
+ if (nanosleep(&sleep_delay, &rem_delay) < 0) {
+ sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
+ } else {
+ sc->diff_clk = 0;
+ }
+#else
+ Sleep(sc->diff_clk / SCALE_MS);
+ sc->diff_clk = 0;
+#endif
+ }
+}
+
+static void print_delay(const SyncClocks *sc)
+{
+ static float threshold_delay;
+ static int64_t last_realtime_clock;
+ static int nb_prints;
+
+ if (icount_align_option &&
+ sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
+ nb_prints < MAX_NB_PRINTS) {
+ if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
+ (-sc->diff_clk / (float)1000000000LL <
+ (threshold_delay - THRESHOLD_REDUCE))) {
+ threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
+ printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
+ threshold_delay - 1,
+ threshold_delay);
+ nb_prints++;
+ last_realtime_clock = sc->realtime_clock;
+ }
+ }
+}
+
+static void init_delay_params(SyncClocks *sc,
+ const CPUState *cpu)
+{
+ if (!icount_align_option) {
+ return;
+ }
+ sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
+ sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
+ sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
+ if (sc->diff_clk < max_delay) {
+ max_delay = sc->diff_clk;
+ }
+ if (sc->diff_clk > max_advance) {
+ max_advance = sc->diff_clk;
+ }
+
+ /* Print every 2s max if the guest is late. We limit the number
+ of printed messages to NB_PRINT_MAX(currently 100) */
+ print_delay(sc);
+}
+#else
+static void align_clocks(SyncClocks *sc, const CPUState *cpu)
+{
+}
+
+static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
+{
+}
+#endif /* CONFIG USER ONLY */
+
+/* Execute a TB, and fix up the CPU state afterwards if necessary */
+static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
+{
+ CPUArchState *env = cpu->env_ptr;
+ uintptr_t ret;
+ TranslationBlock *last_tb;
+ int tb_exit;
+ uint8_t *tb_ptr = itb->tc_ptr;
+
+ qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
+ "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
+ itb->tc_ptr, cpu->cpu_index, itb->pc,
+ lookup_symbol(itb->pc));
+
+#if defined(DEBUG_DISAS)
+ if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
+ && qemu_log_in_addr_range(itb->pc)) {
+ qemu_log_lock();
+#if defined(TARGET_I386)
+ log_cpu_state(cpu, CPU_DUMP_CCOP);
+#else
+ log_cpu_state(cpu, 0);
+#endif
+ qemu_log_unlock();
+ }
+#endif /* DEBUG_DISAS */
+
+ cpu->can_do_io = !use_icount;
+ ret = tcg_qemu_tb_exec(env, tb_ptr);
+ cpu->can_do_io = 1;
+ last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
+ tb_exit = ret & TB_EXIT_MASK;
+ trace_exec_tb_exit(last_tb, tb_exit);
+
+ if (tb_exit > TB_EXIT_IDX1) {
+ /* We didn't start executing this TB (eg because the instruction
+ * counter hit zero); we must restore the guest PC to the address
+ * of the start of the TB.
+ */
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
+ "Stopped execution of TB chain before %p ["
+ TARGET_FMT_lx "] %s\n",
+ last_tb->tc_ptr, last_tb->pc,
+ lookup_symbol(last_tb->pc));
+ if (cc->synchronize_from_tb) {
+ cc->synchronize_from_tb(cpu, last_tb);
+ } else {
+ assert(cc->set_pc);
+ cc->set_pc(cpu, last_tb->pc);
+ }
+ }
+ return ret;
+}
+
+#ifndef CONFIG_USER_ONLY
+/* Execute the code without caching the generated code. An interpreter
+ could be used if available. */
+static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
+ TranslationBlock *orig_tb, bool ignore_icount)
+{
+ TranslationBlock *tb;
+
+ /* Should never happen.
+ We only end up here when an existing TB is too long. */
+ if (max_cycles > CF_COUNT_MASK)
+ max_cycles = CF_COUNT_MASK;
+
+ tb_lock();
+ tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
+ max_cycles | CF_NOCACHE
+ | (ignore_icount ? CF_IGNORE_ICOUNT : 0));
+ tb->orig_tb = orig_tb;
+ tb_unlock();
+
+ /* execute the generated code */
+ trace_exec_tb_nocache(tb, tb->pc);
+ cpu_tb_exec(cpu, tb);
+
+ tb_lock();
+ tb_phys_invalidate(tb, -1);
+ tb_free(tb);
+ tb_unlock();
+}
+#endif
+
+static void cpu_exec_step(CPUState *cpu)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ CPUArchState *env = (CPUArchState *)cpu->env_ptr;
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ uint32_t flags;
+
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
+ if (sigsetjmp(cpu->jmp_env, 0) == 0) {
+ mmap_lock();
+ tb_lock();
+ tb = tb_gen_code(cpu, pc, cs_base, flags,
+ 1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
+ tb->orig_tb = NULL;
+ tb_unlock();
+ mmap_unlock();
+
+ cc->cpu_exec_enter(cpu);
+ /* execute the generated code */
+ trace_exec_tb_nocache(tb, pc);
+ cpu_tb_exec(cpu, tb);
+ cc->cpu_exec_exit(cpu);
+
+ tb_lock();
+ tb_phys_invalidate(tb, -1);
+ tb_free(tb);
+ tb_unlock();
+ } else {
+ /* We may have exited due to another problem here, so we need
+ * to reset any tb_locks we may have taken but didn't release.
+ * The mmap_lock is dropped by tb_gen_code if it runs out of
+ * memory.
+ */
+#ifndef CONFIG_SOFTMMU
+ tcg_debug_assert(!have_mmap_lock());
+#endif
+ tb_lock_reset();
+ }
+}
+
+void cpu_exec_step_atomic(CPUState *cpu)
+{
+ start_exclusive();
+
+ /* Since we got here, we know that parallel_cpus must be true. */
+ parallel_cpus = false;
+ cpu_exec_step(cpu);
+ parallel_cpus = true;
+
+ end_exclusive();
+}
+
+struct tb_desc {
+ target_ulong pc;
+ target_ulong cs_base;
+ CPUArchState *env;
+ tb_page_addr_t phys_page1;
+ uint32_t flags;
+};
+
+static bool tb_cmp(const void *p, const void *d)
+{
+ const TranslationBlock *tb = p;
+ const struct tb_desc *desc = d;
+
+ if (tb->pc == desc->pc &&
+ tb->page_addr[0] == desc->phys_page1 &&
+ tb->cs_base == desc->cs_base &&
+ tb->flags == desc->flags &&
+ !atomic_read(&tb->invalid)) {
+ /* check next page if needed */
+ if (tb->page_addr[1] == -1) {
+ return true;
+ } else {
+ tb_page_addr_t phys_page2;
+ target_ulong virt_page2;
+
+ virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
+ phys_page2 = get_page_addr_code(desc->env, virt_page2);
+ if (tb->page_addr[1] == phys_page2) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
+ target_ulong cs_base, uint32_t flags)
+{
+ tb_page_addr_t phys_pc;
+ struct tb_desc desc;
+ uint32_t h;
+
+ desc.env = (CPUArchState *)cpu->env_ptr;
+ desc.cs_base = cs_base;
+ desc.flags = flags;
+ desc.pc = pc;
+ phys_pc = get_page_addr_code(desc.env, pc);
+ desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
+ h = tb_hash_func(phys_pc, pc, flags);
+ return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
+}
+
+static inline TranslationBlock *tb_find(CPUState *cpu,
+ TranslationBlock *last_tb,
+ int tb_exit)
+{
+ CPUArchState *env = (CPUArchState *)cpu->env_ptr;
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ uint32_t flags;
+ bool have_tb_lock = false;
+
+ /* we record a subset of the CPU state. It will
+ always be the same before a given translated block
+ is executed. */
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
+ tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
+ if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags)) {
+ tb = tb_htable_lookup(cpu, pc, cs_base, flags);
+ if (!tb) {
+
+ /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
+ * taken outside tb_lock. As system emulation is currently
+ * single threaded the locks are NOPs.
+ */
+ mmap_lock();
+ tb_lock();
+ have_tb_lock = true;
+
+ /* There's a chance that our desired tb has been translated while
+ * taking the locks so we check again inside the lock.
+ */
+ tb = tb_htable_lookup(cpu, pc, cs_base, flags);
+ if (!tb) {
+ /* if no translated code available, then translate it now */
+ tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
+ }
+
+ mmap_unlock();
+ }
+
+ /* We add the TB in the virtual pc hash table for the fast lookup */
+ atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
+ }
+#ifndef CONFIG_USER_ONLY
+ /* We don't take care of direct jumps when address mapping changes in
+ * system emulation. So it's not safe to make a direct jump to a TB
+ * spanning two pages because the mapping for the second page can change.
+ */
+ if (tb->page_addr[1] != -1) {
+ last_tb = NULL;
+ }
+#endif
+ /* See if we can patch the calling TB. */
+ if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
+ if (!have_tb_lock) {
+ tb_lock();
+ have_tb_lock = true;
+ }
+ if (!tb->invalid) {
+ tb_add_jump(last_tb, tb_exit, tb);
+ }
+ }
+ if (have_tb_lock) {
+ tb_unlock();
+ }
+ return tb;
+}
+
+static inline bool cpu_handle_halt(CPUState *cpu)
+{
+ if (cpu->halted) {
+#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
+ if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
+ && replay_interrupt()) {
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ qemu_mutex_lock_iothread();
+ apic_poll_irq(x86_cpu->apic_state);
+ cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
+ qemu_mutex_unlock_iothread();
+ }
+#endif
+ if (!cpu_has_work(cpu)) {
+ return true;
+ }
+
+ cpu->halted = 0;
+ }
+
+ return false;
+}
+
+static inline void cpu_handle_debug_exception(CPUState *cpu)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ CPUWatchpoint *wp;
+
+ if (!cpu->watchpoint_hit) {
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+ }
+ }
+
+ cc->debug_excp_handler(cpu);
+}
+
+static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
+{
+ if (cpu->exception_index >= 0) {
+ if (cpu->exception_index >= EXCP_INTERRUPT) {
+ /* exit request from the cpu execution loop */
+ *ret = cpu->exception_index;
+ if (*ret == EXCP_DEBUG) {
+ cpu_handle_debug_exception(cpu);
+ }
+ cpu->exception_index = -1;
+ return true;
+ } else {
+#if defined(CONFIG_USER_ONLY)
+ /* if user mode only, we simulate a fake exception
+ which will be handled outside the cpu execution
+ loop */
+#if defined(TARGET_I386)
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ cc->do_interrupt(cpu);
+#endif
+ *ret = cpu->exception_index;
+ cpu->exception_index = -1;
+ return true;
+#else
+ if (replay_exception()) {
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ qemu_mutex_lock_iothread();
+ cc->do_interrupt(cpu);
+ qemu_mutex_unlock_iothread();
+ cpu->exception_index = -1;
+ } else if (!replay_has_interrupt()) {
+ /* give a chance to iothread in replay mode */
+ *ret = EXCP_INTERRUPT;
+ return true;
+ }
+#endif
+ }
+#ifndef CONFIG_USER_ONLY
+ } else if (replay_has_exception()
+ && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
+ /* try to cause an exception pending in the log */
+ cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
+ *ret = -1;
+ return true;
+#endif
+ }
+
+ return false;
+}
+
+static inline bool cpu_handle_interrupt(CPUState *cpu,
+ TranslationBlock **last_tb)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+
+ if (unlikely(atomic_read(&cpu->interrupt_request))) {
+ int interrupt_request;
+ qemu_mutex_lock_iothread();
+ interrupt_request = cpu->interrupt_request;
+ if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
+ /* Mask out external interrupts for this step. */
+ interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
+ }
+ if (interrupt_request & CPU_INTERRUPT_DEBUG) {
+ cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
+ cpu->exception_index = EXCP_DEBUG;
+ qemu_mutex_unlock_iothread();
+ return true;
+ }
+ if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
+ /* Do nothing */
+ } else if (interrupt_request & CPU_INTERRUPT_HALT) {
+ replay_interrupt();
+ cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
+ cpu->halted = 1;
+ cpu->exception_index = EXCP_HLT;
+ qemu_mutex_unlock_iothread();
+ return true;
+ }
+#if defined(TARGET_I386)
+ else if (interrupt_request & CPU_INTERRUPT_INIT) {
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUArchState *env = &x86_cpu->env;
+ replay_interrupt();
+ cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
+ do_cpu_init(x86_cpu);
+ cpu->exception_index = EXCP_HALTED;
+ qemu_mutex_unlock_iothread();
+ return true;
+ }
+#else
+ else if (interrupt_request & CPU_INTERRUPT_RESET) {
+ replay_interrupt();
+ cpu_reset(cpu);
+ qemu_mutex_unlock_iothread();
+ return true;
+ }
+#endif
+ /* The target hook has 3 exit conditions:
+ False when the interrupt isn't processed,
+ True when it is, and we should restart on a new TB,
+ and via longjmp via cpu_loop_exit. */
+ else {
+ if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
+ replay_interrupt();
+ *last_tb = NULL;
+ }
+ /* The target hook may have updated the 'cpu->interrupt_request';
+ * reload the 'interrupt_request' value */
+ interrupt_request = cpu->interrupt_request;
+ }
+ if (interrupt_request & CPU_INTERRUPT_EXITTB) {
+ cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+ *last_tb = NULL;
+ }
+
+ /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
+ qemu_mutex_unlock_iothread();
+ }
+
+ /* Finally, check if we need to exit to the main loop. */
+ if (unlikely(atomic_read(&cpu->exit_request)
+ || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
+ atomic_set(&cpu->exit_request, 0);
+ cpu->exception_index = EXCP_INTERRUPT;
+ return true;
+ }
+
+ return false;
+}
+
+static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
+ TranslationBlock **last_tb, int *tb_exit)
+{
+ uintptr_t ret;
+ int32_t insns_left;
+
+ trace_exec_tb(tb, tb->pc);
+ ret = cpu_tb_exec(cpu, tb);
+ tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
+ *tb_exit = ret & TB_EXIT_MASK;
+ if (*tb_exit != TB_EXIT_REQUESTED) {
+ *last_tb = tb;
+ return;
+ }
+
+ *last_tb = NULL;
+ insns_left = atomic_read(&cpu->icount_decr.u32);
+ atomic_set(&cpu->icount_decr.u16.high, 0);
+ if (insns_left < 0) {
+ /* Something asked us to stop executing chained TBs; just
+ * continue round the main loop. Whatever requested the exit
+ * will also have set something else (eg exit_request or
+ * interrupt_request) which we will handle next time around
+ * the loop. But we need to ensure the zeroing of icount_decr
+ * comes before the next read of cpu->exit_request
+ * or cpu->interrupt_request.
+ */
+ smp_mb();
+ return;
+ }
+
+ /* Instruction counter expired. */
+ assert(use_icount);
+#ifndef CONFIG_USER_ONLY
+ /* Ensure global icount has gone forward */
+ cpu_update_icount(cpu);
+ /* Refill decrementer and continue execution. */
+ insns_left = MIN(0xffff, cpu->icount_budget);
+ cpu->icount_decr.u16.low = insns_left;
+ cpu->icount_extra = cpu->icount_budget - insns_left;
+ if (!cpu->icount_extra) {
+ /* Execute any remaining instructions, then let the main loop
+ * handle the next event.
+ */
+ if (insns_left > 0) {
+ cpu_exec_nocache(cpu, insns_left, tb, false);
+ }
+ }
+#endif
+}
+
+/* main execution loop */
+
+int cpu_exec(CPUState *cpu)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ int ret;
+ SyncClocks sc = { 0 };
+
+ /* replay_interrupt may need current_cpu */
+ current_cpu = cpu;
+
+ if (cpu_handle_halt(cpu)) {
+ return EXCP_HALTED;
+ }
+
+ rcu_read_lock();
+
+ cc->cpu_exec_enter(cpu);
+
+ /* Calculate difference between guest clock and host clock.
+ * This delay includes the delay of the last cycle, so
+ * what we have to do is sleep until it is 0. As for the
+ * advance/delay we gain here, we try to fix it next time.
+ */
+ init_delay_params(&sc, cpu);
+
+ /* prepare setjmp context for exception handling */
+ if (sigsetjmp(cpu->jmp_env, 0) != 0) {
+#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
+ /* Some compilers wrongly smash all local variables after
+ * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
+ * Reload essential local variables here for those compilers.
+ * Newer versions of gcc would complain about this code (-Wclobbered). */
+ cpu = current_cpu;
+ cc = CPU_GET_CLASS(cpu);
+#else /* buggy compiler */
+ /* Assert that the compiler does not smash local variables. */
+ g_assert(cpu == current_cpu);
+ g_assert(cc == CPU_GET_CLASS(cpu));
+#endif /* buggy compiler */
+ cpu->can_do_io = 1;
+ tb_lock_reset();
+ if (qemu_mutex_iothread_locked()) {
+ qemu_mutex_unlock_iothread();
+ }
+ }
+
+ /* if an exception is pending, we execute it here */
+ while (!cpu_handle_exception(cpu, &ret)) {
+ TranslationBlock *last_tb = NULL;
+ int tb_exit = 0;
+
+ while (!cpu_handle_interrupt(cpu, &last_tb)) {
+ TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit);
+ cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
+ /* Try to align the host and virtual clocks
+ if the guest is in advance */
+ align_clocks(&sc, cpu);
+ }
+ }
+
+ cc->cpu_exec_exit(cpu);
+ rcu_read_unlock();
+
+ return ret;
+}
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c
new file mode 100644
index 0000000000..743776ae19
--- /dev/null
+++ b/accel/tcg/cputlb.c
@@ -0,0 +1,1051 @@
+/*
+ * Common CPU TLB handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/main-loop.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "exec/cpu_ldst.h"
+#include "exec/cputlb.h"
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "tcg/tcg.h"
+#include "qemu/error-report.h"
+#include "exec/log.h"
+#include "exec/helper-proto.h"
+#include "qemu/atomic.h"
+
+/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
+/* #define DEBUG_TLB */
+/* #define DEBUG_TLB_LOG */
+
+#ifdef DEBUG_TLB
+# define DEBUG_TLB_GATE 1
+# ifdef DEBUG_TLB_LOG
+# define DEBUG_TLB_LOG_GATE 1
+# else
+# define DEBUG_TLB_LOG_GATE 0
+# endif
+#else
+# define DEBUG_TLB_GATE 0
+# define DEBUG_TLB_LOG_GATE 0
+#endif
+
+#define tlb_debug(fmt, ...) do { \
+ if (DEBUG_TLB_LOG_GATE) { \
+ qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
+ ## __VA_ARGS__); \
+ } else if (DEBUG_TLB_GATE) { \
+ fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
+ } \
+} while (0)
+
+#define assert_cpu_is_self(this_cpu) do { \
+ if (DEBUG_TLB_GATE) { \
+ g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \
+ } \
+ } while (0)
+
+/* run_on_cpu_data.target_ptr should always be big enough for a
+ * target_ulong even on 32 bit builds */
+QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
+
+/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
+ */
+QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
+#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
+
+/* flush_all_helper: run fn across all cpus
+ *
+ * If the wait flag is set then the src cpu's helper will be queued as
+ * "safe" work and the loop exited creating a synchronisation point
+ * where all queued work will be finished before execution starts
+ * again.
+ */
+static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
+ run_on_cpu_data d)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (cpu != src) {
+ async_run_on_cpu(cpu, fn, d);
+ }
+ }
+}
+
+/* statistics */
+int tlb_flush_count;
+
+/* This is OK because CPU architectures generally permit an
+ * implementation to drop entries from the TLB at any time, so
+ * flushing more entries than required is only an efficiency issue,
+ * not a correctness issue.
+ */
+static void tlb_flush_nocheck(CPUState *cpu)
+{
+ CPUArchState *env = cpu->env_ptr;
+
+ /* The QOM tests will trigger tlb_flushes without setting up TCG
+ * so we bug out here in that case.
+ */
+ if (!tcg_enabled()) {
+ return;
+ }
+
+ assert_cpu_is_self(cpu);
+ tlb_debug("(count: %d)\n", tlb_flush_count++);
+
+ tb_lock();
+
+ memset(env->tlb_table, -1, sizeof(env->tlb_table));
+ memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
+ memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
+
+ env->vtlb_index = 0;
+ env->tlb_flush_addr = -1;
+ env->tlb_flush_mask = 0;
+
+ tb_unlock();
+
+ atomic_mb_set(&cpu->pending_tlb_flush, 0);
+}
+
+static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
+{
+ tlb_flush_nocheck(cpu);
+}
+
+void tlb_flush(CPUState *cpu)
+{
+ if (cpu->created && !qemu_cpu_is_self(cpu)) {
+ if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
+ atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
+ async_run_on_cpu(cpu, tlb_flush_global_async_work,
+ RUN_ON_CPU_NULL);
+ }
+ } else {
+ tlb_flush_nocheck(cpu);
+ }
+}
+
+void tlb_flush_all_cpus(CPUState *src_cpu)
+{
+ const run_on_cpu_func fn = tlb_flush_global_async_work;
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
+ fn(src_cpu, RUN_ON_CPU_NULL);
+}
+
+void tlb_flush_all_cpus_synced(CPUState *src_cpu)
+{
+ const run_on_cpu_func fn = tlb_flush_global_async_work;
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
+ async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
+}
+
+static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ unsigned long mmu_idx_bitmask = data.host_int;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ tb_lock();
+
+ tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+
+ if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
+ tlb_debug("%d\n", mmu_idx);
+
+ memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
+ memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
+ }
+ }
+
+ memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
+
+ tlb_debug("done\n");
+
+ tb_unlock();
+}
+
+void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
+{
+ tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
+
+ if (!qemu_cpu_is_self(cpu)) {
+ uint16_t pending_flushes = idxmap;
+ pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
+
+ if (pending_flushes) {
+ tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
+
+ atomic_or(&cpu->pending_tlb_flush, pending_flushes);
+ async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
+ RUN_ON_CPU_HOST_INT(pending_flushes));
+ }
+ } else {
+ tlb_flush_by_mmuidx_async_work(cpu,
+ RUN_ON_CPU_HOST_INT(idxmap));
+ }
+}
+
+void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
+
+ tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+ fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
+}
+
+void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
+ uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
+
+ tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+ async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+}
+
+
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->addr_read &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_write &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_code &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ memset(tlb_entry, -1, sizeof(*tlb_entry));
+ }
+}
+
+static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ target_ulong addr = (target_ulong) data.target_ptr;
+ int i;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ tlb_debug("page :" TARGET_FMT_lx "\n", addr);
+
+ /* Check if we need to flush due to large pages. */
+ if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
+ tlb_debug("forcing full flush ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ env->tlb_flush_addr, env->tlb_flush_mask);
+
+ tlb_flush(cpu);
+ return;
+ }
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
+ }
+
+ /* check whether there are entries that need to be flushed in the vtlb */
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ int k;
+ for (k = 0; k < CPU_VTLB_SIZE; k++) {
+ tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
+ }
+ }
+
+ tb_flush_jmp_cache(cpu, addr);
+}
+
+void tlb_flush_page(CPUState *cpu, target_ulong addr)
+{
+ tlb_debug("page :" TARGET_FMT_lx "\n", addr);
+
+ if (!qemu_cpu_is_self(cpu)) {
+ async_run_on_cpu(cpu, tlb_flush_page_async_work,
+ RUN_ON_CPU_TARGET_PTR(addr));
+ } else {
+ tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
+ }
+}
+
+/* As we are going to hijack the bottom bits of the page address for a
+ * mmuidx bit mask we need to fail to build if we can't do that
+ */
+QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
+
+static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
+ run_on_cpu_data data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
+ target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
+ unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
+ int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ int mmu_idx;
+ int i;
+
+ assert_cpu_is_self(cpu);
+
+ tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
+ page, addr, mmu_idx_bitmap);
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
+ tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
+
+ /* check whether there are vltb entries that need to be flushed */
+ for (i = 0; i < CPU_VTLB_SIZE; i++) {
+ tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
+ }
+ }
+ }
+
+ tb_flush_jmp_cache(cpu, addr);
+}
+
+static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
+ run_on_cpu_data data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
+ target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
+ unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
+
+ tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
+
+ /* Check if we need to flush due to large pages. */
+ if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
+ tlb_debug("forced full flush ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ env->tlb_flush_addr, env->tlb_flush_mask);
+
+ tlb_flush_by_mmuidx_async_work(cpu,
+ RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
+ } else {
+ tlb_flush_page_by_mmuidx_async_work(cpu, data);
+ }
+}
+
+void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
+{
+ target_ulong addr_and_mmu_idx;
+
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
+ addr_and_mmu_idx |= idxmap;
+
+ if (!qemu_cpu_is_self(cpu)) {
+ async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
+ RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+ } else {
+ tlb_check_page_and_flush_by_mmuidx_async_work(
+ cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+ }
+}
+
+void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
+ uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
+ target_ulong addr_and_mmu_idx;
+
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
+ addr_and_mmu_idx |= idxmap;
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+ fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+}
+
+void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
+ target_ulong addr,
+ uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
+ target_ulong addr_and_mmu_idx;
+
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
+ addr_and_mmu_idx |= idxmap;
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+ async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
+}
+
+void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
+{
+ const run_on_cpu_func fn = tlb_flush_page_async_work;
+
+ flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
+ fn(src, RUN_ON_CPU_TARGET_PTR(addr));
+}
+
+void tlb_flush_page_all_cpus_synced(CPUState *src,
+ target_ulong addr)
+{
+ const run_on_cpu_func fn = tlb_flush_page_async_work;
+
+ flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
+ async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+void tlb_protect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
+ DIRTY_MEMORY_CODE);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested for self modifying code */
+void tlb_unprotect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
+}
+
+
+/*
+ * Dirty write flag handling
+ *
+ * When the TCG code writes to a location it looks up the address in
+ * the TLB and uses that data to compute the final address. If any of
+ * the lower bits of the address are set then the slow path is forced.
+ * There are a number of reasons to do this but for normal RAM the
+ * most usual is detecting writes to code regions which may invalidate
+ * generated code.
+ *
+ * Because we want other vCPUs to respond to changes straight away we
+ * update the te->addr_write field atomically. If the TLB entry has
+ * been changed by the vCPU in the mean time we skip the update.
+ *
+ * As this function uses atomic accesses we also need to ensure
+ * updates to tlb_entries follow the same access rules. We don't need
+ * to worry about this for oversized guests as MTTCG is disabled for
+ * them.
+ */
+
+static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
+ uintptr_t length)
+{
+#if TCG_OVERSIZED_GUEST
+ uintptr_t addr = tlb_entry->addr_write;
+
+ if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
+ addr &= TARGET_PAGE_MASK;
+ addr += tlb_entry->addend;
+ if ((addr - start) < length) {
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+ }
+ }
+#else
+ /* paired with atomic_mb_set in tlb_set_page_with_attrs */
+ uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
+ uintptr_t addr = orig_addr;
+
+ if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
+ addr &= TARGET_PAGE_MASK;
+ addr += atomic_read(&tlb_entry->addend);
+ if ((addr - start) < length) {
+ uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
+ atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
+ }
+ }
+#endif
+}
+
+/* For atomic correctness when running MTTCG we need to use the right
+ * primitives when copying entries */
+static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
+ bool atomic_set)
+{
+#if TCG_OVERSIZED_GUEST
+ *d = *s;
+#else
+ if (atomic_set) {
+ d->addr_read = s->addr_read;
+ d->addr_code = s->addr_code;
+ atomic_set(&d->addend, atomic_read(&s->addend));
+ /* Pairs with flag setting in tlb_reset_dirty_range */
+ atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
+ } else {
+ d->addr_read = s->addr_read;
+ d->addr_write = atomic_read(&s->addr_write);
+ d->addr_code = s->addr_code;
+ d->addend = atomic_read(&s->addend);
+ }
+#endif
+}
+
+/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
+ * the target vCPU). As such care needs to be taken that we don't
+ * dangerously race with another vCPU update. The only thing actually
+ * updated is the target TLB entry ->addr_write flags.
+ */
+void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
+{
+ CPUArchState *env;
+
+ int mmu_idx;
+
+ env = cpu->env_ptr;
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ unsigned int i;
+
+ for (i = 0; i < CPU_TLB_SIZE; i++) {
+ tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
+ start1, length);
+ }
+
+ for (i = 0; i < CPU_VTLB_SIZE; i++) {
+ tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
+ start1, length);
+ }
+ }
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
+ tlb_entry->addr_write = vaddr;
+ }
+}
+
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int i;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ vaddr &= TARGET_PAGE_MASK;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
+ }
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ int k;
+ for (k = 0; k < CPU_VTLB_SIZE; k++) {
+ tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
+ }
+ }
+}
+
+/* Our TLB does not support large pages, so remember the area covered by
+ large pages and trigger a full TLB flush if these are invalidated. */
+static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
+ target_ulong size)
+{
+ target_ulong mask = ~(size - 1);
+
+ if (env->tlb_flush_addr == (target_ulong)-1) {
+ env->tlb_flush_addr = vaddr & mask;
+ env->tlb_flush_mask = mask;
+ return;
+ }
+ /* Extend the existing region to include the new page.
+ This is a compromise between unnecessary flushes and the cost
+ of maintaining a full variable size TLB. */
+ mask &= env->tlb_flush_mask;
+ while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
+ mask <<= 1;
+ }
+ env->tlb_flush_addr &= mask;
+ env->tlb_flush_mask = mask;
+}
+
+/* Add a new TLB entry. At most one entry for a given virtual address
+ * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
+ * supplied size is only used by tlb_flush_page.
+ *
+ * Called from TCG-generated code, which is under an RCU read-side
+ * critical section.
+ */
+void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
+ hwaddr paddr, MemTxAttrs attrs, int prot,
+ int mmu_idx, target_ulong size)
+{
+ CPUArchState *env = cpu->env_ptr;
+ MemoryRegionSection *section;
+ unsigned int index;
+ target_ulong address;
+ target_ulong code_address;
+ uintptr_t addend;
+ CPUTLBEntry *te, *tv, tn;
+ hwaddr iotlb, xlat, sz;
+ unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
+ int asidx = cpu_asidx_from_attrs(cpu, attrs);
+
+ assert_cpu_is_self(cpu);
+ assert(size >= TARGET_PAGE_SIZE);
+ if (size != TARGET_PAGE_SIZE) {
+ tlb_add_large_page(env, vaddr, size);
+ }
+
+ sz = size;
+ section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
+ assert(sz >= TARGET_PAGE_SIZE);
+
+ tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
+ " prot=%x idx=%d\n",
+ vaddr, paddr, prot, mmu_idx);
+
+ address = vaddr;
+ if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
+ /* IO memory case */
+ address |= TLB_MMIO;
+ addend = 0;
+ } else {
+ /* TLB_MMIO for rom/romd handled below */
+ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
+ }
+
+ code_address = address;
+ iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
+ prot, &address);
+
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ te = &env->tlb_table[mmu_idx][index];
+ /* do not discard the translation in te, evict it into a victim tlb */
+ tv = &env->tlb_v_table[mmu_idx][vidx];
+
+ /* addr_write can race with tlb_reset_dirty_range */
+ copy_tlb_helper(tv, te, true);
+
+ env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
+
+ /* refill the tlb */
+ env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
+ env->iotlb[mmu_idx][index].attrs = attrs;
+
+ /* Now calculate the new entry */
+ tn.addend = addend - vaddr;
+ if (prot & PAGE_READ) {
+ tn.addr_read = address;
+ } else {
+ tn.addr_read = -1;
+ }
+
+ if (prot & PAGE_EXEC) {
+ tn.addr_code = code_address;
+ } else {
+ tn.addr_code = -1;
+ }
+
+ tn.addr_write = -1;
+ if (prot & PAGE_WRITE) {
+ if ((memory_region_is_ram(section->mr) && section->readonly)
+ || memory_region_is_romd(section->mr)) {
+ /* Write access calls the I/O callback. */
+ tn.addr_write = address | TLB_MMIO;
+ } else if (memory_region_is_ram(section->mr)
+ && cpu_physical_memory_is_clean(
+ memory_region_get_ram_addr(section->mr) + xlat)) {
+ tn.addr_write = address | TLB_NOTDIRTY;
+ } else {
+ tn.addr_write = address;
+ }
+ }
+
+ /* Pairs with flag setting in tlb_reset_dirty_range */
+ copy_tlb_helper(te, &tn, true);
+ /* atomic_mb_set(&te->addr_write, write_address); */
+}
+
+/* Add a new TLB entry, but without specifying the memory
+ * transaction attributes to be used.
+ */
+void tlb_set_page(CPUState *cpu, target_ulong vaddr,
+ hwaddr paddr, int prot,
+ int mmu_idx, target_ulong size)
+{
+ tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
+ prot, mmu_idx, size);
+}
+
+static void report_bad_exec(CPUState *cpu, target_ulong addr)
+{
+ /* Accidentally executing outside RAM or ROM is quite common for
+ * several user-error situations, so report it in a way that
+ * makes it clear that this isn't a QEMU bug and provide suggestions
+ * about what a user could do to fix things.
+ */
+ error_report("Trying to execute code outside RAM or ROM at 0x"
+ TARGET_FMT_lx, addr);
+ error_printf("This usually means one of the following happened:\n\n"
+ "(1) You told QEMU to execute a kernel for the wrong machine "
+ "type, and it crashed on startup (eg trying to run a "
+ "raspberry pi kernel on a versatilepb QEMU machine)\n"
+ "(2) You didn't give QEMU a kernel or BIOS filename at all, "
+ "and QEMU executed a ROM full of no-op instructions until "
+ "it fell off the end\n"
+ "(3) Your guest kernel has a bug and crashed by jumping "
+ "off into nowhere\n\n"
+ "This is almost always one of the first two, so check your "
+ "command line and that you are using the right type of kernel "
+ "for this machine.\n"
+ "If you think option (3) is likely then you can try debugging "
+ "your guest with the -d debug options; in particular "
+ "-d guest_errors will cause the log to include a dump of the "
+ "guest register state at this point.\n\n"
+ "Execution cannot continue; stopping here.\n\n");
+
+ /* Report also to the logs, with more detail including register dump */
+ qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
+ "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
+ log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
+}
+
+static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
+{
+ ram_addr_t ram_addr;
+
+ ram_addr = qemu_ram_addr_from_host(ptr);
+ if (ram_addr == RAM_ADDR_INVALID) {
+ error_report("Bad ram pointer %p", ptr);
+ abort();
+ }
+ return ram_addr;
+}
+
+/* NOTE: this function can trigger an exception */
+/* NOTE2: the returned address is not exactly the physical address: it
+ * is actually a ram_addr_t (in system mode; the user mode emulation
+ * version of this function returns a guest virtual address).
+ */
+tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
+{
+ int mmu_idx, page_index, pd;
+ void *p;
+ MemoryRegion *mr;
+ CPUState *cpu = ENV_GET_CPU(env1);
+ CPUIOTLBEntry *iotlbentry;
+
+ page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ mmu_idx = cpu_mmu_index(env1, true);
+ if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
+ (addr & TARGET_PAGE_MASK))) {
+ cpu_ldub_code(env1, addr);
+ }
+ iotlbentry = &env1->iotlb[mmu_idx][page_index];
+ pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
+ mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
+ if (memory_region_is_unassigned(mr)) {
+ cpu_unassigned_access(cpu, addr, false, true, 0, 4);
+ /* The CPU's unassigned access hook might have longjumped out
+ * with an exception. If it didn't (or there was no hook) then
+ * we can't proceed further.
+ */
+ report_bad_exec(cpu, addr);
+ exit(1);
+ }
+ p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
+ return qemu_ram_addr_from_host_nofail(p);
+}
+
+static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
+ target_ulong addr, uintptr_t retaddr, int size)
+{
+ CPUState *cpu = ENV_GET_CPU(env);
+ hwaddr physaddr = iotlbentry->addr;
+ MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
+ uint64_t val;
+ bool locked = false;
+
+ physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
+ cpu->mem_io_pc = retaddr;
+ if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
+ cpu_io_recompile(cpu, retaddr);
+ }
+
+ cpu->mem_io_vaddr = addr;
+
+ if (mr->global_locking) {
+ qemu_mutex_lock_iothread();
+ locked = true;
+ }
+ memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs);
+ if (locked) {
+ qemu_mutex_unlock_iothread();
+ }
+
+ return val;
+}
+
+static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
+ uint64_t val, target_ulong addr,
+ uintptr_t retaddr, int size)
+{
+ CPUState *cpu = ENV_GET_CPU(env);
+ hwaddr physaddr = iotlbentry->addr;
+ MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
+ bool locked = false;
+
+ physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
+ if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
+ cpu_io_recompile(cpu, retaddr);
+ }
+ cpu->mem_io_vaddr = addr;
+ cpu->mem_io_pc = retaddr;
+
+ if (mr->global_locking) {
+ qemu_mutex_lock_iothread();
+ locked = true;
+ }
+ memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs);
+ if (locked) {
+ qemu_mutex_unlock_iothread();
+ }
+}
+
+/* Return true if ADDR is present in the victim tlb, and has been copied
+ back to the main tlb. */
+static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
+ size_t elt_ofs, target_ulong page)
+{
+ size_t vidx;
+ for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
+ CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
+ target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
+
+ if (cmp == page) {
+ /* Found entry in victim tlb, swap tlb and iotlb. */
+ CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
+
+ copy_tlb_helper(&tmptlb, tlb, false);
+ copy_tlb_helper(tlb, vtlb, true);
+ copy_tlb_helper(vtlb, &tmptlb, true);
+
+ CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
+ CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
+ tmpio = *io; *io = *vio; *vio = tmpio;
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Macro to call the above, with local variables from the use context. */
+#define VICTIM_TLB_HIT(TY, ADDR) \
+ victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
+ (ADDR) & TARGET_PAGE_MASK)
+
+/* Probe for whether the specified guest write access is permitted.
+ * If it is not permitted then an exception will be taken in the same
+ * way as if this were a real write access (and we will not return).
+ * Otherwise the function will return, and there will be a valid
+ * entry in the TLB for this access.
+ */
+void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
+ uintptr_t retaddr)
+{
+ int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ /* TLB entry is for a different page */
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
+ }
+ }
+}
+
+/* Probe for a read-modify-write atomic operation. Do not allow unaligned
+ * operations, or io operations to proceed. Return the host address. */
+static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ size_t mmu_idx = get_mmuidx(oi);
+ size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
+ target_ulong tlb_addr = tlbe->addr_write;
+ TCGMemOp mop = get_memop(oi);
+ int a_bits = get_alignment_bits(mop);
+ int s_bits = mop & MO_SIZE;
+
+ /* Adjust the given return address. */
+ retaddr -= GETPC_ADJ;
+
+ /* Enforce guest required alignment. */
+ if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
+ /* ??? Maybe indicate atomic op to cpu_unaligned_access */
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* Enforce qemu required alignment. */
+ if (unlikely(addr & ((1 << s_bits) - 1))) {
+ /* We get here if guest alignment was not requested,
+ or was not enforced by cpu_unaligned_access above.
+ We might widen the access and emulate, but for now
+ mark an exception and exit the cpu loop. */
+ goto stop_the_world;
+ }
+
+ /* Check TLB entry and enforce page permissions. */
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
+ }
+ tlb_addr = tlbe->addr_write;
+ }
+
+ /* Check notdirty */
+ if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
+ tlb_set_dirty(ENV_GET_CPU(env), addr);
+ tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
+ }
+
+ /* Notice an IO access */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ /* There's really nothing that can be done to
+ support this apart from stop-the-world. */
+ goto stop_the_world;
+ }
+
+ /* Let the guest notice RMW on a write-only page. */
+ if (unlikely(tlbe->addr_read != tlb_addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
+ /* Since we don't support reads and writes to different addresses,
+ and we do have the proper page loaded for write, this shouldn't
+ ever return. But just in case, handle via stop-the-world. */
+ goto stop_the_world;
+ }
+
+ return (void *)((uintptr_t)addr + tlbe->addend);
+
+ stop_the_world:
+ cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
+}
+
+#ifdef TARGET_WORDS_BIGENDIAN
+# define TGT_BE(X) (X)
+# define TGT_LE(X) BSWAP(X)
+#else
+# define TGT_BE(X) BSWAP(X)
+# define TGT_LE(X) (X)
+#endif
+
+#define MMUSUFFIX _mmu
+
+#define DATA_SIZE 1
+#include "softmmu_template.h"
+
+#define DATA_SIZE 2
+#include "softmmu_template.h"
+
+#define DATA_SIZE 4
+#include "softmmu_template.h"
+
+#define DATA_SIZE 8
+#include "softmmu_template.h"
+
+/* First set of helpers allows passing in of OI and RETADDR. This makes
+ them callable from other helpers. */
+
+#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
+#define ATOMIC_NAME(X) \
+ HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
+#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
+
+#define DATA_SIZE 1
+#include "atomic_template.h"
+
+#define DATA_SIZE 2
+#include "atomic_template.h"
+
+#define DATA_SIZE 4
+#include "atomic_template.h"
+
+#ifdef CONFIG_ATOMIC64
+#define DATA_SIZE 8
+#include "atomic_template.h"
+#endif
+
+#ifdef CONFIG_ATOMIC128
+#define DATA_SIZE 16
+#include "atomic_template.h"
+#endif
+
+/* Second set of helpers are directly callable from TCG as helpers. */
+
+#undef EXTRA_ARGS
+#undef ATOMIC_NAME
+#undef ATOMIC_MMU_LOOKUP
+#define EXTRA_ARGS , TCGMemOpIdx oi
+#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
+#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
+
+#define DATA_SIZE 1
+#include "atomic_template.h"
+
+#define DATA_SIZE 2
+#include "atomic_template.h"
+
+#define DATA_SIZE 4
+#include "atomic_template.h"
+
+#ifdef CONFIG_ATOMIC64
+#define DATA_SIZE 8
+#include "atomic_template.h"
+#endif
+
+/* Code access functions. */
+
+#undef MMUSUFFIX
+#define MMUSUFFIX _cmmu
+#undef GETPC
+#define GETPC() ((uintptr_t)0)
+#define SOFTMMU_CODE_ACCESS
+
+#define DATA_SIZE 1
+#include "softmmu_template.h"
+
+#define DATA_SIZE 2
+#include "softmmu_template.h"
+
+#define DATA_SIZE 4
+#include "softmmu_template.h"
+
+#define DATA_SIZE 8
+#include "softmmu_template.h"
diff --git a/accel/tcg/trace-events b/accel/tcg/trace-events
new file mode 100644
index 0000000000..f2db388bdc
--- /dev/null
+++ b/accel/tcg/trace-events
@@ -0,0 +1,7 @@
+# Trace events for debugging and performance instrumentation
+
+# TCG related tracing (mostly disabled by default)
+# cpu-exec.c
+disable exec_tb(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR
+disable exec_tb_nocache(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR
+disable exec_tb_exit(void *last_tb, unsigned int flags) "tb:%p flags=%x"