/* * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/sysbus.h" #include "hw/char/escc.h" #include "ui/console.h" #include "trace.h" /* * Chipset docs: * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual", * http://www.zilog.com/docs/serial/scc_escc_um.pdf * * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001 * (Slave I/O), also produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, * mouse and keyboard ports don't implement all functions and they are * only asynchronous. There is no DMA. * * Z85C30 is also used on PowerMacs. There are some small differences * between Sparc version (sunzilog) and PowerMac (pmac): * Offset between control and data registers * There is some kind of lockup bug, but we can ignore it * CTS is inverted * DMA on pmac using DBDMA chip * pmac can do IRDA and faster rates, sunzilog can only do 38400 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz */ /* * Modifications: * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented * serial mouse queue. * Implemented serial mouse protocol. * * 2010-May-23 Artyom Tarasenko: Reworked IUS logic */ #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a') #define SERIAL_CTRL 0 #define SERIAL_DATA 1 #define W_CMD 0 #define CMD_PTR_MASK 0x07 #define CMD_CMD_MASK 0x38 #define CMD_HI 0x08 #define CMD_CLR_TXINT 0x28 #define CMD_CLR_IUS 0x38 #define W_INTR 1 #define INTR_INTALL 0x01 #define INTR_TXINT 0x02 #define INTR_RXMODEMSK 0x18 #define INTR_RXINT1ST 0x08 #define INTR_RXINTALL 0x10 #define W_IVEC 2 #define W_RXCTRL 3 #define RXCTRL_RXEN 0x01 #define W_TXCTRL1 4 #define TXCTRL1_PAREN 0x01 #define TXCTRL1_PAREV 0x02 #define TXCTRL1_1STOP 0x04 #define TXCTRL1_1HSTOP 0x08 #define TXCTRL1_2STOP 0x0c #define TXCTRL1_STPMSK 0x0c #define TXCTRL1_CLK1X 0x00 #define TXCTRL1_CLK16X 0x40 #define TXCTRL1_CLK32X 0x80 #define TXCTRL1_CLK64X 0xc0 #define TXCTRL1_CLKMSK 0xc0 #define W_TXCTRL2 5 #define TXCTRL2_TXEN 0x08 #define TXCTRL2_BITMSK 0x60 #define TXCTRL2_5BITS 0x00 #define TXCTRL2_7BITS 0x20 #define TXCTRL2_6BITS 0x40 #define TXCTRL2_8BITS 0x60 #define W_SYNC1 6 #define W_SYNC2 7 #define W_TXBUF 8 #define W_MINTR 9 #define MINTR_STATUSHI 0x10 #define MINTR_RST_MASK 0xc0 #define MINTR_RST_B 0x40 #define MINTR_RST_A 0x80 #define MINTR_RST_ALL 0xc0 #define W_MISC1 10 #define W_CLOCK 11 #define CLOCK_TRXC 0x08 #define W_BRGLO 12 #define W_BRGHI 13 #define W_MISC2 14 #define MISC2_PLLDIS 0x30 #define W_EXTINT 15 #define EXTINT_DCD 0x08 #define EXTINT_SYNCINT 0x10 #define EXTINT_CTSINT 0x20 #define EXTINT_TXUNDRN 0x40 #define EXTINT_BRKINT 0x80 #define R_STATUS 0 #define STATUS_RXAV 0x01 #define STATUS_ZERO 0x02 #define STATUS_TXEMPTY 0x04 #define STATUS_DCD 0x08 #define STATUS_SYNC 0x10 #define STATUS_CTS 0x20 #define STATUS_TXUNDRN 0x40 #define STATUS_BRK 0x80 #define R_SPEC 1 #define SPEC_ALLSENT 0x01 #define SPEC_BITS8 0x06 #define R_IVEC 2 #define IVEC_TXINTB 0x00 #define IVEC_LONOINT 0x06 #define IVEC_LORXINTA 0x0c #define IVEC_LORXINTB 0x04 #define IVEC_LOTXINTA 0x08 #define IVEC_HINOINT 0x60 #define IVEC_HIRXINTA 0x30 #define IVEC_HIRXINTB 0x20 #define IVEC_HITXINTA 0x10 #define R_INTR 3 #define INTR_EXTINTB 0x01 #define INTR_TXINTB 0x02 #define INTR_RXINTB 0x04 #define INTR_EXTINTA 0x08 #define INTR_TXINTA 0x10 #define INTR_RXINTA 0x20 #define R_IPEN 4 #define R_TXCTRL1 5 #define R_TXCTRL2 6 #define R_BC 7 #define R_RXBUF 8 #define R_RXCTRL 9 #define R_MISC 10 #define R_MISC1 11 #define R_BRGLO 12 #define R_BRGHI 13 #define R_MISC1I 14 #define R_EXTINT 15 static void handle_kbd_command(ESCCChannelState *s, int val); static int serial_can_receive(void *opaque); static void serial_receive_byte(ESCCChannelState *s, int ch); static void clear_queue(void *opaque) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; q->rptr = q->wptr = q->count = 0; } static void put_queue(void *opaque, int b) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; trace_escc_put_queue(CHN_C(s), b); if (q->count >= ESCC_SERIO_QUEUE_SIZE) { return; } q->data[q->wptr] = b; if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) { q->wptr = 0; } q->count++; serial_receive_byte(s, 0); } static uint32_t get_queue(void *opaque) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; int val; if (q->count == 0) { return 0; } else { val = q->data[q->rptr]; if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) { q->rptr = 0; } q->count--; } trace_escc_get_queue(CHN_C(s), val); if (q->count > 0) serial_receive_byte(s, 0); return val; } static int escc_update_irq_chn(ESCCChannelState *s) { if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) || // tx ints enabled, pending ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) || ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) && s->rxint == 1) || // rx ints enabled, pending ((s->wregs[W_EXTINT] & EXTINT_BRKINT) && (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p return 1; } return 0; } static void escc_update_irq(ESCCChannelState *s) { int irq; irq = escc_update_irq_chn(s); irq |= escc_update_irq_chn(s->otherchn); trace_escc_update_irq(irq); qemu_set_irq(s->irq, irq); } static void escc_reset_chn(ESCCChannelState *s) { int i; s->reg = 0; for (i = 0; i < ESCC_SERIAL_REGS; i++) { s->rregs[i] = 0; s->wregs[i] = 0; } s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity s->wregs[W_MINTR] = MINTR_RST_ALL; s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT | EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts if (s->disabled) s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_TXUNDRN; else s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN; s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT; s->rx = s->tx = 0; s->rxint = s->txint = 0; s->rxint_under_svc = s->txint_under_svc = 0; s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0; clear_queue(s); } static void escc_reset(DeviceState *d) { ESCCState *s = ESCC(d); escc_reset_chn(&s->chn[0]); escc_reset_chn(&s->chn[1]); } static inline void set_rxint(ESCCChannelState *s) { s->rxint = 1; /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority than chn_a rx/tx/special_condition service*/ s->rxint_under_svc = 1; if (s->chn == escc_chn_a) { s->rregs[R_INTR] |= INTR_RXINTA; if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA; else s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA; } else { s->otherchn->rregs[R_INTR] |= INTR_RXINTB; if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->rregs[R_IVEC] = IVEC_HIRXINTB; else s->rregs[R_IVEC] = IVEC_LORXINTB; } escc_update_irq(s); } static inline void set_txint(ESCCChannelState *s) { s->txint = 1; if (!s->rxint_under_svc) { s->txint_under_svc = 1; if (s->chn == escc_chn_a) { if (s->wregs[W_INTR] & INTR_TXINT) { s->rregs[R_INTR] |= INTR_TXINTA; } if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA; else s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA; } else { s->rregs[R_IVEC] = IVEC_TXINTB; if (s->wregs[W_INTR] & INTR_TXINT) { s->otherchn->rregs[R_INTR] |= INTR_TXINTB; } } escc_update_irq(s); } } static inline void clr_rxint(ESCCChannelState *s) { s->rxint = 0; s->rxint_under_svc = 0; if (s->chn == escc_chn_a) { if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; else s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; s->rregs[R_INTR] &= ~INTR_RXINTA; } else { if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->rregs[R_IVEC] = IVEC_HINOINT; else s->rregs[R_IVEC] = IVEC_LONOINT; s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB; } if (s->txint) set_txint(s); escc_update_irq(s); } static inline void clr_txint(ESCCChannelState *s) { s->txint = 0; s->txint_under_svc = 0; if (s->chn == escc_chn_a) { if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; else s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; s->rregs[R_INTR] &= ~INTR_TXINTA; } else { s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; if (s->wregs[W_MINTR] & MINTR_STATUSHI) s->rregs[R_IVEC] = IVEC_HINOINT; else s->rregs[R_IVEC] = IVEC_LONOINT; s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; } if (s->rxint) set_rxint(s); escc_update_irq(s); } static void escc_update_parameters(ESCCChannelState *s) { int speed, parity, data_bits, stop_bits; QEMUSerialSetParams ssp; if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) return; if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) { if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) parity = 'E'; else parity = 'O'; } else { parity = 'N'; } if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) stop_bits = 2; else stop_bits = 1; switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) { case TXCTRL2_5BITS: data_bits = 5; break; case TXCTRL2_7BITS: data_bits = 7; break; case TXCTRL2_6BITS: data_bits = 6; break; default: case TXCTRL2_8BITS: data_bits = 8; break; } speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2); switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) { case TXCTRL1_CLK1X: break; case TXCTRL1_CLK16X: speed /= 16; break; case TXCTRL1_CLK32X: speed /= 32; break; default: case TXCTRL1_CLK64X: speed /= 64; break; } ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits); qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); } static void escc_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { ESCCState *serial = opaque; ESCCChannelState *s; uint32_t saddr; int newreg, channel; val &= 0xff; saddr = (addr >> serial->it_shift) & 1; channel = (addr >> (serial->it_shift + 1)) & 1; s = &serial->chn[channel]; switch (saddr) { case SERIAL_CTRL: trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff); newreg = 0; switch (s->reg) { case W_CMD: newreg = val & CMD_PTR_MASK; val &= CMD_CMD_MASK; switch (val) { case CMD_HI: newreg |= CMD_HI; break; case CMD_CLR_TXINT: clr_txint(s); break; case CMD_CLR_IUS: if (s->rxint_under_svc) { s->rxint_under_svc = 0; if (s->txint) { set_txint(s); } } else if (s->txint_under_svc) { s->txint_under_svc = 0; } escc_update_irq(s); break; default: break; } break; case W_INTR ... W_RXCTRL: case W_SYNC1 ... W_TXBUF: case W_MISC1 ... W_CLOCK: case W_MISC2 ... W_EXTINT: s->wregs[s->reg] = val; break; case W_TXCTRL1: case W_TXCTRL2: s->wregs[s->reg] = val; escc_update_parameters(s); break; case W_BRGLO: case W_BRGHI: s->wregs[s->reg] = val; s->rregs[s->reg] = val; escc_update_parameters(s); break; case W_MINTR: switch (val & MINTR_RST_MASK) { case 0: default: break; case MINTR_RST_B: escc_reset_chn(&serial->chn[0]); return; case MINTR_RST_A: escc_reset_chn(&serial->chn[1]); return; case MINTR_RST_ALL: escc_reset(DEVICE(serial)); return; } break; default: break; } if (s->reg == 0) s->reg = newreg; else s->reg = 0; break; case SERIAL_DATA: trace_escc_mem_writeb_data(CHN_C(s), val); s->tx = val; if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled if (qemu_chr_fe_backend_connected(&s->chr)) { /* XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&s->chr, &s->tx, 1); } else if (s->type == escc_kbd && !s->disabled) { handle_kbd_command(s, val); } } s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent set_txint(s); break; default: break; } } static uint64_t escc_mem_read(void *opaque, hwaddr addr, unsigned size) { ESCCState *serial = opaque; ESCCChannelState *s; uint32_t saddr; uint32_t ret; int channel; saddr = (addr >> serial->it_shift) & 1; channel = (addr >> (serial->it_shift + 1)) & 1; s = &serial->chn[channel]; switch (saddr) { case SERIAL_CTRL: trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]); ret = s->rregs[s->reg]; s->reg = 0; return ret; case SERIAL_DATA: s->rregs[R_STATUS] &= ~STATUS_RXAV; clr_rxint(s); if (s->type == escc_kbd || s->type == escc_mouse) { ret = get_queue(s); } else { ret = s->rx; } trace_escc_mem_readb_data(CHN_C(s), ret); qemu_chr_fe_accept_input(&s->chr); return ret; default: break; } return 0; } static const MemoryRegionOps escc_mem_ops = { .read = escc_mem_read, .write = escc_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 1, }, }; static int serial_can_receive(void *opaque) { ESCCChannelState *s = opaque; int ret; if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) // char already available ret = 0; else ret = 1; return ret; } static void serial_receive_byte(ESCCChannelState *s, int ch) { trace_escc_serial_receive_byte(CHN_C(s), ch); s->rregs[R_STATUS] |= STATUS_RXAV; s->rx = ch; set_rxint(s); } static void serial_receive_break(ESCCChannelState *s) { s->rregs[R_STATUS] |= STATUS_BRK; escc_update_irq(s); } static void serial_receive1(void *opaque, const uint8_t *buf, int size) { ESCCChannelState *s = opaque; serial_receive_byte(s, buf[0]); } static void serial_event(void *opaque, int event) { ESCCChannelState *s = opaque; if (event == CHR_EVENT_BREAK) serial_receive_break(s); } static const VMStateDescription vmstate_escc_chn = { .name ="escc_chn", .version_id = 2, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(vmstate_dummy, ESCCChannelState), VMSTATE_UINT32(reg, ESCCChannelState), VMSTATE_UINT32(rxint, ESCCChannelState), VMSTATE_UINT32(txint, ESCCChannelState), VMSTATE_UINT32(rxint_under_svc, ESCCChannelState), VMSTATE_UINT32(txint_under_svc, ESCCChannelState), VMSTATE_UINT8(rx, ESCCChannelState), VMSTATE_UINT8(tx, ESCCChannelState), VMSTATE_BUFFER(wregs, ESCCChannelState), VMSTATE_BUFFER(rregs, ESCCChannelState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_escc = { .name ="escc", .version_id = 2, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn, ESCCChannelState), VMSTATE_END_OF_LIST() } }; static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src, InputEvent *evt) { ESCCChannelState *s = (ESCCChannelState *)dev; int qcode, keycode; InputKeyEvent *key; assert(evt->type == INPUT_EVENT_KIND_KEY); key = evt->u.key.data; qcode = qemu_input_key_value_to_qcode(key->key); trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode), key->down); if (qcode == Q_KEY_CODE_CAPS_LOCK) { if (key->down) { s->caps_lock_mode ^= 1; if (s->caps_lock_mode == 2) { return; /* Drop second press */ } } else { s->caps_lock_mode ^= 2; if (s->caps_lock_mode == 3) { return; /* Drop first release */ } } } if (qcode == Q_KEY_CODE_NUM_LOCK) { if (key->down) { s->num_lock_mode ^= 1; if (s->num_lock_mode == 2) { return; /* Drop second press */ } } else { s->num_lock_mode ^= 2; if (s->num_lock_mode == 3) { return; /* Drop first release */ } } } if (qcode > qemu_input_map_qcode_to_sun_len) { return; } keycode = qemu_input_map_qcode_to_sun[qcode]; if (!key->down) { keycode |= 0x80; } trace_escc_sunkbd_event_out(keycode); put_queue(s, keycode); } static QemuInputHandler sunkbd_handler = { .name = "sun keyboard", .mask = INPUT_EVENT_MASK_KEY, .event = sunkbd_handle_event, }; static void handle_kbd_command(ESCCChannelState *s, int val) { trace_escc_kbd_command(val); if (s->led_mode) { // Ignore led byte s->led_mode = 0; return; } switch (val) { case 1: // Reset, return type code clear_queue(s); put_queue(s, 0xff); put_queue(s, 4); // Type 4 put_queue(s, 0x7f); break; case 0xe: // Set leds s->led_mode = 1; break; case 7: // Query layout case 0xf: clear_queue(s); put_queue(s, 0xfe); put_queue(s, 0x21); /* en-us layout */ break; default: break; } } static void sunmouse_event(void *opaque, int dx, int dy, int dz, int buttons_state) { ESCCChannelState *s = opaque; int ch; trace_escc_sunmouse_event(dx, dy, buttons_state); ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */ if (buttons_state & MOUSE_EVENT_LBUTTON) ch ^= 0x4; if (buttons_state & MOUSE_EVENT_MBUTTON) ch ^= 0x2; if (buttons_state & MOUSE_EVENT_RBUTTON) ch ^= 0x1; put_queue(s, ch); ch = dx; if (ch > 127) ch = 127; else if (ch < -127) ch = -127; put_queue(s, ch & 0xff); ch = -dy; if (ch > 127) ch = 127; else if (ch < -127) ch = -127; put_queue(s, ch & 0xff); // MSC protocol specify two extra motion bytes put_queue(s, 0); put_queue(s, 0); } static void escc_init1(Object *obj) { ESCCState *s = ESCC(obj); SysBusDevice *dev = SYS_BUS_DEVICE(obj); unsigned int i; for (i = 0; i < 2; i++) { sysbus_init_irq(dev, &s->chn[i].irq); s->chn[i].chn = 1 - i; } s->chn[0].otherchn = &s->chn[1]; s->chn[1].otherchn = &s->chn[0]; sysbus_init_mmio(dev, &s->mmio); } static void escc_realize(DeviceState *dev, Error **errp) { ESCCState *s = ESCC(dev); unsigned int i; s->chn[0].disabled = s->disabled; s->chn[1].disabled = s->disabled; memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc", ESCC_SIZE << s->it_shift); for (i = 0; i < 2; i++) { if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) { s->chn[i].clock = s->frequency / 2; qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive, serial_receive1, serial_event, NULL, &s->chn[i], NULL, true); } } if (s->chn[0].type == escc_mouse) { qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0, "QEMU Sun Mouse"); } if (s->chn[1].type == escc_kbd) { s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]), &sunkbd_handler); } } static Property escc_properties[] = { DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0), DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0), DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0), DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0), DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0), DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr), DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr), DEFINE_PROP_END_OF_LIST(), }; static void escc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = escc_reset; dc->realize = escc_realize; dc->vmsd = &vmstate_escc; dc->props = escc_properties; set_bit(DEVICE_CATEGORY_INPUT, dc->categories); } static const TypeInfo escc_info = { .name = TYPE_ESCC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ESCCState), .instance_init = escc_init1, .class_init = escc_class_init, }; static void escc_register_types(void) { type_register_static(&escc_info); } type_init(escc_register_types)