summaryrefslogtreecommitdiff
path: root/target-arm/cpu.h
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target-arm/cpu.h
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
downloadqemu-fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0.tar.gz
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-arm/cpu.h')
-rw-r--r--target-arm/cpu.h2466
1 files changed, 0 insertions, 2466 deletions
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
deleted file mode 100644
index ca5c849ed6..0000000000
--- a/target-arm/cpu.h
+++ /dev/null
@@ -1,2466 +0,0 @@
-/*
- * ARM virtual CPU header
- *
- * Copyright (c) 2003 Fabrice Bellard
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef ARM_CPU_H
-#define ARM_CPU_H
-
-#include "kvm-consts.h"
-
-#if defined(TARGET_AARCH64)
- /* AArch64 definitions */
-# define TARGET_LONG_BITS 64
-#else
-# define TARGET_LONG_BITS 32
-#endif
-
-#define CPUArchState struct CPUARMState
-
-#include "qemu-common.h"
-#include "cpu-qom.h"
-#include "exec/cpu-defs.h"
-
-#include "fpu/softfloat.h"
-
-#define EXCP_UDEF 1 /* undefined instruction */
-#define EXCP_SWI 2 /* software interrupt */
-#define EXCP_PREFETCH_ABORT 3
-#define EXCP_DATA_ABORT 4
-#define EXCP_IRQ 5
-#define EXCP_FIQ 6
-#define EXCP_BKPT 7
-#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
-#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
-#define EXCP_HVC 11 /* HyperVisor Call */
-#define EXCP_HYP_TRAP 12
-#define EXCP_SMC 13 /* Secure Monitor Call */
-#define EXCP_VIRQ 14
-#define EXCP_VFIQ 15
-#define EXCP_SEMIHOST 16 /* semihosting call */
-
-#define ARMV7M_EXCP_RESET 1
-#define ARMV7M_EXCP_NMI 2
-#define ARMV7M_EXCP_HARD 3
-#define ARMV7M_EXCP_MEM 4
-#define ARMV7M_EXCP_BUS 5
-#define ARMV7M_EXCP_USAGE 6
-#define ARMV7M_EXCP_SVC 11
-#define ARMV7M_EXCP_DEBUG 12
-#define ARMV7M_EXCP_PENDSV 14
-#define ARMV7M_EXCP_SYSTICK 15
-
-/* ARM-specific interrupt pending bits. */
-#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
-#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
-#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
-
-/* The usual mapping for an AArch64 system register to its AArch32
- * counterpart is for the 32 bit world to have access to the lower
- * half only (with writes leaving the upper half untouched). It's
- * therefore useful to be able to pass TCG the offset of the least
- * significant half of a uint64_t struct member.
- */
-#ifdef HOST_WORDS_BIGENDIAN
-#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
-#define offsetofhigh32(S, M) offsetof(S, M)
-#else
-#define offsetoflow32(S, M) offsetof(S, M)
-#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
-#endif
-
-/* Meanings of the ARMCPU object's four inbound GPIO lines */
-#define ARM_CPU_IRQ 0
-#define ARM_CPU_FIQ 1
-#define ARM_CPU_VIRQ 2
-#define ARM_CPU_VFIQ 3
-
-#define NB_MMU_MODES 7
-/* ARM-specific extra insn start words:
- * 1: Conditional execution bits
- * 2: Partial exception syndrome for data aborts
- */
-#define TARGET_INSN_START_EXTRA_WORDS 2
-
-/* The 2nd extra word holding syndrome info for data aborts does not use
- * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
- * help the sleb128 encoder do a better job.
- * When restoring the CPU state, we shift it back up.
- */
-#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
-#define ARM_INSN_START_WORD2_SHIFT 14
-
-/* We currently assume float and double are IEEE single and double
- precision respectively.
- Doing runtime conversions is tricky because VFP registers may contain
- integer values (eg. as the result of a FTOSI instruction).
- s<2n> maps to the least significant half of d<n>
- s<2n+1> maps to the most significant half of d<n>
- */
-
-/* CPU state for each instance of a generic timer (in cp15 c14) */
-typedef struct ARMGenericTimer {
- uint64_t cval; /* Timer CompareValue register */
- uint64_t ctl; /* Timer Control register */
-} ARMGenericTimer;
-
-#define GTIMER_PHYS 0
-#define GTIMER_VIRT 1
-#define GTIMER_HYP 2
-#define GTIMER_SEC 3
-#define NUM_GTIMERS 4
-
-typedef struct {
- uint64_t raw_tcr;
- uint32_t mask;
- uint32_t base_mask;
-} TCR;
-
-typedef struct CPUARMState {
- /* Regs for current mode. */
- uint32_t regs[16];
-
- /* 32/64 switch only happens when taking and returning from
- * exceptions so the overlap semantics are taken care of then
- * instead of having a complicated union.
- */
- /* Regs for A64 mode. */
- uint64_t xregs[32];
- uint64_t pc;
- /* PSTATE isn't an architectural register for ARMv8. However, it is
- * convenient for us to assemble the underlying state into a 32 bit format
- * identical to the architectural format used for the SPSR. (This is also
- * what the Linux kernel's 'pstate' field in signal handlers and KVM's
- * 'pstate' register are.) Of the PSTATE bits:
- * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
- * semantics as for AArch32, as described in the comments on each field)
- * nRW (also known as M[4]) is kept, inverted, in env->aarch64
- * DAIF (exception masks) are kept in env->daif
- * all other bits are stored in their correct places in env->pstate
- */
- uint32_t pstate;
- uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
-
- /* Frequently accessed CPSR bits are stored separately for efficiency.
- This contains all the other bits. Use cpsr_{read,write} to access
- the whole CPSR. */
- uint32_t uncached_cpsr;
- uint32_t spsr;
-
- /* Banked registers. */
- uint64_t banked_spsr[8];
- uint32_t banked_r13[8];
- uint32_t banked_r14[8];
-
- /* These hold r8-r12. */
- uint32_t usr_regs[5];
- uint32_t fiq_regs[5];
-
- /* cpsr flag cache for faster execution */
- uint32_t CF; /* 0 or 1 */
- uint32_t VF; /* V is the bit 31. All other bits are undefined */
- uint32_t NF; /* N is bit 31. All other bits are undefined. */
- uint32_t ZF; /* Z set if zero. */
- uint32_t QF; /* 0 or 1 */
- uint32_t GE; /* cpsr[19:16] */
- uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
- uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
- uint64_t daif; /* exception masks, in the bits they are in PSTATE */
-
- uint64_t elr_el[4]; /* AArch64 exception link regs */
- uint64_t sp_el[4]; /* AArch64 banked stack pointers */
-
- /* System control coprocessor (cp15) */
- struct {
- uint32_t c0_cpuid;
- union { /* Cache size selection */
- struct {
- uint64_t _unused_csselr0;
- uint64_t csselr_ns;
- uint64_t _unused_csselr1;
- uint64_t csselr_s;
- };
- uint64_t csselr_el[4];
- };
- union { /* System control register. */
- struct {
- uint64_t _unused_sctlr;
- uint64_t sctlr_ns;
- uint64_t hsctlr;
- uint64_t sctlr_s;
- };
- uint64_t sctlr_el[4];
- };
- uint64_t cpacr_el1; /* Architectural feature access control register */
- uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
- uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
- uint64_t sder; /* Secure debug enable register. */
- uint32_t nsacr; /* Non-secure access control register. */
- union { /* MMU translation table base 0. */
- struct {
- uint64_t _unused_ttbr0_0;
- uint64_t ttbr0_ns;
- uint64_t _unused_ttbr0_1;
- uint64_t ttbr0_s;
- };
- uint64_t ttbr0_el[4];
- };
- union { /* MMU translation table base 1. */
- struct {
- uint64_t _unused_ttbr1_0;
- uint64_t ttbr1_ns;
- uint64_t _unused_ttbr1_1;
- uint64_t ttbr1_s;
- };
- uint64_t ttbr1_el[4];
- };
- uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
- /* MMU translation table base control. */
- TCR tcr_el[4];
- TCR vtcr_el2; /* Virtualization Translation Control. */
- uint32_t c2_data; /* MPU data cacheable bits. */
- uint32_t c2_insn; /* MPU instruction cacheable bits. */
- union { /* MMU domain access control register
- * MPU write buffer control.
- */
- struct {
- uint64_t dacr_ns;
- uint64_t dacr_s;
- };
- struct {
- uint64_t dacr32_el2;
- };
- };
- uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
- uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
- uint64_t hcr_el2; /* Hypervisor configuration register */
- uint64_t scr_el3; /* Secure configuration register. */
- union { /* Fault status registers. */
- struct {
- uint64_t ifsr_ns;
- uint64_t ifsr_s;
- };
- struct {
- uint64_t ifsr32_el2;
- };
- };
- union {
- struct {
- uint64_t _unused_dfsr;
- uint64_t dfsr_ns;
- uint64_t hsr;
- uint64_t dfsr_s;
- };
- uint64_t esr_el[4];
- };
- uint32_t c6_region[8]; /* MPU base/size registers. */
- union { /* Fault address registers. */
- struct {
- uint64_t _unused_far0;
-#ifdef HOST_WORDS_BIGENDIAN
- uint32_t ifar_ns;
- uint32_t dfar_ns;
- uint32_t ifar_s;
- uint32_t dfar_s;
-#else
- uint32_t dfar_ns;
- uint32_t ifar_ns;
- uint32_t dfar_s;
- uint32_t ifar_s;
-#endif
- uint64_t _unused_far3;
- };
- uint64_t far_el[4];
- };
- uint64_t hpfar_el2;
- uint64_t hstr_el2;
- union { /* Translation result. */
- struct {
- uint64_t _unused_par_0;
- uint64_t par_ns;
- uint64_t _unused_par_1;
- uint64_t par_s;
- };
- uint64_t par_el[4];
- };
-
- uint32_t c6_rgnr;
-
- uint32_t c9_insn; /* Cache lockdown registers. */
- uint32_t c9_data;
- uint64_t c9_pmcr; /* performance monitor control register */
- uint64_t c9_pmcnten; /* perf monitor counter enables */
- uint32_t c9_pmovsr; /* perf monitor overflow status */
- uint32_t c9_pmxevtyper; /* perf monitor event type */
- uint32_t c9_pmuserenr; /* perf monitor user enable */
- uint32_t c9_pminten; /* perf monitor interrupt enables */
- union { /* Memory attribute redirection */
- struct {
-#ifdef HOST_WORDS_BIGENDIAN
- uint64_t _unused_mair_0;
- uint32_t mair1_ns;
- uint32_t mair0_ns;
- uint64_t _unused_mair_1;
- uint32_t mair1_s;
- uint32_t mair0_s;
-#else
- uint64_t _unused_mair_0;
- uint32_t mair0_ns;
- uint32_t mair1_ns;
- uint64_t _unused_mair_1;
- uint32_t mair0_s;
- uint32_t mair1_s;
-#endif
- };
- uint64_t mair_el[4];
- };
- union { /* vector base address register */
- struct {
- uint64_t _unused_vbar;
- uint64_t vbar_ns;
- uint64_t hvbar;
- uint64_t vbar_s;
- };
- uint64_t vbar_el[4];
- };
- uint32_t mvbar; /* (monitor) vector base address register */
- struct { /* FCSE PID. */
- uint32_t fcseidr_ns;
- uint32_t fcseidr_s;
- };
- union { /* Context ID. */
- struct {
- uint64_t _unused_contextidr_0;
- uint64_t contextidr_ns;
- uint64_t _unused_contextidr_1;
- uint64_t contextidr_s;
- };
- uint64_t contextidr_el[4];
- };
- union { /* User RW Thread register. */
- struct {
- uint64_t tpidrurw_ns;
- uint64_t tpidrprw_ns;
- uint64_t htpidr;
- uint64_t _tpidr_el3;
- };
- uint64_t tpidr_el[4];
- };
- /* The secure banks of these registers don't map anywhere */
- uint64_t tpidrurw_s;
- uint64_t tpidrprw_s;
- uint64_t tpidruro_s;
-
- union { /* User RO Thread register. */
- uint64_t tpidruro_ns;
- uint64_t tpidrro_el[1];
- };
- uint64_t c14_cntfrq; /* Counter Frequency register */
- uint64_t c14_cntkctl; /* Timer Control register */
- uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
- uint64_t cntvoff_el2; /* Counter Virtual Offset register */
- ARMGenericTimer c14_timer[NUM_GTIMERS];
- uint32_t c15_cpar; /* XScale Coprocessor Access Register */
- uint32_t c15_ticonfig; /* TI925T configuration byte. */
- uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
- uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
- uint32_t c15_threadid; /* TI debugger thread-ID. */
- uint32_t c15_config_base_address; /* SCU base address. */
- uint32_t c15_diagnostic; /* diagnostic register */
- uint32_t c15_power_diagnostic;
- uint32_t c15_power_control; /* power control */
- uint64_t dbgbvr[16]; /* breakpoint value registers */
- uint64_t dbgbcr[16]; /* breakpoint control registers */
- uint64_t dbgwvr[16]; /* watchpoint value registers */
- uint64_t dbgwcr[16]; /* watchpoint control registers */
- uint64_t mdscr_el1;
- uint64_t oslsr_el1; /* OS Lock Status */
- uint64_t mdcr_el2;
- uint64_t mdcr_el3;
- /* If the counter is enabled, this stores the last time the counter
- * was reset. Otherwise it stores the counter value
- */
- uint64_t c15_ccnt;
- uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
- uint64_t vpidr_el2; /* Virtualization Processor ID Register */
- uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
- } cp15;
-
- struct {
- uint32_t other_sp;
- uint32_t vecbase;
- uint32_t basepri;
- uint32_t control;
- int current_sp;
- int exception;
- } v7m;
-
- /* Information associated with an exception about to be taken:
- * code which raises an exception must set cs->exception_index and
- * the relevant parts of this structure; the cpu_do_interrupt function
- * will then set the guest-visible registers as part of the exception
- * entry process.
- */
- struct {
- uint32_t syndrome; /* AArch64 format syndrome register */
- uint32_t fsr; /* AArch32 format fault status register info */
- uint64_t vaddress; /* virtual addr associated with exception, if any */
- uint32_t target_el; /* EL the exception should be targeted for */
- /* If we implement EL2 we will also need to store information
- * about the intermediate physical address for stage 2 faults.
- */
- } exception;
-
- /* Thumb-2 EE state. */
- uint32_t teecr;
- uint32_t teehbr;
-
- /* VFP coprocessor state. */
- struct {
- /* VFP/Neon register state. Note that the mapping between S, D and Q
- * views of the register bank differs between AArch64 and AArch32:
- * In AArch32:
- * Qn = regs[2n+1]:regs[2n]
- * Dn = regs[n]
- * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
- * (and regs[32] to regs[63] are inaccessible)
- * In AArch64:
- * Qn = regs[2n+1]:regs[2n]
- * Dn = regs[2n]
- * Sn = regs[2n] bits 31..0
- * This corresponds to the architecturally defined mapping between
- * the two execution states, and means we do not need to explicitly
- * map these registers when changing states.
- */
- float64 regs[64];
-
- uint32_t xregs[16];
- /* We store these fpcsr fields separately for convenience. */
- int vec_len;
- int vec_stride;
-
- /* scratch space when Tn are not sufficient. */
- uint32_t scratch[8];
-
- /* fp_status is the "normal" fp status. standard_fp_status retains
- * values corresponding to the ARM "Standard FPSCR Value", ie
- * default-NaN, flush-to-zero, round-to-nearest and is used by
- * any operations (generally Neon) which the architecture defines
- * as controlled by the standard FPSCR value rather than the FPSCR.
- *
- * To avoid having to transfer exception bits around, we simply
- * say that the FPSCR cumulative exception flags are the logical
- * OR of the flags in the two fp statuses. This relies on the
- * only thing which needs to read the exception flags being
- * an explicit FPSCR read.
- */
- float_status fp_status;
- float_status standard_fp_status;
- } vfp;
- uint64_t exclusive_addr;
- uint64_t exclusive_val;
- uint64_t exclusive_high;
-
- /* iwMMXt coprocessor state. */
- struct {
- uint64_t regs[16];
- uint64_t val;
-
- uint32_t cregs[16];
- } iwmmxt;
-
-#if defined(CONFIG_USER_ONLY)
- /* For usermode syscall translation. */
- int eabi;
-#endif
-
- struct CPUBreakpoint *cpu_breakpoint[16];
- struct CPUWatchpoint *cpu_watchpoint[16];
-
- CPU_COMMON
-
- /* These fields after the common ones so they are preserved on reset. */
-
- /* Internal CPU feature flags. */
- uint64_t features;
-
- /* PMSAv7 MPU */
- struct {
- uint32_t *drbar;
- uint32_t *drsr;
- uint32_t *dracr;
- } pmsav7;
-
- void *nvic;
- const struct arm_boot_info *boot_info;
-} CPUARMState;
-
-/**
- * ARMELChangeHook:
- * type of a function which can be registered via arm_register_el_change_hook()
- * to get callbacks when the CPU changes its exception level or mode.
- */
-typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
-
-/**
- * ARMCPU:
- * @env: #CPUARMState
- *
- * An ARM CPU core.
- */
-struct ARMCPU {
- /*< private >*/
- CPUState parent_obj;
- /*< public >*/
-
- CPUARMState env;
-
- /* Coprocessor information */
- GHashTable *cp_regs;
- /* For marshalling (mostly coprocessor) register state between the
- * kernel and QEMU (for KVM) and between two QEMUs (for migration),
- * we use these arrays.
- */
- /* List of register indexes managed via these arrays; (full KVM style
- * 64 bit indexes, not CPRegInfo 32 bit indexes)
- */
- uint64_t *cpreg_indexes;
- /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
- uint64_t *cpreg_values;
- /* Length of the indexes, values, reset_values arrays */
- int32_t cpreg_array_len;
- /* These are used only for migration: incoming data arrives in
- * these fields and is sanity checked in post_load before copying
- * to the working data structures above.
- */
- uint64_t *cpreg_vmstate_indexes;
- uint64_t *cpreg_vmstate_values;
- int32_t cpreg_vmstate_array_len;
-
- /* Timers used by the generic (architected) timer */
- QEMUTimer *gt_timer[NUM_GTIMERS];
- /* GPIO outputs for generic timer */
- qemu_irq gt_timer_outputs[NUM_GTIMERS];
-
- /* MemoryRegion to use for secure physical accesses */
- MemoryRegion *secure_memory;
-
- /* 'compatible' string for this CPU for Linux device trees */
- const char *dtb_compatible;
-
- /* PSCI version for this CPU
- * Bits[31:16] = Major Version
- * Bits[15:0] = Minor Version
- */
- uint32_t psci_version;
-
- /* Should CPU start in PSCI powered-off state? */
- bool start_powered_off;
- /* CPU currently in PSCI powered-off state */
- bool powered_off;
- /* CPU has security extension */
- bool has_el3;
- /* CPU has PMU (Performance Monitor Unit) */
- bool has_pmu;
-
- /* CPU has memory protection unit */
- bool has_mpu;
- /* PMSAv7 MPU number of supported regions */
- uint32_t pmsav7_dregion;
-
- /* PSCI conduit used to invoke PSCI methods
- * 0 - disabled, 1 - smc, 2 - hvc
- */
- uint32_t psci_conduit;
-
- /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
- * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
- */
- uint32_t kvm_target;
-
- /* KVM init features for this CPU */
- uint32_t kvm_init_features[7];
-
- /* Uniprocessor system with MP extensions */
- bool mp_is_up;
-
- /* The instance init functions for implementation-specific subclasses
- * set these fields to specify the implementation-dependent values of
- * various constant registers and reset values of non-constant
- * registers.
- * Some of these might become QOM properties eventually.
- * Field names match the official register names as defined in the
- * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
- * is used for reset values of non-constant registers; no reset_
- * prefix means a constant register.
- */
- uint32_t midr;
- uint32_t revidr;
- uint32_t reset_fpsid;
- uint32_t mvfr0;
- uint32_t mvfr1;
- uint32_t mvfr2;
- uint32_t ctr;
- uint32_t reset_sctlr;
- uint32_t id_pfr0;
- uint32_t id_pfr1;
- uint32_t id_dfr0;
- uint32_t pmceid0;
- uint32_t pmceid1;
- uint32_t id_afr0;
- uint32_t id_mmfr0;
- uint32_t id_mmfr1;
- uint32_t id_mmfr2;
- uint32_t id_mmfr3;
- uint32_t id_mmfr4;
- uint32_t id_isar0;
- uint32_t id_isar1;
- uint32_t id_isar2;
- uint32_t id_isar3;
- uint32_t id_isar4;
- uint32_t id_isar5;
- uint64_t id_aa64pfr0;
- uint64_t id_aa64pfr1;
- uint64_t id_aa64dfr0;
- uint64_t id_aa64dfr1;
- uint64_t id_aa64afr0;
- uint64_t id_aa64afr1;
- uint64_t id_aa64isar0;
- uint64_t id_aa64isar1;
- uint64_t id_aa64mmfr0;
- uint64_t id_aa64mmfr1;
- uint32_t dbgdidr;
- uint32_t clidr;
- uint64_t mp_affinity; /* MP ID without feature bits */
- /* The elements of this array are the CCSIDR values for each cache,
- * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
- */
- uint32_t ccsidr[16];
- uint64_t reset_cbar;
- uint32_t reset_auxcr;
- bool reset_hivecs;
- /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
- uint32_t dcz_blocksize;
- uint64_t rvbar;
-
- ARMELChangeHook *el_change_hook;
- void *el_change_hook_opaque;
-};
-
-static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
-{
- return container_of(env, ARMCPU, env);
-}
-
-#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
-
-#define ENV_OFFSET offsetof(ARMCPU, env)
-
-#ifndef CONFIG_USER_ONLY
-extern const struct VMStateDescription vmstate_arm_cpu;
-#endif
-
-void arm_cpu_do_interrupt(CPUState *cpu);
-void arm_v7m_cpu_do_interrupt(CPUState *cpu);
-bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
-
-void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
- int flags);
-
-hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
- MemTxAttrs *attrs);
-
-int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
-int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
-
-int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
- int cpuid, void *opaque);
-int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
- int cpuid, void *opaque);
-
-#ifdef TARGET_AARCH64
-int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
-int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
-#endif
-
-ARMCPU *cpu_arm_init(const char *cpu_model);
-target_ulong do_arm_semihosting(CPUARMState *env);
-void aarch64_sync_32_to_64(CPUARMState *env);
-void aarch64_sync_64_to_32(CPUARMState *env);
-
-static inline bool is_a64(CPUARMState *env)
-{
- return env->aarch64;
-}
-
-/* you can call this signal handler from your SIGBUS and SIGSEGV
- signal handlers to inform the virtual CPU of exceptions. non zero
- is returned if the signal was handled by the virtual CPU. */
-int cpu_arm_signal_handler(int host_signum, void *pinfo,
- void *puc);
-
-/**
- * pmccntr_sync
- * @env: CPUARMState
- *
- * Synchronises the counter in the PMCCNTR. This must always be called twice,
- * once before any action that might affect the timer and again afterwards.
- * The function is used to swap the state of the register if required.
- * This only happens when not in user mode (!CONFIG_USER_ONLY)
- */
-void pmccntr_sync(CPUARMState *env);
-
-/* SCTLR bit meanings. Several bits have been reused in newer
- * versions of the architecture; in that case we define constants
- * for both old and new bit meanings. Code which tests against those
- * bits should probably check or otherwise arrange that the CPU
- * is the architectural version it expects.
- */
-#define SCTLR_M (1U << 0)
-#define SCTLR_A (1U << 1)
-#define SCTLR_C (1U << 2)
-#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
-#define SCTLR_SA (1U << 3)
-#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
-#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
-#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
-#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
-#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
-#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
-#define SCTLR_ITD (1U << 7) /* v8 onward */
-#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
-#define SCTLR_SED (1U << 8) /* v8 onward */
-#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
-#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
-#define SCTLR_F (1U << 10) /* up to v6 */
-#define SCTLR_SW (1U << 10) /* v7 onward */
-#define SCTLR_Z (1U << 11)
-#define SCTLR_I (1U << 12)
-#define SCTLR_V (1U << 13)
-#define SCTLR_RR (1U << 14) /* up to v7 */
-#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
-#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
-#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
-#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
-#define SCTLR_nTWI (1U << 16) /* v8 onward */
-#define SCTLR_HA (1U << 17)
-#define SCTLR_BR (1U << 17) /* PMSA only */
-#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
-#define SCTLR_nTWE (1U << 18) /* v8 onward */
-#define SCTLR_WXN (1U << 19)
-#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
-#define SCTLR_UWXN (1U << 20) /* v7 onward */
-#define SCTLR_FI (1U << 21)
-#define SCTLR_U (1U << 22)
-#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
-#define SCTLR_VE (1U << 24) /* up to v7 */
-#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
-#define SCTLR_EE (1U << 25)
-#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
-#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
-#define SCTLR_NMFI (1U << 27)
-#define SCTLR_TRE (1U << 28)
-#define SCTLR_AFE (1U << 29)
-#define SCTLR_TE (1U << 30)
-
-#define CPTR_TCPAC (1U << 31)
-#define CPTR_TTA (1U << 20)
-#define CPTR_TFP (1U << 10)
-
-#define MDCR_EPMAD (1U << 21)
-#define MDCR_EDAD (1U << 20)
-#define MDCR_SPME (1U << 17)
-#define MDCR_SDD (1U << 16)
-#define MDCR_SPD (3U << 14)
-#define MDCR_TDRA (1U << 11)
-#define MDCR_TDOSA (1U << 10)
-#define MDCR_TDA (1U << 9)
-#define MDCR_TDE (1U << 8)
-#define MDCR_HPME (1U << 7)
-#define MDCR_TPM (1U << 6)
-#define MDCR_TPMCR (1U << 5)
-
-/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
-#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
-
-#define CPSR_M (0x1fU)
-#define CPSR_T (1U << 5)
-#define CPSR_F (1U << 6)
-#define CPSR_I (1U << 7)
-#define CPSR_A (1U << 8)
-#define CPSR_E (1U << 9)
-#define CPSR_IT_2_7 (0xfc00U)
-#define CPSR_GE (0xfU << 16)
-#define CPSR_IL (1U << 20)
-/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
- * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
- * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
- * where it is live state but not accessible to the AArch32 code.
- */
-#define CPSR_RESERVED (0x7U << 21)
-#define CPSR_J (1U << 24)
-#define CPSR_IT_0_1 (3U << 25)
-#define CPSR_Q (1U << 27)
-#define CPSR_V (1U << 28)
-#define CPSR_C (1U << 29)
-#define CPSR_Z (1U << 30)
-#define CPSR_N (1U << 31)
-#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
-#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
-
-#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
-#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
- | CPSR_NZCV)
-/* Bits writable in user mode. */
-#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
-/* Execution state bits. MRS read as zero, MSR writes ignored. */
-#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
-/* Mask of bits which may be set by exception return copying them from SPSR */
-#define CPSR_ERET_MASK (~CPSR_RESERVED)
-
-#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
-#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
-#define TTBCR_PD0 (1U << 4)
-#define TTBCR_PD1 (1U << 5)
-#define TTBCR_EPD0 (1U << 7)
-#define TTBCR_IRGN0 (3U << 8)
-#define TTBCR_ORGN0 (3U << 10)
-#define TTBCR_SH0 (3U << 12)
-#define TTBCR_T1SZ (3U << 16)
-#define TTBCR_A1 (1U << 22)
-#define TTBCR_EPD1 (1U << 23)
-#define TTBCR_IRGN1 (3U << 24)
-#define TTBCR_ORGN1 (3U << 26)
-#define TTBCR_SH1 (1U << 28)
-#define TTBCR_EAE (1U << 31)
-
-/* Bit definitions for ARMv8 SPSR (PSTATE) format.
- * Only these are valid when in AArch64 mode; in
- * AArch32 mode SPSRs are basically CPSR-format.
- */
-#define PSTATE_SP (1U)
-#define PSTATE_M (0xFU)
-#define PSTATE_nRW (1U << 4)
-#define PSTATE_F (1U << 6)
-#define PSTATE_I (1U << 7)
-#define PSTATE_A (1U << 8)
-#define PSTATE_D (1U << 9)
-#define PSTATE_IL (1U << 20)
-#define PSTATE_SS (1U << 21)
-#define PSTATE_V (1U << 28)
-#define PSTATE_C (1U << 29)
-#define PSTATE_Z (1U << 30)
-#define PSTATE_N (1U << 31)
-#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
-#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
-#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
-/* Mode values for AArch64 */
-#define PSTATE_MODE_EL3h 13
-#define PSTATE_MODE_EL3t 12
-#define PSTATE_MODE_EL2h 9
-#define PSTATE_MODE_EL2t 8
-#define PSTATE_MODE_EL1h 5
-#define PSTATE_MODE_EL1t 4
-#define PSTATE_MODE_EL0t 0
-
-/* Map EL and handler into a PSTATE_MODE. */
-static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
-{
- return (el << 2) | handler;
-}
-
-/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
- * interprocessing, so we don't attempt to sync with the cpsr state used by
- * the 32 bit decoder.
- */
-static inline uint32_t pstate_read(CPUARMState *env)
-{
- int ZF;
-
- ZF = (env->ZF == 0);
- return (env->NF & 0x80000000) | (ZF << 30)
- | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
- | env->pstate | env->daif;
-}
-
-static inline void pstate_write(CPUARMState *env, uint32_t val)
-{
- env->ZF = (~val) & PSTATE_Z;
- env->NF = val;
- env->CF = (val >> 29) & 1;
- env->VF = (val << 3) & 0x80000000;
- env->daif = val & PSTATE_DAIF;
- env->pstate = val & ~CACHED_PSTATE_BITS;
-}
-
-/* Return the current CPSR value. */
-uint32_t cpsr_read(CPUARMState *env);
-
-typedef enum CPSRWriteType {
- CPSRWriteByInstr = 0, /* from guest MSR or CPS */
- CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
- CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
- CPSRWriteByGDBStub = 3, /* from the GDB stub */
-} CPSRWriteType;
-
-/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
-void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
- CPSRWriteType write_type);
-
-/* Return the current xPSR value. */
-static inline uint32_t xpsr_read(CPUARMState *env)
-{
- int ZF;
- ZF = (env->ZF == 0);
- return (env->NF & 0x80000000) | (ZF << 30)
- | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
- | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
- | ((env->condexec_bits & 0xfc) << 8)
- | env->v7m.exception;
-}
-
-/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
-static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
-{
- if (mask & CPSR_NZCV) {
- env->ZF = (~val) & CPSR_Z;
- env->NF = val;
- env->CF = (val >> 29) & 1;
- env->VF = (val << 3) & 0x80000000;
- }
- if (mask & CPSR_Q)
- env->QF = ((val & CPSR_Q) != 0);
- if (mask & (1 << 24))
- env->thumb = ((val & (1 << 24)) != 0);
- if (mask & CPSR_IT_0_1) {
- env->condexec_bits &= ~3;
- env->condexec_bits |= (val >> 25) & 3;
- }
- if (mask & CPSR_IT_2_7) {
- env->condexec_bits &= 3;
- env->condexec_bits |= (val >> 8) & 0xfc;
- }
- if (mask & 0x1ff) {
- env->v7m.exception = val & 0x1ff;
- }
-}
-
-#define HCR_VM (1ULL << 0)
-#define HCR_SWIO (1ULL << 1)
-#define HCR_PTW (1ULL << 2)
-#define HCR_FMO (1ULL << 3)
-#define HCR_IMO (1ULL << 4)
-#define HCR_AMO (1ULL << 5)
-#define HCR_VF (1ULL << 6)
-#define HCR_VI (1ULL << 7)
-#define HCR_VSE (1ULL << 8)
-#define HCR_FB (1ULL << 9)
-#define HCR_BSU_MASK (3ULL << 10)
-#define HCR_DC (1ULL << 12)
-#define HCR_TWI (1ULL << 13)
-#define HCR_TWE (1ULL << 14)
-#define HCR_TID0 (1ULL << 15)
-#define HCR_TID1 (1ULL << 16)
-#define HCR_TID2 (1ULL << 17)
-#define HCR_TID3 (1ULL << 18)
-#define HCR_TSC (1ULL << 19)
-#define HCR_TIDCP (1ULL << 20)
-#define HCR_TACR (1ULL << 21)
-#define HCR_TSW (1ULL << 22)
-#define HCR_TPC (1ULL << 23)
-#define HCR_TPU (1ULL << 24)
-#define HCR_TTLB (1ULL << 25)
-#define HCR_TVM (1ULL << 26)
-#define HCR_TGE (1ULL << 27)
-#define HCR_TDZ (1ULL << 28)
-#define HCR_HCD (1ULL << 29)
-#define HCR_TRVM (1ULL << 30)
-#define HCR_RW (1ULL << 31)
-#define HCR_CD (1ULL << 32)
-#define HCR_ID (1ULL << 33)
-#define HCR_MASK ((1ULL << 34) - 1)
-
-#define SCR_NS (1U << 0)
-#define SCR_IRQ (1U << 1)
-#define SCR_FIQ (1U << 2)
-#define SCR_EA (1U << 3)
-#define SCR_FW (1U << 4)
-#define SCR_AW (1U << 5)
-#define SCR_NET (1U << 6)
-#define SCR_SMD (1U << 7)
-#define SCR_HCE (1U << 8)
-#define SCR_SIF (1U << 9)
-#define SCR_RW (1U << 10)
-#define SCR_ST (1U << 11)
-#define SCR_TWI (1U << 12)
-#define SCR_TWE (1U << 13)
-#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
-#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
-
-/* Return the current FPSCR value. */
-uint32_t vfp_get_fpscr(CPUARMState *env);
-void vfp_set_fpscr(CPUARMState *env, uint32_t val);
-
-/* For A64 the FPSCR is split into two logically distinct registers,
- * FPCR and FPSR. However since they still use non-overlapping bits
- * we store the underlying state in fpscr and just mask on read/write.
- */
-#define FPSR_MASK 0xf800009f
-#define FPCR_MASK 0x07f79f00
-static inline uint32_t vfp_get_fpsr(CPUARMState *env)
-{
- return vfp_get_fpscr(env) & FPSR_MASK;
-}
-
-static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
-{
- uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
- vfp_set_fpscr(env, new_fpscr);
-}
-
-static inline uint32_t vfp_get_fpcr(CPUARMState *env)
-{
- return vfp_get_fpscr(env) & FPCR_MASK;
-}
-
-static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
-{
- uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
- vfp_set_fpscr(env, new_fpscr);
-}
-
-enum arm_cpu_mode {
- ARM_CPU_MODE_USR = 0x10,
- ARM_CPU_MODE_FIQ = 0x11,
- ARM_CPU_MODE_IRQ = 0x12,
- ARM_CPU_MODE_SVC = 0x13,
- ARM_CPU_MODE_MON = 0x16,
- ARM_CPU_MODE_ABT = 0x17,
- ARM_CPU_MODE_HYP = 0x1a,
- ARM_CPU_MODE_UND = 0x1b,
- ARM_CPU_MODE_SYS = 0x1f
-};
-
-/* VFP system registers. */
-#define ARM_VFP_FPSID 0
-#define ARM_VFP_FPSCR 1
-#define ARM_VFP_MVFR2 5
-#define ARM_VFP_MVFR1 6
-#define ARM_VFP_MVFR0 7
-#define ARM_VFP_FPEXC 8
-#define ARM_VFP_FPINST 9
-#define ARM_VFP_FPINST2 10
-
-/* iwMMXt coprocessor control registers. */
-#define ARM_IWMMXT_wCID 0
-#define ARM_IWMMXT_wCon 1
-#define ARM_IWMMXT_wCSSF 2
-#define ARM_IWMMXT_wCASF 3
-#define ARM_IWMMXT_wCGR0 8
-#define ARM_IWMMXT_wCGR1 9
-#define ARM_IWMMXT_wCGR2 10
-#define ARM_IWMMXT_wCGR3 11
-
-/* If adding a feature bit which corresponds to a Linux ELF
- * HWCAP bit, remember to update the feature-bit-to-hwcap
- * mapping in linux-user/elfload.c:get_elf_hwcap().
- */
-enum arm_features {
- ARM_FEATURE_VFP,
- ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
- ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
- ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
- ARM_FEATURE_V6,
- ARM_FEATURE_V6K,
- ARM_FEATURE_V7,
- ARM_FEATURE_THUMB2,
- ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
- ARM_FEATURE_VFP3,
- ARM_FEATURE_VFP_FP16,
- ARM_FEATURE_NEON,
- ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
- ARM_FEATURE_M, /* Microcontroller profile. */
- ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
- ARM_FEATURE_THUMB2EE,
- ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
- ARM_FEATURE_V4T,
- ARM_FEATURE_V5,
- ARM_FEATURE_STRONGARM,
- ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
- ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
- ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
- ARM_FEATURE_GENERIC_TIMER,
- ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
- ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
- ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
- ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
- ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
- ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
- ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
- ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
- ARM_FEATURE_V8,
- ARM_FEATURE_AARCH64, /* supports 64 bit mode */
- ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
- ARM_FEATURE_CBAR, /* has cp15 CBAR */
- ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
- ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
- ARM_FEATURE_EL2, /* has EL2 Virtualization support */
- ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
- ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
- ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
- ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
- ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
- ARM_FEATURE_PMU, /* has PMU support */
-};
-
-static inline int arm_feature(CPUARMState *env, int feature)
-{
- return (env->features & (1ULL << feature)) != 0;
-}
-
-#if !defined(CONFIG_USER_ONLY)
-/* Return true if exception levels below EL3 are in secure state,
- * or would be following an exception return to that level.
- * Unlike arm_is_secure() (which is always a question about the
- * _current_ state of the CPU) this doesn't care about the current
- * EL or mode.
- */
-static inline bool arm_is_secure_below_el3(CPUARMState *env)
-{
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- return !(env->cp15.scr_el3 & SCR_NS);
- } else {
- /* If EL3 is not supported then the secure state is implementation
- * defined, in which case QEMU defaults to non-secure.
- */
- return false;
- }
-}
-
-/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
-static inline bool arm_is_el3_or_mon(CPUARMState *env)
-{
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
- /* CPU currently in AArch64 state and EL3 */
- return true;
- } else if (!is_a64(env) &&
- (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
- /* CPU currently in AArch32 state and monitor mode */
- return true;
- }
- }
- return false;
-}
-
-/* Return true if the processor is in secure state */
-static inline bool arm_is_secure(CPUARMState *env)
-{
- if (arm_is_el3_or_mon(env)) {
- return true;
- }
- return arm_is_secure_below_el3(env);
-}
-
-#else
-static inline bool arm_is_secure_below_el3(CPUARMState *env)
-{
- return false;
-}
-
-static inline bool arm_is_secure(CPUARMState *env)
-{
- return false;
-}
-#endif
-
-/* Return true if the specified exception level is running in AArch64 state. */
-static inline bool arm_el_is_aa64(CPUARMState *env, int el)
-{
- /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
- * and if we're not in EL0 then the state of EL0 isn't well defined.)
- */
- assert(el >= 1 && el <= 3);
- bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
-
- /* The highest exception level is always at the maximum supported
- * register width, and then lower levels have a register width controlled
- * by bits in the SCR or HCR registers.
- */
- if (el == 3) {
- return aa64;
- }
-
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
- }
-
- if (el == 2) {
- return aa64;
- }
-
- if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
- aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
- }
-
- return aa64;
-}
-
-/* Function for determing whether guest cp register reads and writes should
- * access the secure or non-secure bank of a cp register. When EL3 is
- * operating in AArch32 state, the NS-bit determines whether the secure
- * instance of a cp register should be used. When EL3 is AArch64 (or if
- * it doesn't exist at all) then there is no register banking, and all
- * accesses are to the non-secure version.
- */
-static inline bool access_secure_reg(CPUARMState *env)
-{
- bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
- !arm_el_is_aa64(env, 3) &&
- !(env->cp15.scr_el3 & SCR_NS));
-
- return ret;
-}
-
-/* Macros for accessing a specified CP register bank */
-#define A32_BANKED_REG_GET(_env, _regname, _secure) \
- ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
-
-#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
- do { \
- if (_secure) { \
- (_env)->cp15._regname##_s = (_val); \
- } else { \
- (_env)->cp15._regname##_ns = (_val); \
- } \
- } while (0)
-
-/* Macros for automatically accessing a specific CP register bank depending on
- * the current secure state of the system. These macros are not intended for
- * supporting instruction translation reads/writes as these are dependent
- * solely on the SCR.NS bit and not the mode.
- */
-#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
- A32_BANKED_REG_GET((_env), _regname, \
- (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
-
-#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
- A32_BANKED_REG_SET((_env), _regname, \
- (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
- (_val))
-
-void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
-uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
- uint32_t cur_el, bool secure);
-
-/* Interface between CPU and Interrupt controller. */
-void armv7m_nvic_set_pending(void *opaque, int irq);
-int armv7m_nvic_acknowledge_irq(void *opaque);
-void armv7m_nvic_complete_irq(void *opaque, int irq);
-
-/* Interface for defining coprocessor registers.
- * Registers are defined in tables of arm_cp_reginfo structs
- * which are passed to define_arm_cp_regs().
- */
-
-/* When looking up a coprocessor register we look for it
- * via an integer which encodes all of:
- * coprocessor number
- * Crn, Crm, opc1, opc2 fields
- * 32 or 64 bit register (ie is it accessed via MRC/MCR
- * or via MRRC/MCRR?)
- * non-secure/secure bank (AArch32 only)
- * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
- * (In this case crn and opc2 should be zero.)
- * For AArch64, there is no 32/64 bit size distinction;
- * instead all registers have a 2 bit op0, 3 bit op1 and op2,
- * and 4 bit CRn and CRm. The encoding patterns are chosen
- * to be easy to convert to and from the KVM encodings, and also
- * so that the hashtable can contain both AArch32 and AArch64
- * registers (to allow for interprocessing where we might run
- * 32 bit code on a 64 bit core).
- */
-/* This bit is private to our hashtable cpreg; in KVM register
- * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
- * in the upper bits of the 64 bit ID.
- */
-#define CP_REG_AA64_SHIFT 28
-#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
-
-/* To enable banking of coprocessor registers depending on ns-bit we
- * add a bit to distinguish between secure and non-secure cpregs in the
- * hashtable.
- */
-#define CP_REG_NS_SHIFT 29
-#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
-
-#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
- ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
- ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
-
-#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
- (CP_REG_AA64_MASK | \
- ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
- ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
- ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
- ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
- ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
- ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
-
-/* Convert a full 64 bit KVM register ID to the truncated 32 bit
- * version used as a key for the coprocessor register hashtable
- */
-static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
-{
- uint32_t cpregid = kvmid;
- if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
- cpregid |= CP_REG_AA64_MASK;
- } else {
- if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
- cpregid |= (1 << 15);
- }
-
- /* KVM is always non-secure so add the NS flag on AArch32 register
- * entries.
- */
- cpregid |= 1 << CP_REG_NS_SHIFT;
- }
- return cpregid;
-}
-
-/* Convert a truncated 32 bit hashtable key into the full
- * 64 bit KVM register ID.
- */
-static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
-{
- uint64_t kvmid;
-
- if (cpregid & CP_REG_AA64_MASK) {
- kvmid = cpregid & ~CP_REG_AA64_MASK;
- kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
- } else {
- kvmid = cpregid & ~(1 << 15);
- if (cpregid & (1 << 15)) {
- kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
- } else {
- kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
- }
- }
- return kvmid;
-}
-
-/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
- * special-behaviour cp reg and bits [15..8] indicate what behaviour
- * it has. Otherwise it is a simple cp reg, where CONST indicates that
- * TCG can assume the value to be constant (ie load at translate time)
- * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
- * indicates that the TB should not be ended after a write to this register
- * (the default is that the TB ends after cp writes). OVERRIDE permits
- * a register definition to override a previous definition for the
- * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
- * old must have the OVERRIDE bit set.
- * ALIAS indicates that this register is an alias view of some underlying
- * state which is also visible via another register, and that the other
- * register is handling migration and reset; registers marked ALIAS will not be
- * migrated but may have their state set by syncing of register state from KVM.
- * NO_RAW indicates that this register has no underlying state and does not
- * support raw access for state saving/loading; it will not be used for either
- * migration or KVM state synchronization. (Typically this is for "registers"
- * which are actually used as instructions for cache maintenance and so on.)
- * IO indicates that this register does I/O and therefore its accesses
- * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
- * registers which implement clocks or timers require this.
- */
-#define ARM_CP_SPECIAL 1
-#define ARM_CP_CONST 2
-#define ARM_CP_64BIT 4
-#define ARM_CP_SUPPRESS_TB_END 8
-#define ARM_CP_OVERRIDE 16
-#define ARM_CP_ALIAS 32
-#define ARM_CP_IO 64
-#define ARM_CP_NO_RAW 128
-#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
-#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
-#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
-#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
-#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
-#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
-/* Used only as a terminator for ARMCPRegInfo lists */
-#define ARM_CP_SENTINEL 0xffff
-/* Mask of only the flag bits in a type field */
-#define ARM_CP_FLAG_MASK 0xff
-
-/* Valid values for ARMCPRegInfo state field, indicating which of
- * the AArch32 and AArch64 execution states this register is visible in.
- * If the reginfo doesn't explicitly specify then it is AArch32 only.
- * If the reginfo is declared to be visible in both states then a second
- * reginfo is synthesised for the AArch32 view of the AArch64 register,
- * such that the AArch32 view is the lower 32 bits of the AArch64 one.
- * Note that we rely on the values of these enums as we iterate through
- * the various states in some places.
- */
-enum {
- ARM_CP_STATE_AA32 = 0,
- ARM_CP_STATE_AA64 = 1,
- ARM_CP_STATE_BOTH = 2,
-};
-
-/* ARM CP register secure state flags. These flags identify security state
- * attributes for a given CP register entry.
- * The existence of both or neither secure and non-secure flags indicates that
- * the register has both a secure and non-secure hash entry. A single one of
- * these flags causes the register to only be hashed for the specified
- * security state.
- * Although definitions may have any combination of the S/NS bits, each
- * registered entry will only have one to identify whether the entry is secure
- * or non-secure.
- */
-enum {
- ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
- ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
-};
-
-/* Return true if cptype is a valid type field. This is used to try to
- * catch errors where the sentinel has been accidentally left off the end
- * of a list of registers.
- */
-static inline bool cptype_valid(int cptype)
-{
- return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
- || ((cptype & ARM_CP_SPECIAL) &&
- ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
-}
-
-/* Access rights:
- * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
- * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
- * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
- * (ie any of the privileged modes in Secure state, or Monitor mode).
- * If a register is accessible in one privilege level it's always accessible
- * in higher privilege levels too. Since "Secure PL1" also follows this rule
- * (ie anything visible in PL2 is visible in S-PL1, some things are only
- * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
- * terminology a little and call this PL3.
- * In AArch64 things are somewhat simpler as the PLx bits line up exactly
- * with the ELx exception levels.
- *
- * If access permissions for a register are more complex than can be
- * described with these bits, then use a laxer set of restrictions, and
- * do the more restrictive/complex check inside a helper function.
- */
-#define PL3_R 0x80
-#define PL3_W 0x40
-#define PL2_R (0x20 | PL3_R)
-#define PL2_W (0x10 | PL3_W)
-#define PL1_R (0x08 | PL2_R)
-#define PL1_W (0x04 | PL2_W)
-#define PL0_R (0x02 | PL1_R)
-#define PL0_W (0x01 | PL1_W)
-
-#define PL3_RW (PL3_R | PL3_W)
-#define PL2_RW (PL2_R | PL2_W)
-#define PL1_RW (PL1_R | PL1_W)
-#define PL0_RW (PL0_R | PL0_W)
-
-/* Return the highest implemented Exception Level */
-static inline int arm_highest_el(CPUARMState *env)
-{
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- return 3;
- }
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- return 2;
- }
- return 1;
-}
-
-/* Return the current Exception Level (as per ARMv8; note that this differs
- * from the ARMv7 Privilege Level).
- */
-static inline int arm_current_el(CPUARMState *env)
-{
- if (arm_feature(env, ARM_FEATURE_M)) {
- return !((env->v7m.exception == 0) && (env->v7m.control & 1));
- }
-
- if (is_a64(env)) {
- return extract32(env->pstate, 2, 2);
- }
-
- switch (env->uncached_cpsr & 0x1f) {
- case ARM_CPU_MODE_USR:
- return 0;
- case ARM_CPU_MODE_HYP:
- return 2;
- case ARM_CPU_MODE_MON:
- return 3;
- default:
- if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
- /* If EL3 is 32-bit then all secure privileged modes run in
- * EL3
- */
- return 3;
- }
-
- return 1;
- }
-}
-
-typedef struct ARMCPRegInfo ARMCPRegInfo;
-
-typedef enum CPAccessResult {
- /* Access is permitted */
- CP_ACCESS_OK = 0,
- /* Access fails due to a configurable trap or enable which would
- * result in a categorized exception syndrome giving information about
- * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
- * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
- * PL1 if in EL0, otherwise to the current EL).
- */
- CP_ACCESS_TRAP = 1,
- /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
- * Note that this is not a catch-all case -- the set of cases which may
- * result in this failure is specifically defined by the architecture.
- */
- CP_ACCESS_TRAP_UNCATEGORIZED = 2,
- /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
- CP_ACCESS_TRAP_EL2 = 3,
- CP_ACCESS_TRAP_EL3 = 4,
- /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
- CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
- CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
- /* Access fails and results in an exception syndrome for an FP access,
- * trapped directly to EL2 or EL3
- */
- CP_ACCESS_TRAP_FP_EL2 = 7,
- CP_ACCESS_TRAP_FP_EL3 = 8,
-} CPAccessResult;
-
-/* Access functions for coprocessor registers. These cannot fail and
- * may not raise exceptions.
- */
-typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
-typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
- uint64_t value);
-/* Access permission check functions for coprocessor registers. */
-typedef CPAccessResult CPAccessFn(CPUARMState *env,
- const ARMCPRegInfo *opaque,
- bool isread);
-/* Hook function for register reset */
-typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
-
-#define CP_ANY 0xff
-
-/* Definition of an ARM coprocessor register */
-struct ARMCPRegInfo {
- /* Name of register (useful mainly for debugging, need not be unique) */
- const char *name;
- /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
- * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
- * 'wildcard' field -- any value of that field in the MRC/MCR insn
- * will be decoded to this register. The register read and write
- * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
- * used by the program, so it is possible to register a wildcard and
- * then behave differently on read/write if necessary.
- * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
- * must both be zero.
- * For AArch64-visible registers, opc0 is also used.
- * Since there are no "coprocessors" in AArch64, cp is purely used as a
- * way to distinguish (for KVM's benefit) guest-visible system registers
- * from demuxed ones provided to preserve the "no side effects on
- * KVM register read/write from QEMU" semantics. cp==0x13 is guest
- * visible (to match KVM's encoding); cp==0 will be converted to
- * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
- */
- uint8_t cp;
- uint8_t crn;
- uint8_t crm;
- uint8_t opc0;
- uint8_t opc1;
- uint8_t opc2;
- /* Execution state in which this register is visible: ARM_CP_STATE_* */
- int state;
- /* Register type: ARM_CP_* bits/values */
- int type;
- /* Access rights: PL*_[RW] */
- int access;
- /* Security state: ARM_CP_SECSTATE_* bits/values */
- int secure;
- /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
- * this register was defined: can be used to hand data through to the
- * register read/write functions, since they are passed the ARMCPRegInfo*.
- */
- void *opaque;
- /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
- * fieldoffset is non-zero, the reset value of the register.
- */
- uint64_t resetvalue;
- /* Offset of the field in CPUARMState for this register.
- *
- * This is not needed if either:
- * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
- * 2. both readfn and writefn are specified
- */
- ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
-
- /* Offsets of the secure and non-secure fields in CPUARMState for the
- * register if it is banked. These fields are only used during the static
- * registration of a register. During hashing the bank associated
- * with a given security state is copied to fieldoffset which is used from
- * there on out.
- *
- * It is expected that register definitions use either fieldoffset or
- * bank_fieldoffsets in the definition but not both. It is also expected
- * that both bank offsets are set when defining a banked register. This
- * use indicates that a register is banked.
- */
- ptrdiff_t bank_fieldoffsets[2];
-
- /* Function for making any access checks for this register in addition to
- * those specified by the 'access' permissions bits. If NULL, no extra
- * checks required. The access check is performed at runtime, not at
- * translate time.
- */
- CPAccessFn *accessfn;
- /* Function for handling reads of this register. If NULL, then reads
- * will be done by loading from the offset into CPUARMState specified
- * by fieldoffset.
- */
- CPReadFn *readfn;
- /* Function for handling writes of this register. If NULL, then writes
- * will be done by writing to the offset into CPUARMState specified
- * by fieldoffset.
- */
- CPWriteFn *writefn;
- /* Function for doing a "raw" read; used when we need to copy
- * coprocessor state to the kernel for KVM or out for
- * migration. This only needs to be provided if there is also a
- * readfn and it has side effects (for instance clear-on-read bits).
- */
- CPReadFn *raw_readfn;
- /* Function for doing a "raw" write; used when we need to copy KVM
- * kernel coprocessor state into userspace, or for inbound
- * migration. This only needs to be provided if there is also a
- * writefn and it masks out "unwritable" bits or has write-one-to-clear
- * or similar behaviour.
- */
- CPWriteFn *raw_writefn;
- /* Function for resetting the register. If NULL, then reset will be done
- * by writing resetvalue to the field specified in fieldoffset. If
- * fieldoffset is 0 then no reset will be done.
- */
- CPResetFn *resetfn;
-};
-
-/* Macros which are lvalues for the field in CPUARMState for the
- * ARMCPRegInfo *ri.
- */
-#define CPREG_FIELD32(env, ri) \
- (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
-#define CPREG_FIELD64(env, ri) \
- (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
-
-#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
-
-void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
- const ARMCPRegInfo *regs, void *opaque);
-void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
- const ARMCPRegInfo *regs, void *opaque);
-static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
-{
- define_arm_cp_regs_with_opaque(cpu, regs, 0);
-}
-static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
-{
- define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
-}
-const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
-
-/* CPWriteFn that can be used to implement writes-ignored behaviour */
-void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value);
-/* CPReadFn that can be used for read-as-zero behaviour */
-uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
-
-/* CPResetFn that does nothing, for use if no reset is required even
- * if fieldoffset is non zero.
- */
-void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
-
-/* Return true if this reginfo struct's field in the cpu state struct
- * is 64 bits wide.
- */
-static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
-{
- return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
-}
-
-static inline bool cp_access_ok(int current_el,
- const ARMCPRegInfo *ri, int isread)
-{
- return (ri->access >> ((current_el * 2) + isread)) & 1;
-}
-
-/* Raw read of a coprocessor register (as needed for migration, etc) */
-uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
-
-/**
- * write_list_to_cpustate
- * @cpu: ARMCPU
- *
- * For each register listed in the ARMCPU cpreg_indexes list, write
- * its value from the cpreg_values list into the ARMCPUState structure.
- * This updates TCG's working data structures from KVM data or
- * from incoming migration state.
- *
- * Returns: true if all register values were updated correctly,
- * false if some register was unknown or could not be written.
- * Note that we do not stop early on failure -- we will attempt
- * writing all registers in the list.
- */
-bool write_list_to_cpustate(ARMCPU *cpu);
-
-/**
- * write_cpustate_to_list:
- * @cpu: ARMCPU
- *
- * For each register listed in the ARMCPU cpreg_indexes list, write
- * its value from the ARMCPUState structure into the cpreg_values list.
- * This is used to copy info from TCG's working data structures into
- * KVM or for outbound migration.
- *
- * Returns: true if all register values were read correctly,
- * false if some register was unknown or could not be read.
- * Note that we do not stop early on failure -- we will attempt
- * reading all registers in the list.
- */
-bool write_cpustate_to_list(ARMCPU *cpu);
-
-/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
- Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
- conventional cores (ie. Application or Realtime profile). */
-
-#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
-
-#define ARM_CPUID_TI915T 0x54029152
-#define ARM_CPUID_TI925T 0x54029252
-
-#if defined(CONFIG_USER_ONLY)
-#define TARGET_PAGE_BITS 12
-#else
-/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
- * have to support 1K tiny pages.
- */
-#define TARGET_PAGE_BITS_VARY
-#define TARGET_PAGE_BITS_MIN 10
-#endif
-
-#if defined(TARGET_AARCH64)
-# define TARGET_PHYS_ADDR_SPACE_BITS 48
-# define TARGET_VIRT_ADDR_SPACE_BITS 64
-#else
-# define TARGET_PHYS_ADDR_SPACE_BITS 40
-# define TARGET_VIRT_ADDR_SPACE_BITS 32
-#endif
-
-static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
- unsigned int target_el)
-{
- CPUARMState *env = cs->env_ptr;
- unsigned int cur_el = arm_current_el(env);
- bool secure = arm_is_secure(env);
- bool pstate_unmasked;
- int8_t unmasked = 0;
-
- /* Don't take exceptions if they target a lower EL.
- * This check should catch any exceptions that would not be taken but left
- * pending.
- */
- if (cur_el > target_el) {
- return false;
- }
-
- switch (excp_idx) {
- case EXCP_FIQ:
- pstate_unmasked = !(env->daif & PSTATE_F);
- break;
-
- case EXCP_IRQ:
- pstate_unmasked = !(env->daif & PSTATE_I);
- break;
-
- case EXCP_VFIQ:
- if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
- /* VFIQs are only taken when hypervized and non-secure. */
- return false;
- }
- return !(env->daif & PSTATE_F);
- case EXCP_VIRQ:
- if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
- /* VIRQs are only taken when hypervized and non-secure. */
- return false;
- }
- return !(env->daif & PSTATE_I);
- default:
- g_assert_not_reached();
- }
-
- /* Use the target EL, current execution state and SCR/HCR settings to
- * determine whether the corresponding CPSR bit is used to mask the
- * interrupt.
- */
- if ((target_el > cur_el) && (target_el != 1)) {
- /* Exceptions targeting a higher EL may not be maskable */
- if (arm_feature(env, ARM_FEATURE_AARCH64)) {
- /* 64-bit masking rules are simple: exceptions to EL3
- * can't be masked, and exceptions to EL2 can only be
- * masked from Secure state. The HCR and SCR settings
- * don't affect the masking logic, only the interrupt routing.
- */
- if (target_el == 3 || !secure) {
- unmasked = 1;
- }
- } else {
- /* The old 32-bit-only environment has a more complicated
- * masking setup. HCR and SCR bits not only affect interrupt
- * routing but also change the behaviour of masking.
- */
- bool hcr, scr;
-
- switch (excp_idx) {
- case EXCP_FIQ:
- /* If FIQs are routed to EL3 or EL2 then there are cases where
- * we override the CPSR.F in determining if the exception is
- * masked or not. If neither of these are set then we fall back
- * to the CPSR.F setting otherwise we further assess the state
- * below.
- */
- hcr = (env->cp15.hcr_el2 & HCR_FMO);
- scr = (env->cp15.scr_el3 & SCR_FIQ);
-
- /* When EL3 is 32-bit, the SCR.FW bit controls whether the
- * CPSR.F bit masks FIQ interrupts when taken in non-secure
- * state. If SCR.FW is set then FIQs can be masked by CPSR.F
- * when non-secure but only when FIQs are only routed to EL3.
- */
- scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
- break;
- case EXCP_IRQ:
- /* When EL3 execution state is 32-bit, if HCR.IMO is set then
- * we may override the CPSR.I masking when in non-secure state.
- * The SCR.IRQ setting has already been taken into consideration
- * when setting the target EL, so it does not have a further
- * affect here.
- */
- hcr = (env->cp15.hcr_el2 & HCR_IMO);
- scr = false;
- break;
- default:
- g_assert_not_reached();
- }
-
- if ((scr || hcr) && !secure) {
- unmasked = 1;
- }
- }
- }
-
- /* The PSTATE bits only mask the interrupt if we have not overriden the
- * ability above.
- */
- return unmasked || pstate_unmasked;
-}
-
-#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
-
-#define cpu_signal_handler cpu_arm_signal_handler
-#define cpu_list arm_cpu_list
-
-/* ARM has the following "translation regimes" (as the ARM ARM calls them):
- *
- * If EL3 is 64-bit:
- * + NonSecure EL1 & 0 stage 1
- * + NonSecure EL1 & 0 stage 2
- * + NonSecure EL2
- * + Secure EL1 & EL0
- * + Secure EL3
- * If EL3 is 32-bit:
- * + NonSecure PL1 & 0 stage 1
- * + NonSecure PL1 & 0 stage 2
- * + NonSecure PL2
- * + Secure PL0 & PL1
- * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
- *
- * For QEMU, an mmu_idx is not quite the same as a translation regime because:
- * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
- * may differ in access permissions even if the VA->PA map is the same
- * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
- * translation, which means that we have one mmu_idx that deals with two
- * concatenated translation regimes [this sort of combined s1+2 TLB is
- * architecturally permitted]
- * 3. we don't need to allocate an mmu_idx to translations that we won't be
- * handling via the TLB. The only way to do a stage 1 translation without
- * the immediate stage 2 translation is via the ATS or AT system insns,
- * which can be slow-pathed and always do a page table walk.
- * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
- * translation regimes, because they map reasonably well to each other
- * and they can't both be active at the same time.
- * This gives us the following list of mmu_idx values:
- *
- * NS EL0 (aka NS PL0) stage 1+2
- * NS EL1 (aka NS PL1) stage 1+2
- * NS EL2 (aka NS PL2)
- * S EL3 (aka S PL1)
- * S EL0 (aka S PL0)
- * S EL1 (not used if EL3 is 32 bit)
- * NS EL0+1 stage 2
- *
- * (The last of these is an mmu_idx because we want to be able to use the TLB
- * for the accesses done as part of a stage 1 page table walk, rather than
- * having to walk the stage 2 page table over and over.)
- *
- * Our enumeration includes at the end some entries which are not "true"
- * mmu_idx values in that they don't have corresponding TLBs and are only
- * valid for doing slow path page table walks.
- *
- * The constant names here are patterned after the general style of the names
- * of the AT/ATS operations.
- * The values used are carefully arranged to make mmu_idx => EL lookup easy.
- */
-typedef enum ARMMMUIdx {
- ARMMMUIdx_S12NSE0 = 0,
- ARMMMUIdx_S12NSE1 = 1,
- ARMMMUIdx_S1E2 = 2,
- ARMMMUIdx_S1E3 = 3,
- ARMMMUIdx_S1SE0 = 4,
- ARMMMUIdx_S1SE1 = 5,
- ARMMMUIdx_S2NS = 6,
- /* Indexes below here don't have TLBs and are used only for AT system
- * instructions or for the first stage of an S12 page table walk.
- */
- ARMMMUIdx_S1NSE0 = 7,
- ARMMMUIdx_S1NSE1 = 8,
-} ARMMMUIdx;
-
-#define MMU_USER_IDX 0
-
-/* Return the exception level we're running at if this is our mmu_idx */
-static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
-{
- assert(mmu_idx < ARMMMUIdx_S2NS);
- return mmu_idx & 3;
-}
-
-/* Determine the current mmu_idx to use for normal loads/stores */
-static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && arm_is_secure_below_el3(env)) {
- return ARMMMUIdx_S1SE0 + el;
- }
- return el;
-}
-
-/* Indexes used when registering address spaces with cpu_address_space_init */
-typedef enum ARMASIdx {
- ARMASIdx_NS = 0,
- ARMASIdx_S = 1,
-} ARMASIdx;
-
-/* Return the Exception Level targeted by debug exceptions. */
-static inline int arm_debug_target_el(CPUARMState *env)
-{
- bool secure = arm_is_secure(env);
- bool route_to_el2 = false;
-
- if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
- route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
- env->cp15.mdcr_el2 & (1 << 8);
- }
-
- if (route_to_el2) {
- return 2;
- } else if (arm_feature(env, ARM_FEATURE_EL3) &&
- !arm_el_is_aa64(env, 3) && secure) {
- return 3;
- } else {
- return 1;
- }
-}
-
-static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
-{
- if (arm_is_secure(env)) {
- /* MDCR_EL3.SDD disables debug events from Secure state */
- if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
- || arm_current_el(env) == 3) {
- return false;
- }
- }
-
- if (arm_current_el(env) == arm_debug_target_el(env)) {
- if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
- || (env->daif & PSTATE_D)) {
- return false;
- }
- }
- return true;
-}
-
-static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
-{
- int el = arm_current_el(env);
-
- if (el == 0 && arm_el_is_aa64(env, 1)) {
- return aa64_generate_debug_exceptions(env);
- }
-
- if (arm_is_secure(env)) {
- int spd;
-
- if (el == 0 && (env->cp15.sder & 1)) {
- /* SDER.SUIDEN means debug exceptions from Secure EL0
- * are always enabled. Otherwise they are controlled by
- * SDCR.SPD like those from other Secure ELs.
- */
- return true;
- }
-
- spd = extract32(env->cp15.mdcr_el3, 14, 2);
- switch (spd) {
- case 1:
- /* SPD == 0b01 is reserved, but behaves as 0b00. */
- case 0:
- /* For 0b00 we return true if external secure invasive debug
- * is enabled. On real hardware this is controlled by external
- * signals to the core. QEMU always permits debug, and behaves
- * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
- */
- return true;
- case 2:
- return false;
- case 3:
- return true;
- }
- }
-
- return el != 2;
-}
-
-/* Return true if debugging exceptions are currently enabled.
- * This corresponds to what in ARM ARM pseudocode would be
- * if UsingAArch32() then
- * return AArch32.GenerateDebugExceptions()
- * else
- * return AArch64.GenerateDebugExceptions()
- * We choose to push the if() down into this function for clarity,
- * since the pseudocode has it at all callsites except for the one in
- * CheckSoftwareStep(), where it is elided because both branches would
- * always return the same value.
- *
- * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
- * don't yet implement those exception levels or their associated trap bits.
- */
-static inline bool arm_generate_debug_exceptions(CPUARMState *env)
-{
- if (env->aarch64) {
- return aa64_generate_debug_exceptions(env);
- } else {
- return aa32_generate_debug_exceptions(env);
- }
-}
-
-/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
- * implicitly means this always returns false in pre-v8 CPUs.)
- */
-static inline bool arm_singlestep_active(CPUARMState *env)
-{
- return extract32(env->cp15.mdscr_el1, 0, 1)
- && arm_el_is_aa64(env, arm_debug_target_el(env))
- && arm_generate_debug_exceptions(env);
-}
-
-static inline bool arm_sctlr_b(CPUARMState *env)
-{
- return
- /* We need not implement SCTLR.ITD in user-mode emulation, so
- * let linux-user ignore the fact that it conflicts with SCTLR_B.
- * This lets people run BE32 binaries with "-cpu any".
- */
-#ifndef CONFIG_USER_ONLY
- !arm_feature(env, ARM_FEATURE_V7) &&
-#endif
- (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
-}
-
-/* Return true if the processor is in big-endian mode. */
-static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
-{
- int cur_el;
-
- /* In 32bit endianness is determined by looking at CPSR's E bit */
- if (!is_a64(env)) {
- return
-#ifdef CONFIG_USER_ONLY
- /* In system mode, BE32 is modelled in line with the
- * architecture (as word-invariant big-endianness), where loads
- * and stores are done little endian but from addresses which
- * are adjusted by XORing with the appropriate constant. So the
- * endianness to use for the raw data access is not affected by
- * SCTLR.B.
- * In user mode, however, we model BE32 as byte-invariant
- * big-endianness (because user-only code cannot tell the
- * difference), and so we need to use a data access endianness
- * that depends on SCTLR.B.
- */
- arm_sctlr_b(env) ||
-#endif
- ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
- }
-
- cur_el = arm_current_el(env);
-
- if (cur_el == 0) {
- return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
- }
-
- return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
-}
-
-#include "exec/cpu-all.h"
-
-/* Bit usage in the TB flags field: bit 31 indicates whether we are
- * in 32 or 64 bit mode. The meaning of the other bits depends on that.
- * We put flags which are shared between 32 and 64 bit mode at the top
- * of the word, and flags which apply to only one mode at the bottom.
- */
-#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
-#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
-#define ARM_TBFLAG_MMUIDX_SHIFT 28
-#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
-#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
-#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
-#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
-#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
-/* Target EL if we take a floating-point-disabled exception */
-#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
-#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
-
-/* Bit usage when in AArch32 state: */
-#define ARM_TBFLAG_THUMB_SHIFT 0
-#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
-#define ARM_TBFLAG_VECLEN_SHIFT 1
-#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
-#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
-#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
-#define ARM_TBFLAG_VFPEN_SHIFT 7
-#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
-#define ARM_TBFLAG_CONDEXEC_SHIFT 8
-#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
-#define ARM_TBFLAG_SCTLR_B_SHIFT 16
-#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
-/* We store the bottom two bits of the CPAR as TB flags and handle
- * checks on the other bits at runtime
- */
-#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
-#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
-/* Indicates whether cp register reads and writes by guest code should access
- * the secure or nonsecure bank of banked registers; note that this is not
- * the same thing as the current security state of the processor!
- */
-#define ARM_TBFLAG_NS_SHIFT 19
-#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
-#define ARM_TBFLAG_BE_DATA_SHIFT 20
-#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
-
-/* Bit usage when in AArch64 state */
-#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
-#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
-#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
-#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
-
-/* some convenience accessor macros */
-#define ARM_TBFLAG_AARCH64_STATE(F) \
- (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
-#define ARM_TBFLAG_MMUIDX(F) \
- (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
-#define ARM_TBFLAG_SS_ACTIVE(F) \
- (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
-#define ARM_TBFLAG_PSTATE_SS(F) \
- (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
-#define ARM_TBFLAG_FPEXC_EL(F) \
- (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
-#define ARM_TBFLAG_THUMB(F) \
- (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
-#define ARM_TBFLAG_VECLEN(F) \
- (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
-#define ARM_TBFLAG_VECSTRIDE(F) \
- (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
-#define ARM_TBFLAG_VFPEN(F) \
- (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
-#define ARM_TBFLAG_CONDEXEC(F) \
- (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
-#define ARM_TBFLAG_SCTLR_B(F) \
- (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
-#define ARM_TBFLAG_XSCALE_CPAR(F) \
- (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
-#define ARM_TBFLAG_NS(F) \
- (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
-#define ARM_TBFLAG_BE_DATA(F) \
- (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
-#define ARM_TBFLAG_TBI0(F) \
- (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
-#define ARM_TBFLAG_TBI1(F) \
- (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
-
-static inline bool bswap_code(bool sctlr_b)
-{
-#ifdef CONFIG_USER_ONLY
- /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
- * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
- * would also end up as a mixed-endian mode with BE code, LE data.
- */
- return
-#ifdef TARGET_WORDS_BIGENDIAN
- 1 ^
-#endif
- sctlr_b;
-#else
- /* All code access in ARM is little endian, and there are no loaders
- * doing swaps that need to be reversed
- */
- return 0;
-#endif
-}
-
-/* Return the exception level to which FP-disabled exceptions should
- * be taken, or 0 if FP is enabled.
- */
-static inline int fp_exception_el(CPUARMState *env)
-{
- int fpen;
- int cur_el = arm_current_el(env);
-
- /* CPACR and the CPTR registers don't exist before v6, so FP is
- * always accessible
- */
- if (!arm_feature(env, ARM_FEATURE_V6)) {
- return 0;
- }
-
- /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
- * 0, 2 : trap EL0 and EL1/PL1 accesses
- * 1 : trap only EL0 accesses
- * 3 : trap no accesses
- */
- fpen = extract32(env->cp15.cpacr_el1, 20, 2);
- switch (fpen) {
- case 0:
- case 2:
- if (cur_el == 0 || cur_el == 1) {
- /* Trap to PL1, which might be EL1 or EL3 */
- if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
- return 3;
- }
- return 1;
- }
- if (cur_el == 3 && !is_a64(env)) {
- /* Secure PL1 running at EL3 */
- return 3;
- }
- break;
- case 1:
- if (cur_el == 0) {
- return 1;
- }
- break;
- case 3:
- break;
- }
-
- /* For the CPTR registers we don't need to guard with an ARM_FEATURE
- * check because zero bits in the registers mean "don't trap".
- */
-
- /* CPTR_EL2 : present in v7VE or v8 */
- if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
- && !arm_is_secure_below_el3(env)) {
- /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
- return 2;
- }
-
- /* CPTR_EL3 : present in v8 */
- if (extract32(env->cp15.cptr_el[3], 10, 1)) {
- /* Trap all FP ops to EL3 */
- return 3;
- }
-
- return 0;
-}
-
-#ifdef CONFIG_USER_ONLY
-static inline bool arm_cpu_bswap_data(CPUARMState *env)
-{
- return
-#ifdef TARGET_WORDS_BIGENDIAN
- 1 ^
-#endif
- arm_cpu_data_is_big_endian(env);
-}
-#endif
-
-#ifndef CONFIG_USER_ONLY
-/**
- * arm_regime_tbi0:
- * @env: CPUARMState
- * @mmu_idx: MMU index indicating required translation regime
- *
- * Extracts the TBI0 value from the appropriate TCR for the current EL
- *
- * Returns: the TBI0 value.
- */
-uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
-
-/**
- * arm_regime_tbi1:
- * @env: CPUARMState
- * @mmu_idx: MMU index indicating required translation regime
- *
- * Extracts the TBI1 value from the appropriate TCR for the current EL
- *
- * Returns: the TBI1 value.
- */
-uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
-#else
-/* We can't handle tagged addresses properly in user-only mode */
-static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
-{
- return 0;
-}
-
-static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
-{
- return 0;
-}
-#endif
-
-static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
- target_ulong *cs_base, uint32_t *flags)
-{
- ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
- if (is_a64(env)) {
- *pc = env->pc;
- *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
- /* Get control bits for tagged addresses */
- *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
- *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
- } else {
- *pc = env->regs[15];
- *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
- | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
- | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
- | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
- | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
- if (!(access_secure_reg(env))) {
- *flags |= ARM_TBFLAG_NS_MASK;
- }
- if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
- || arm_el_is_aa64(env, 1)) {
- *flags |= ARM_TBFLAG_VFPEN_MASK;
- }
- *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
- << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
- }
-
- *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
-
- /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
- * states defined in the ARM ARM for software singlestep:
- * SS_ACTIVE PSTATE.SS State
- * 0 x Inactive (the TB flag for SS is always 0)
- * 1 0 Active-pending
- * 1 1 Active-not-pending
- */
- if (arm_singlestep_active(env)) {
- *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
- if (is_a64(env)) {
- if (env->pstate & PSTATE_SS) {
- *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
- }
- } else {
- if (env->uncached_cpsr & PSTATE_SS) {
- *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
- }
- }
- }
- if (arm_cpu_data_is_big_endian(env)) {
- *flags |= ARM_TBFLAG_BE_DATA_MASK;
- }
- *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
-
- *cs_base = 0;
-}
-
-enum {
- QEMU_PSCI_CONDUIT_DISABLED = 0,
- QEMU_PSCI_CONDUIT_SMC = 1,
- QEMU_PSCI_CONDUIT_HVC = 2,
-};
-
-#ifndef CONFIG_USER_ONLY
-/* Return the address space index to use for a memory access */
-static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
-{
- return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
-}
-
-/* Return the AddressSpace to use for a memory access
- * (which depends on whether the access is S or NS, and whether
- * the board gave us a separate AddressSpace for S accesses).
- */
-static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
-{
- return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
-}
-#endif
-
-/**
- * arm_register_el_change_hook:
- * Register a hook function which will be called back whenever this
- * CPU changes exception level or mode. The hook function will be
- * passed a pointer to the ARMCPU and the opaque data pointer passed
- * to this function when the hook was registered.
- *
- * Note that we currently only support registering a single hook function,
- * and will assert if this function is called twice.
- * This facility is intended for the use of the GICv3 emulation.
- */
-void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
- void *opaque);
-
-/**
- * arm_get_el_change_hook_opaque:
- * Return the opaque data that will be used by the el_change_hook
- * for this CPU.
- */
-static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
-{
- return cpu->el_change_hook_opaque;
-}
-
-#endif