/* NOTE: this header is included in op-i386.c where global register variable are used. Care must be used when including glibc headers. */ #ifndef CPU_I386_H #define CPU_I386_H #include "config.h" #include #define R_EAX 0 #define R_ECX 1 #define R_EDX 2 #define R_EBX 3 #define R_ESP 4 #define R_EBP 5 #define R_ESI 6 #define R_EDI 7 #define R_AL 0 #define R_CL 1 #define R_DL 2 #define R_BL 3 #define R_AH 4 #define R_CH 5 #define R_DH 6 #define R_BH 7 #define R_ES 0 #define R_CS 1 #define R_SS 2 #define R_DS 3 #define R_FS 4 #define R_GS 5 #define CC_C 0x0001 #define CC_P 0x0004 #define CC_A 0x0010 #define CC_Z 0x0040 #define CC_S 0x0080 #define CC_O 0x0800 #define TRAP_FLAG 0x0100 #define INTERRUPT_FLAG 0x0200 #define DIRECTION_FLAG 0x0400 #define IOPL_FLAG_MASK 0x3000 #define NESTED_FLAG 0x4000 #define BYTE_FL 0x8000 /* Intel reserved! */ #define RF_FLAG 0x10000 #define VM_FLAG 0x20000 /* AC 0x40000 */ #define EXCP00_DIVZ 1 #define EXCP01_SSTP 2 #define EXCP02_NMI 3 #define EXCP03_INT3 4 #define EXCP04_INTO 5 #define EXCP05_BOUND 6 #define EXCP06_ILLOP 7 #define EXCP07_PREX 8 #define EXCP08_DBLE 9 #define EXCP09_XERR 10 #define EXCP0A_TSS 11 #define EXCP0B_NOSEG 12 #define EXCP0C_STACK 13 #define EXCP0D_GPF 14 #define EXCP0E_PAGE 15 #define EXCP10_COPR 17 #define EXCP11_ALGN 18 #define EXCP12_MCHK 19 #define EXCP_INTERRUPT 256 /* async interruption */ enum { CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */ CC_OP_EFLAGS, /* all cc are explicitely computed, CC_SRC = flags */ CC_OP_MUL, /* modify all flags, C, O = (CC_SRC != 0) */ CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_ADDW, CC_OP_ADDL, CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_ADCW, CC_OP_ADCL, CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_SUBW, CC_OP_SUBL, CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_SBBW, CC_OP_SBBL, CC_OP_LOGICB, /* modify all flags, CC_DST = res */ CC_OP_LOGICW, CC_OP_LOGICL, CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */ CC_OP_INCW, CC_OP_INCL, CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */ CC_OP_DECW, CC_OP_DECL, CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */ CC_OP_SHLW, CC_OP_SHLL, CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */ CC_OP_SARW, CC_OP_SARL, CC_OP_NB, }; #ifdef __i386__ #define USE_X86LDOUBLE #endif #ifdef USE_X86LDOUBLE typedef long double CPU86_LDouble; #else typedef double CPU86_LDouble; #endif typedef struct SegmentCache { uint8_t *base; unsigned long limit; uint8_t seg_32bit; } SegmentCache; typedef struct SegmentDescriptorTable { uint8_t *base; unsigned long limit; /* this is the returned base when reading the register, just to avoid that the emulated program modifies it */ unsigned long emu_base; } SegmentDescriptorTable; typedef struct CPUX86State { /* standard registers */ uint32_t regs[8]; uint32_t eip; uint32_t eflags; /* emulator internal eflags handling */ uint32_t cc_src; uint32_t cc_dst; uint32_t cc_op; int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */ /* FPU state */ unsigned int fpstt; /* top of stack index */ unsigned int fpus; unsigned int fpuc; uint8_t fptags[8]; /* 0 = valid, 1 = empty */ CPU86_LDouble fpregs[8]; /* emulator internal variables */ CPU86_LDouble ft0; /* segments */ uint32_t segs[6]; /* selector values */ SegmentCache seg_cache[6]; /* info taken from LDT/GDT */ SegmentDescriptorTable gdt; SegmentDescriptorTable ldt; SegmentDescriptorTable idt; /* various CPU modes */ int vm86; /* exception/interrupt handling */ jmp_buf jmp_env; int exception_index; int interrupt_request; } CPUX86State; /* all CPU memory access use these macros */ static inline int ldub(void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb(void *ptr) { return *(int8_t *)ptr; } static inline void stb(void *ptr, int v) { *(uint8_t *)ptr = v; } #ifdef WORDS_BIGENDIAN /* conservative code for little endian unaligned accesses */ static inline int lduw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq(void *ptr) { uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl(p); v2 = ldl(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq(void *ptr, uint64_t v) { uint8_t *p = ptr; stl(p, (uint32_t)v); stl(p + 4, v >> 32); } /* float access */ static inline float ldfl(void *ptr) { union { float f; uint32_t i; } u; u.i = ldl(ptr); return u.f; } static inline double ldfq(void *ptr) { union { double d; uint64_t i; } u; u.i = ldq(ptr); return u.d; } static inline void stfl(void *ptr, float v) { union { float f; uint32_t i; } u; u.f = v; stl(ptr, u.i); } static inline void stfq(void *ptr, double v) { union { double d; uint64_t i; } u; u.d = v; stq(ptr, u.i); } #else static inline int lduw(void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw(void *ptr) { return *(int16_t *)ptr; } static inline int ldl(void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq(void *ptr) { return *(uint64_t *)ptr; } static inline void stw(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float ldfl(void *ptr) { return *(float *)ptr; } static inline double ldfq(void *ptr) { return *(double *)ptr; } static inline void stfl(void *ptr, float v) { *(float *)ptr = v; } static inline void stfq(void *ptr, double v) { *(double *)ptr = v; } #endif #ifndef IN_OP_I386 void cpu_x86_outb(int addr, int val); void cpu_x86_outw(int addr, int val); void cpu_x86_outl(int addr, int val); int cpu_x86_inb(int addr); int cpu_x86_inw(int addr); int cpu_x86_inl(int addr); #endif CPUX86State *cpu_x86_init(void); int cpu_x86_exec(CPUX86State *s); void cpu_x86_interrupt(CPUX86State *s); void cpu_x86_close(CPUX86State *s); /* needed to load some predefinied segment registers */ void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector); /* you can call these signal handler from you SIGBUS and SIGSEGV signal handlers to inform the virtual CPU of exceptions. non zero is returned if the signal was handled by the virtual CPU. */ struct siginfo; int cpu_x86_signal_handler(int host_signum, struct siginfo *info, void *puc); /* internal functions */ #define GEN_FLAG_CODE32_SHIFT 0 #define GEN_FLAG_ADDSEG_SHIFT 1 #define GEN_FLAG_SS32_SHIFT 2 #define GEN_FLAG_ST_SHIFT 3 int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size, int *gen_code_size_ptr, uint8_t *pc_start, uint8_t *cs_base, int flags); void cpu_x86_tblocks_init(void); #endif /* CPU_I386_H */