/* * QEMU Sparc Sun4m ECC memory controller emulation * * Copyright (c) 2007 Robert Reif * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "sun4m.h" #include "sysemu.h" //#define DEBUG_ECC #ifdef DEBUG_ECC #define DPRINTF(fmt, args...) \ do { printf("ECC: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif /* There are 3 versions of this chip used in SMP sun4m systems: * MCC (version 0, implementation 0) SS-600MP * EMC (version 0, implementation 1) SS-10 * SMC (version 0, implementation 2) SS-10SX and SS-20 */ /* Register offsets */ #define ECC_FCR_REG 0 #define ECC_FSR_REG 8 #define ECC_FAR0_REG 16 #define ECC_FAR1_REG 20 #define ECC_DIAG_REG 24 /* ECC fault control register */ #define ECC_FCR_EE 0x00000001 /* Enable ECC checking */ #define ECC_FCR_EI 0x00000010 /* Enable Interrupts on correctable errors */ #define ECC_FCR_VER 0x0f000000 /* Version */ #define ECC_FCR_IMPL 0xf0000000 /* Implementation */ /* ECC fault status register */ #define ECC_FSR_CE 0x00000001 /* Correctable error */ #define ECC_FSR_BS 0x00000002 /* C2 graphics bad slot access */ #define ECC_FSR_TO 0x00000004 /* Timeout on write */ #define ECC_FSR_UE 0x00000008 /* Uncorrectable error */ #define ECC_FSR_DW 0x000000f0 /* Index of double word in block */ #define ECC_FSR_SYND 0x0000ff00 /* Syndrome for correctable error */ #define ECC_FSR_ME 0x00010000 /* Multiple errors */ #define ECC_FSR_C2ERR 0x00020000 /* C2 graphics error */ /* ECC fault address register 0 */ #define ECC_FAR0_PADDR 0x0000000f /* PA[32-35] */ #define ECC_FAR0_TYPE 0x000000f0 /* Transaction type */ #define ECC_FAR0_SIZE 0x00000700 /* Transaction size */ #define ECC_FAR0_CACHE 0x00000800 /* Mapped cacheable */ #define ECC_FAR0_LOCK 0x00001000 /* Error occurred in attomic cycle */ #define ECC_FAR0_BMODE 0x00002000 /* Boot mode */ #define ECC_FAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */ #define ECC_FAR0_S 0x08000000 /* Supervisor mode */ #define ECC_FARO_MID 0xf0000000 /* Module ID */ /* ECC diagnostic register */ #define ECC_DIAG_CBX 0x00000001 #define ECC_DIAG_CB0 0x00000002 #define ECC_DIAG_CB1 0x00000004 #define ECC_DIAG_CB2 0x00000008 #define ECC_DIAG_CB4 0x00000010 #define ECC_DIAG_CB8 0x00000020 #define ECC_DIAG_CB16 0x00000040 #define ECC_DIAG_CB32 0x00000080 #define ECC_DIAG_DMODE 0x00000c00 #define ECC_NREGS 8 #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t)) #define ECC_ADDR_MASK (ECC_SIZE - 1) typedef struct ECCState { uint32_t regs[ECC_NREGS]; } ECCState; static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { ECCState *s = opaque; switch (addr & ECC_ADDR_MASK) { case ECC_FCR_REG: s->regs[0] = (s->regs[0] & (ECC_FCR_VER | ECC_FCR_IMPL)) | (val & ~(ECC_FCR_VER | ECC_FCR_IMPL)); DPRINTF("Write fault control %08x\n", val); break; case 4: s->regs[1] = val; DPRINTF("Write reg[1] %08x\n", val); break; case ECC_FSR_REG: s->regs[2] = val; DPRINTF("Write fault status %08x\n", val); break; case 12: s->regs[3] = val; DPRINTF("Write reg[3] %08x\n", val); break; case ECC_FAR0_REG: s->regs[4] = val; DPRINTF("Write fault address 0 %08x\n", val); break; case ECC_FAR1_REG: s->regs[5] = val; DPRINTF("Write fault address 1 %08x\n", val); break; case ECC_DIAG_REG: s->regs[6] = val; DPRINTF("Write diag %08x\n", val); break; case 28: s->regs[7] = val; DPRINTF("Write reg[7] %08x\n", val); break; } } static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr) { ECCState *s = opaque; uint32_t ret = 0; switch (addr & ECC_ADDR_MASK) { case ECC_FCR_REG: ret = s->regs[0]; DPRINTF("Read enable %08x\n", ret); break; case 4: ret = s->regs[1]; DPRINTF("Read register[1] %08x\n", ret); break; case ECC_FSR_REG: ret = s->regs[2]; DPRINTF("Read fault status %08x\n", ret); break; case 12: ret = s->regs[3]; DPRINTF("Read reg[3] %08x\n", ret); break; case ECC_FAR0_REG: ret = s->regs[4]; DPRINTF("Read fault address 0 %08x\n", ret); break; case ECC_FAR1_REG: ret = s->regs[5]; DPRINTF("Read fault address 1 %08x\n", ret); break; case ECC_DIAG_REG: ret = s->regs[6]; DPRINTF("Read diag %08x\n", ret); break; case 28: ret = s->regs[7]; DPRINTF("Read reg[7] %08x\n", ret); break; } return ret; } static CPUReadMemoryFunc *ecc_mem_read[3] = { NULL, NULL, ecc_mem_readl, }; static CPUWriteMemoryFunc *ecc_mem_write[3] = { NULL, NULL, ecc_mem_writel, }; static int ecc_load(QEMUFile *f, void *opaque, int version_id) { ECCState *s = opaque; int i; if (version_id != 1) return -EINVAL; for (i = 0; i < ECC_NREGS; i++) qemu_get_be32s(f, &s->regs[i]); return 0; } static void ecc_save(QEMUFile *f, void *opaque) { ECCState *s = opaque; int i; for (i = 0; i < ECC_NREGS; i++) qemu_put_be32s(f, &s->regs[i]); } static void ecc_reset(void *opaque) { ECCState *s = opaque; int i; s->regs[ECC_FCR_REG] &= (ECC_FCR_VER | ECC_FCR_IMPL); for (i = 1; i < ECC_NREGS; i++) s->regs[i] = 0; } void * ecc_init(target_phys_addr_t base, uint32_t version) { int ecc_io_memory; ECCState *s; s = qemu_mallocz(sizeof(ECCState)); if (!s) return NULL; s->regs[0] = version; ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s); cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory); register_savevm("ECC", base, 1, ecc_save, ecc_load, s); qemu_register_reset(ecc_reset, s); ecc_reset(s); return s; }