/* * ARM PrimeCell Timer modules. * * Copyright (c) 2005-2006 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ #include "vl.h" #include "arm_pic.h" /* Common timer implementation. */ #define TIMER_CTRL_ONESHOT (1 << 0) #define TIMER_CTRL_32BIT (1 << 1) #define TIMER_CTRL_DIV1 (0 << 2) #define TIMER_CTRL_DIV16 (1 << 2) #define TIMER_CTRL_DIV256 (2 << 2) #define TIMER_CTRL_IE (1 << 5) #define TIMER_CTRL_PERIODIC (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) typedef struct { int64_t next_time; int64_t expires; int64_t loaded; QEMUTimer *timer; uint32_t control; uint32_t count; uint32_t limit; int raw_freq; int freq; int int_level; void *pic; int irq; } arm_timer_state; /* Calculate the new expiry time of the given timer. */ static void arm_timer_reload(arm_timer_state *s) { int64_t delay; s->loaded = s->expires; delay = muldiv64(s->count, ticks_per_sec, s->freq); if (delay == 0) delay = 1; s->expires += delay; } /* Check all active timers, and schedule the next timer interrupt. */ static void arm_timer_update(arm_timer_state *s, int64_t now) { int64_t next; /* Ignore disabled timers. */ if ((s->control & TIMER_CTRL_ENABLE) == 0) return; /* Ignore expired one-shot timers. */ if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT)) return; if (s->expires - now <= 0) { /* Timer has expired. */ s->int_level = 1; if (s->control & TIMER_CTRL_ONESHOT) { /* One-shot. */ s->count = 0; } else { if ((s->control & TIMER_CTRL_PERIODIC) == 0) { /* Free running. */ if (s->control & TIMER_CTRL_32BIT) s->count = 0xffffffff; else s->count = 0xffff; } else { /* Periodic. */ s->count = s->limit; } } } while (s->expires - now <= 0) { arm_timer_reload(s); } /* Update interrupts. */ if (s->int_level && (s->control & TIMER_CTRL_IE)) { pic_set_irq_new(s->pic, s->irq, 1); } else { pic_set_irq_new(s->pic, s->irq, 0); } next = now; if (next - s->expires < 0) next = s->expires; /* Schedule the next timer interrupt. */ if (next == now) { qemu_del_timer(s->timer); s->next_time = 0; } else if (next != s->next_time) { qemu_mod_timer(s->timer, next); s->next_time = next; } } /* Return the current value of the timer. */ static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now) { int64_t left; int64_t period; if (s->count == 0) return 0; if ((s->control & TIMER_CTRL_ENABLE) == 0) return s->count; left = s->expires - now; period = s->expires - s->loaded; /* If the timer should have expired then return 0. This can happen when the host timer signal doesnt occur immediately. It's better to have a timer appear to sit at zero for a while than have it wrap around before the guest interrupt is raised. */ /* ??? Could we trigger the interrupt here? */ if (left < 0) return 0; /* We need to calculate count * elapsed / period without overfowing. Scale both elapsed and period so they fit in a 32-bit int. */ while (period != (int32_t)period) { period >>= 1; left >>= 1; } return ((uint64_t)s->count * (uint64_t)(int32_t)left) / (int32_t)period; } uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) { arm_timer_state *s = (arm_timer_state *)opaque; switch (offset >> 2) { case 0: /* TimerLoad */ case 6: /* TimerBGLoad */ return s->limit; case 1: /* TimerValue */ return arm_timer_getcount(s, qemu_get_clock(vm_clock)); case 2: /* TimerControl */ return s->control; case 4: /* TimerRIS */ return s->int_level; case 5: /* TimerMIS */ if ((s->control & TIMER_CTRL_IE) == 0) return 0; return s->int_level; default: cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset); return 0; } } static void arm_timer_write(void *opaque, target_phys_addr_t offset, uint32_t value) { arm_timer_state *s = (arm_timer_state *)opaque; int64_t now; now = qemu_get_clock(vm_clock); switch (offset >> 2) { case 0: /* TimerLoad */ s->limit = value; s->count = value; s->expires = now; arm_timer_reload(s); break; case 1: /* TimerValue */ /* ??? Linux seems to want to write to this readonly register. Ignore it. */ break; case 2: /* TimerControl */ if (s->control & TIMER_CTRL_ENABLE) { /* Pause the timer if it is running. This may cause some inaccuracy dure to rounding, but avoids a whole lot of other messyness. */ s->count = arm_timer_getcount(s, now); } s->control = value; s->freq = s->raw_freq; /* ??? Need to recalculate expiry time after changing divisor. */ switch ((value >> 2) & 3) { case 1: s->freq >>= 4; break; case 2: s->freq >>= 8; break; } if (s->control & TIMER_CTRL_ENABLE) { /* Restart the timer if still enabled. */ s->expires = now; arm_timer_reload(s); } break; case 3: /* TimerIntClr */ s->int_level = 0; break; case 6: /* TimerBGLoad */ s->limit = value; break; default: cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset); } arm_timer_update(s, now); } static void arm_timer_tick(void *opaque) { int64_t now; now = qemu_get_clock(vm_clock); arm_timer_update((arm_timer_state *)opaque, now); } static void *arm_timer_init(uint32_t freq, void *pic, int irq) { arm_timer_state *s; s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); s->pic = pic; s->irq = irq; s->raw_freq = s->freq = 1000000; s->control = TIMER_CTRL_IE; s->count = 0xffffffff; s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s); /* ??? Save/restore. */ return s; } /* ARM PrimeCell SP804 dual timer module. Docs for this device don't seem to be publicly available. This implementation is based on gueswork, the linux kernel sources and the Integrator/CP timer modules. */ typedef struct { /* Include a pseudo-PIC device to merge the two interrupt sources. */ arm_pic_handler handler; void *timer[2]; int level[2]; uint32_t base; /* The output PIC device. */ void *pic; int irq; } sp804_state; static void sp804_set_irq(void *opaque, int irq, int level) { sp804_state *s = (sp804_state *)opaque; s->level[irq] = level; pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]); } static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) { sp804_state *s = (sp804_state *)opaque; /* ??? Don't know the PrimeCell ID for this device. */ offset -= s->base; if (offset < 0x20) { return arm_timer_read(s->timer[0], offset); } else { return arm_timer_read(s->timer[1], offset - 0x20); } } static void sp804_write(void *opaque, target_phys_addr_t offset, uint32_t value) { sp804_state *s = (sp804_state *)opaque; offset -= s->base; if (offset < 0x20) { arm_timer_write(s->timer[0], offset, value); } else { arm_timer_write(s->timer[1], offset - 0x20, value); } } static CPUReadMemoryFunc *sp804_readfn[] = { sp804_read, sp804_read, sp804_read }; static CPUWriteMemoryFunc *sp804_writefn[] = { sp804_write, sp804_write, sp804_write }; void sp804_init(uint32_t base, void *pic, int irq) { int iomemtype; sp804_state *s; s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); s->handler = sp804_set_irq; s->base = base; s->pic = pic; s->irq = irq; /* ??? The timers are actually configurable between 32kHz and 1MHz, but we don't implement that. */ s->timer[0] = arm_timer_init(1000000, s, 0); s->timer[1] = arm_timer_init(1000000, s, 1); iomemtype = cpu_register_io_memory(0, sp804_readfn, sp804_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); /* ??? Save/restore. */ } /* Integrator/CP timer module. */ typedef struct { void *timer[3]; uint32_t base; } icp_pit_state; static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) { icp_pit_state *s = (icp_pit_state *)opaque; int n; /* ??? Don't know the PrimeCell ID for this device. */ offset -= s->base; n = offset >> 8; if (n > 3) cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); return arm_timer_read(s->timer[n], offset & 0xff); } static void icp_pit_write(void *opaque, target_phys_addr_t offset, uint32_t value) { icp_pit_state *s = (icp_pit_state *)opaque; int n; offset -= s->base; n = offset >> 8; if (n > 3) cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); arm_timer_write(s->timer[n], offset & 0xff, value); } static CPUReadMemoryFunc *icp_pit_readfn[] = { icp_pit_read, icp_pit_read, icp_pit_read }; static CPUWriteMemoryFunc *icp_pit_writefn[] = { icp_pit_write, icp_pit_write, icp_pit_write }; void icp_pit_init(uint32_t base, void *pic, int irq) { int iomemtype; icp_pit_state *s; s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); s->base = base; /* Timer 0 runs at the system clock speed (40MHz). */ s->timer[0] = arm_timer_init(40000000, pic, irq); /* The other two timers run at 1MHz. */ s->timer[1] = arm_timer_init(1000000, pic, irq + 1); s->timer[2] = arm_timer_init(1000000, pic, irq + 2); iomemtype = cpu_register_io_memory(0, icp_pit_readfn, icp_pit_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); /* ??? Save/restore. */ }