/* * QEMU ESP emulation * * Copyright (c) 2005-2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* debug ESP card */ //#define DEBUG_ESP #ifdef DEBUG_ESP #define DPRINTF(fmt, args...) \ do { printf("ESP: " fmt , ##args); } while (0) #define pic_set_irq(irq, level) \ do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0) #else #define DPRINTF(fmt, args...) #endif #define ESPDMA_REGS 4 #define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1) #define ESP_MAXREG 0x3f #define TI_BUFSZ 32 #define DMA_VER 0xa0000000 #define DMA_INTR 1 #define DMA_INTREN 0x10 #define DMA_WRITE_MEM 0x100 #define DMA_LOADED 0x04000000 typedef struct ESPState ESPState; struct ESPState { BlockDriverState **bd; uint8_t rregs[ESP_MAXREG]; uint8_t wregs[ESP_MAXREG]; int irq; uint32_t espdmaregs[ESPDMA_REGS]; uint32_t ti_size; uint32_t ti_rptr, ti_wptr; uint8_t ti_buf[TI_BUFSZ]; int sense; int dma; SCSIDevice *scsi_dev[MAX_DISKS]; SCSIDevice *current_dev; uint8_t cmdbuf[TI_BUFSZ]; int cmdlen; int do_cmd; }; #define STAT_DO 0x00 #define STAT_DI 0x01 #define STAT_CD 0x02 #define STAT_ST 0x03 #define STAT_MI 0x06 #define STAT_MO 0x07 #define STAT_TC 0x10 #define STAT_IN 0x80 #define INTR_FC 0x08 #define INTR_BS 0x10 #define INTR_DC 0x20 #define INTR_RST 0x80 #define SEQ_0 0x0 #define SEQ_CD 0x4 static int get_cmd(ESPState *s, uint8_t *buf) { uint32_t dmaptr, dmalen; int target; dmalen = s->wregs[0] | (s->wregs[1] << 8); target = s->wregs[4] & 7; DPRINTF("get_cmd: len %d target %d\n", dmalen, target); if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', dmaptr); cpu_physical_memory_read(dmaptr, buf, dmalen); } else { buf[0] = 0; memcpy(&buf[1], s->ti_buf, dmalen); dmalen++; } s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (target >= 4 || !s->scsi_dev[target]) { // No such drive s->rregs[4] = STAT_IN; s->rregs[5] = INTR_DC; s->rregs[6] = SEQ_0; s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); return 0; } s->current_dev = s->scsi_dev[target]; return dmalen; } static void do_cmd(ESPState *s, uint8_t *buf) { int32_t datalen; int lun; DPRINTF("do_cmd: busid 0x%x\n", buf[0]); lun = buf[0] & 7; datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun); if (datalen == 0) { s->ti_size = 0; } else { s->rregs[4] = STAT_IN | STAT_TC; if (datalen > 0) { s->rregs[4] |= STAT_DI; s->ti_size = datalen; } else { s->rregs[4] |= STAT_DO; s->ti_size = -datalen; } } s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } static void handle_satn(ESPState *s) { uint8_t buf[32]; int len; len = get_cmd(s, buf); if (len) do_cmd(s, buf); } static void handle_satn_stop(ESPState *s) { s->cmdlen = get_cmd(s, s->cmdbuf); if (s->cmdlen) { DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen); s->do_cmd = 1; s->espdmaregs[1] += s->cmdlen; s->rregs[4] = STAT_IN | STAT_TC | STAT_CD; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } } static void write_response(ESPState *s) { uint32_t dmaptr; DPRINTF("Transfer status (sense=%d)\n", s->sense); s->ti_buf[0] = s->sense; s->ti_buf[1] = 0; if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r'); cpu_physical_memory_write(dmaptr, s->ti_buf, 2); s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; } else { s->ti_size = 2; s->ti_rptr = 0; s->ti_wptr = 0; s->rregs[7] = 2; } s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } static void esp_command_complete(void *opaque, uint32_t tag, int sense) { ESPState *s = (ESPState *)opaque; DPRINTF("SCSI Command complete\n"); if (s->ti_size != 0) DPRINTF("SCSI command completed unexpectedly\n"); s->ti_size = 0; if (sense) DPRINTF("Command failed\n"); s->sense = sense; s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; } static void handle_ti(ESPState *s) { uint32_t dmaptr, dmalen, minlen, len, from, to; unsigned int i; int to_device; uint8_t buf[TARGET_PAGE_SIZE]; dmalen = s->wregs[0] | (s->wregs[1] << 8); if (dmalen==0) { dmalen=0x10000; } if (s->do_cmd) minlen = (dmalen < 32) ? dmalen : 32; else minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; DPRINTF("Transfer Information len %d\n", minlen); if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); /* Check if the transfer writes to to reads from the device. */ to_device = (s->espdmaregs[0] & DMA_WRITE_MEM) == 0; DPRINTF("DMA Direction: %c, addr 0x%8.8x %08x\n", to_device ? 'r': 'w', dmaptr, s->ti_size); from = s->espdmaregs[1]; to = from + minlen; for (i = 0; i < minlen; i += len, from += len) { dmaptr = iommu_translate(s->espdmaregs[1] + i); if ((from & TARGET_PAGE_MASK) != (to & TARGET_PAGE_MASK)) { len = TARGET_PAGE_SIZE - (from & ~TARGET_PAGE_MASK); } else { len = to - from; } DPRINTF("DMA address p %08x v %08x len %08x, from %08x, to %08x\n", dmaptr, s->espdmaregs[1] + i, len, from, to); s->ti_size -= len; if (s->do_cmd) { DPRINTF("command len %d + %d\n", s->cmdlen, len); cpu_physical_memory_read(dmaptr, &s->cmdbuf[s->cmdlen], len); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } else { if (to_device) { cpu_physical_memory_read(dmaptr, buf, len); scsi_write_data(s->current_dev, buf, len); } else { scsi_read_data(s->current_dev, buf, len); cpu_physical_memory_write(dmaptr, buf, len); } } } if (s->ti_size) { s->rregs[4] = STAT_IN | STAT_TC | (to_device ? STAT_DO : STAT_DI); } s->rregs[5] = INTR_BS; s->rregs[6] = 0; s->rregs[7] = 0; s->espdmaregs[0] |= DMA_INTR; } else if (s->do_cmd) { DPRINTF("command len %d\n", s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } pic_set_irq(s->irq, 1); } static void esp_reset(void *opaque) { ESPState *s = opaque; memset(s->rregs, 0, ESP_MAXREG); memset(s->wregs, 0, ESP_MAXREG); s->rregs[0x0e] = 0x4; // Indicate fas100a memset(s->espdmaregs, 0, ESPDMA_REGS * 4); s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->dma = 0; s->do_cmd = 0; } static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); switch (saddr) { case 2: // FIFO if (s->ti_size > 0) { s->ti_size--; if ((s->rregs[4] & 6) == 0) { /* Data in/out. */ scsi_read_data(s->current_dev, &s->rregs[2], 0); } else { s->rregs[2] = s->ti_buf[s->ti_rptr++]; } pic_set_irq(s->irq, 1); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case 5: // interrupt // Clear status bits except TC s->rregs[4] &= STAT_TC; pic_set_irq(s->irq, 0); s->espdmaregs[0] &= ~DMA_INTR; break; default: break; } return s->rregs[saddr]; } static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); switch (saddr) { case 0: case 1: s->rregs[saddr] = val; break; case 2: // FIFO if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else if ((s->rregs[4] & 6) == 0) { uint8_t buf; buf = val & 0xff; s->ti_size--; scsi_write_data(s->current_dev, &buf, 0); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case 3: s->rregs[saddr] = val; // Command if (val & 0x80) { s->dma = 1; } else { s->dma = 0; } switch(val & 0x7f) { case 0: DPRINTF("NOP (%2.2x)\n", val); break; case 1: DPRINTF("Flush FIFO (%2.2x)\n", val); //s->ti_size = 0; s->rregs[5] = INTR_FC; s->rregs[6] = 0; break; case 2: DPRINTF("Chip reset (%2.2x)\n", val); esp_reset(s); break; case 3: DPRINTF("Bus reset (%2.2x)\n", val); s->rregs[5] = INTR_RST; if (!(s->wregs[8] & 0x40)) { s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } break; case 0x10: handle_ti(s); break; case 0x11: DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); write_response(s); break; case 0x12: DPRINTF("Message Accepted (%2.2x)\n", val); write_response(s); s->rregs[5] = INTR_DC; s->rregs[6] = 0; break; case 0x1a: DPRINTF("Set ATN (%2.2x)\n", val); break; case 0x42: DPRINTF("Set ATN (%2.2x)\n", val); handle_satn(s); break; case 0x43: DPRINTF("Set ATN & stop (%2.2x)\n", val); handle_satn_stop(s); break; default: DPRINTF("Unhandled ESP command (%2.2x)\n", val); break; } break; case 4 ... 7: break; case 8: s->rregs[saddr] = val; break; case 9 ... 10: break; case 11: s->rregs[saddr] = val & 0x15; break; case 12 ... 15: s->rregs[saddr] = val; break; default: break; } s->wregs[saddr] = val; } static CPUReadMemoryFunc *esp_mem_read[3] = { esp_mem_readb, esp_mem_readb, esp_mem_readb, }; static CPUWriteMemoryFunc *esp_mem_write[3] = { esp_mem_writeb, esp_mem_writeb, esp_mem_writeb, }; static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]); return s->espdmaregs[saddr]; } static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val); switch (saddr) { case 0: if (!(val & DMA_INTREN)) pic_set_irq(s->irq, 0); if (val & 0x80) { esp_reset(s); } else if (val & 0x40) { val &= ~0x40; } else if (val == 0) val = 0x40; val &= 0x0fffffff; val |= DMA_VER; break; case 1: s->espdmaregs[0] |= DMA_LOADED; break; default: break; } s->espdmaregs[saddr] = val; } static CPUReadMemoryFunc *espdma_mem_read[3] = { espdma_mem_readl, espdma_mem_readl, espdma_mem_readl, }; static CPUWriteMemoryFunc *espdma_mem_write[3] = { espdma_mem_writel, espdma_mem_writel, espdma_mem_writel, }; static void esp_save(QEMUFile *f, void *opaque) { ESPState *s = opaque; unsigned int i; qemu_put_buffer(f, s->rregs, ESP_MAXREG); qemu_put_buffer(f, s->wregs, ESP_MAXREG); qemu_put_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_put_be32s(f, &s->espdmaregs[i]); qemu_put_be32s(f, &s->ti_size); qemu_put_be32s(f, &s->ti_rptr); qemu_put_be32s(f, &s->ti_wptr); qemu_put_buffer(f, s->ti_buf, TI_BUFSZ); qemu_put_be32s(f, &s->dma); } static int esp_load(QEMUFile *f, void *opaque, int version_id) { ESPState *s = opaque; unsigned int i; if (version_id != 1) return -EINVAL; qemu_get_buffer(f, s->rregs, ESP_MAXREG); qemu_get_buffer(f, s->wregs, ESP_MAXREG); qemu_get_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_get_be32s(f, &s->espdmaregs[i]); qemu_get_be32s(f, &s->ti_size); qemu_get_be32s(f, &s->ti_rptr); qemu_get_be32s(f, &s->ti_wptr); qemu_get_buffer(f, s->ti_buf, TI_BUFSZ); qemu_get_be32s(f, &s->dma); return 0; } void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr) { ESPState *s; int esp_io_memory, espdma_io_memory; int i; s = qemu_mallocz(sizeof(ESPState)); if (!s) return; s->bd = bd; s->irq = irq; esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s); cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory); espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s); cpu_register_physical_memory(espdaddr, 16, espdma_io_memory); esp_reset(s); register_savevm("esp", espaddr, 1, esp_save, esp_load, s); qemu_register_reset(esp_reset, s); for (i = 0; i < MAX_DISKS; i++) { if (bs_table[i]) { s->scsi_dev[i] = scsi_disk_init(bs_table[i], esp_command_complete, s); } } }