/* * QEMU DMA emulation * * Copyright (c) 2003 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #define log(...) fprintf (stderr, "dma: " __VA_ARGS__) #ifdef DEBUG_DMA #define lwarn(...) fprintf (stderr, "dma: " __VA_ARGS__) #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__) #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__) #else #define lwarn(...) #define linfo(...) #define ldebug(...) #endif #define LENOFA(a) ((int) (sizeof(a)/sizeof(a[0]))) struct dma_regs { int now[2]; uint16_t base[2]; uint8_t mode; uint8_t page; uint8_t dack; uint8_t eop; DMA_transfer_handler transfer_handler; void *opaque; }; #define ADDR 0 #define COUNT 1 static struct dma_cont { uint8_t status; uint8_t command; uint8_t mask; uint8_t flip_flop; int dshift; struct dma_regs regs[4]; } dma_controllers[2]; enum { CMD_MEMORY_TO_MEMORY = 0x01, CMD_FIXED_ADDRESS = 0x02, CMD_BLOCK_CONTROLLER = 0x04, CMD_COMPRESSED_TIME = 0x08, CMD_CYCLIC_PRIORITY = 0x10, CMD_EXTENDED_WRITE = 0x20, CMD_LOW_DREQ = 0x40, CMD_LOW_DACK = 0x80, CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE | CMD_LOW_DREQ | CMD_LOW_DACK }; static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0}; static void write_page (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { log ("invalid channel %#x %#x\n", nport, data); return; } d->regs[ichan].page = data; } static uint32_t read_page (void *opaque, uint32_t nport) { struct dma_cont *d = opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { log ("invalid channel read %#x\n", nport); return 0; } return d->regs[ichan].page; } static inline void init_chan (struct dma_cont *d, int ichan) { struct dma_regs *r; r = d->regs + ichan; r->now[ADDR] = r->base[0] << d->dshift; r->now[COUNT] = 0; } static inline int getff (struct dma_cont *d) { int ff; ff = d->flip_flop; d->flip_flop = !ff; return ff; } static uint32_t read_chan (void *opaque, uint32_t nport) { struct dma_cont *d = opaque; int ichan, nreg, iport, ff, val; struct dma_regs *r; iport = (nport >> d->dshift) & 0x0f; ichan = iport >> 1; nreg = iport & 1; r = d->regs + ichan; ff = getff (d); if (nreg) val = (r->base[COUNT] << d->dshift) - r->now[COUNT]; else val = r->now[ADDR] + r->now[COUNT]; return (val >> (d->dshift + (ff << 3))) & 0xff; } static void write_chan (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = opaque; int iport, ichan, nreg; struct dma_regs *r; iport = (nport >> d->dshift) & 0x0f; ichan = iport >> 1; nreg = iport & 1; r = d->regs + ichan; if (getff (d)) { r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00); init_chan (d, ichan); } else { r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff); } } static void write_cont (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = opaque; int iport, ichan; iport = (nport >> d->dshift) & 0x0f; switch (iport) { case 8: /* command */ if ((data != 0) && (data & CMD_NOT_SUPPORTED)) { log ("command %#x not supported\n", data); return; } d->command = data; break; case 9: ichan = data & 3; if (data & 4) { d->status |= 1 << (ichan + 4); } else { d->status &= ~(1 << (ichan + 4)); } d->status &= ~(1 << ichan); break; case 0xa: /* single mask */ if (data & 4) d->mask |= 1 << (data & 3); else d->mask &= ~(1 << (data & 3)); break; case 0xb: /* mode */ { ichan = data & 3; #ifdef DEBUG_DMA int op; int ai; int dir; int opmode; op = (data >> 2) & 3; ai = (data >> 4) & 1; dir = (data >> 5) & 1; opmode = (data >> 6) & 3; linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n", ichan, op, ai, dir, opmode); #endif d->regs[ichan].mode = data; break; } case 0xc: /* clear flip flop */ d->flip_flop = 0; break; case 0xd: /* reset */ d->flip_flop = 0; d->mask = ~0; d->status = 0; d->command = 0; break; case 0xe: /* clear mask for all channels */ d->mask = 0; break; case 0xf: /* write mask for all channels */ d->mask = data; break; default: log ("dma: unknown iport %#x\n", iport); break; } #ifdef DEBUG_DMA if (0xc != iport) { linfo ("nport %#06x, ichan % 2d, val %#06x\n", nport, ichan, data); } #endif } static uint32_t read_cont (void *opaque, uint32_t nport) { struct dma_cont *d = opaque; int iport, val; iport = (nport >> d->dshift) & 0x0f; switch (iport) { case 0x08: /* status */ val = d->status; d->status &= 0xf0; break; case 0x0f: /* mask */ val = d->mask; break; default: val = 0; break; } return val; } int DMA_get_channel_mode (int nchan) { return dma_controllers[nchan > 3].regs[nchan & 3].mode; } void DMA_hold_DREQ (int nchan) { int ncont, ichan; ncont = nchan > 3; ichan = nchan & 3; linfo ("held cont=%d chan=%d\n", ncont, ichan); dma_controllers[ncont].status |= 1 << (ichan + 4); } void DMA_release_DREQ (int nchan) { int ncont, ichan; ncont = nchan > 3; ichan = nchan & 3; linfo ("released cont=%d chan=%d\n", ncont, ichan); dma_controllers[ncont].status &= ~(1 << (ichan + 4)); } static void channel_run (int ncont, int ichan) { struct dma_regs *r; int n; target_ulong addr; /* int ai, dir; */ r = dma_controllers[ncont].regs + ichan; /* ai = r->mode & 16; */ /* dir = r->mode & 32 ? -1 : 1; */ addr = (r->page << 16) | r->now[ADDR]; n = r->transfer_handler (r->opaque, addr, (r->base[COUNT] << ncont) + (1 << ncont)); r->now[COUNT] = n; ldebug ("dma_pos %d size %d\n", n, (r->base[1] << ncont) + (1 << ncont)); } void DMA_run (void) { struct dma_cont *d; int icont, ichan; d = dma_controllers; for (icont = 0; icont < 2; icont++, d++) { for (ichan = 0; ichan < 4; ichan++) { int mask; mask = 1 << ichan; if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) channel_run (icont, ichan); } } } void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { struct dma_regs *r; int ichan, ncont; ncont = nchan > 3; ichan = nchan & 3; r = dma_controllers[ncont].regs + ichan; r->transfer_handler = transfer_handler; r->opaque = opaque; } /* request the emulator to transfer a new DMA memory block ASAP */ void DMA_schedule(int nchan) { cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); } /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */ static void dma_init2(struct dma_cont *d, int base, int dshift, int page_base) { const static int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 }; int i; d->dshift = dshift; for (i = 0; i < 8; i++) { register_ioport_write (base + (i << dshift), 1, 1, write_chan, d); register_ioport_read (base + (i << dshift), 1, 1, read_chan, d); } for (i = 0; i < LENOFA (page_port_list); i++) { register_ioport_write (page_base + page_port_list[i], 1, 1, write_page, d); register_ioport_read (page_base + page_port_list[i], 1, 1, read_page, d); } for (i = 0; i < 8; i++) { register_ioport_write (base + ((i + 8) << dshift), 1, 1, write_cont, d); register_ioport_read (base + ((i + 8) << dshift), 1, 1, read_cont, d); } write_cont (d, base + (0x0d << dshift), 0); } void DMA_init (void) { dma_init2(&dma_controllers[0], 0x00, 0, 0x80); dma_init2(&dma_controllers[1], 0xc0, 1, 0x88); }