/* * IPMI BMC emulation * * Copyright (c) 2015 Corey Minyard, MontaVista Software, LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "hw/ipmi/ipmi.h" #include "qemu/error-report.h" #include "hw/loader.h" #define IPMI_NETFN_CHASSIS 0x00 #define IPMI_CMD_GET_CHASSIS_CAPABILITIES 0x00 #define IPMI_CMD_GET_CHASSIS_STATUS 0x01 #define IPMI_CMD_CHASSIS_CONTROL 0x02 #define IPMI_CMD_GET_SYS_RESTART_CAUSE 0x09 #define IPMI_NETFN_SENSOR_EVENT 0x04 #define IPMI_CMD_PLATFORM_EVENT_MSG 0x02 #define IPMI_CMD_SET_SENSOR_EVT_ENABLE 0x28 #define IPMI_CMD_GET_SENSOR_EVT_ENABLE 0x29 #define IPMI_CMD_REARM_SENSOR_EVTS 0x2a #define IPMI_CMD_GET_SENSOR_EVT_STATUS 0x2b #define IPMI_CMD_GET_SENSOR_READING 0x2d #define IPMI_CMD_SET_SENSOR_TYPE 0x2e #define IPMI_CMD_GET_SENSOR_TYPE 0x2f /* #define IPMI_NETFN_APP 0x06 In ipmi.h */ #define IPMI_CMD_GET_DEVICE_ID 0x01 #define IPMI_CMD_COLD_RESET 0x02 #define IPMI_CMD_WARM_RESET 0x03 #define IPMI_CMD_SET_ACPI_POWER_STATE 0x06 #define IPMI_CMD_GET_ACPI_POWER_STATE 0x07 #define IPMI_CMD_GET_DEVICE_GUID 0x08 #define IPMI_CMD_RESET_WATCHDOG_TIMER 0x22 #define IPMI_CMD_SET_WATCHDOG_TIMER 0x24 #define IPMI_CMD_GET_WATCHDOG_TIMER 0x25 #define IPMI_CMD_SET_BMC_GLOBAL_ENABLES 0x2e #define IPMI_CMD_GET_BMC_GLOBAL_ENABLES 0x2f #define IPMI_CMD_CLR_MSG_FLAGS 0x30 #define IPMI_CMD_GET_MSG_FLAGS 0x31 #define IPMI_CMD_GET_MSG 0x33 #define IPMI_CMD_SEND_MSG 0x34 #define IPMI_CMD_READ_EVT_MSG_BUF 0x35 #define IPMI_NETFN_STORAGE 0x0a #define IPMI_CMD_GET_SDR_REP_INFO 0x20 #define IPMI_CMD_GET_SDR_REP_ALLOC_INFO 0x21 #define IPMI_CMD_RESERVE_SDR_REP 0x22 #define IPMI_CMD_GET_SDR 0x23 #define IPMI_CMD_ADD_SDR 0x24 #define IPMI_CMD_PARTIAL_ADD_SDR 0x25 #define IPMI_CMD_DELETE_SDR 0x26 #define IPMI_CMD_CLEAR_SDR_REP 0x27 #define IPMI_CMD_GET_SDR_REP_TIME 0x28 #define IPMI_CMD_SET_SDR_REP_TIME 0x29 #define IPMI_CMD_ENTER_SDR_REP_UPD_MODE 0x2A #define IPMI_CMD_EXIT_SDR_REP_UPD_MODE 0x2B #define IPMI_CMD_RUN_INIT_AGENT 0x2C #define IPMI_CMD_GET_FRU_AREA_INFO 0x10 #define IPMI_CMD_READ_FRU_DATA 0x11 #define IPMI_CMD_WRITE_FRU_DATA 0x12 #define IPMI_CMD_GET_SEL_INFO 0x40 #define IPMI_CMD_GET_SEL_ALLOC_INFO 0x41 #define IPMI_CMD_RESERVE_SEL 0x42 #define IPMI_CMD_GET_SEL_ENTRY 0x43 #define IPMI_CMD_ADD_SEL_ENTRY 0x44 #define IPMI_CMD_PARTIAL_ADD_SEL_ENTRY 0x45 #define IPMI_CMD_DELETE_SEL_ENTRY 0x46 #define IPMI_CMD_CLEAR_SEL 0x47 #define IPMI_CMD_GET_SEL_TIME 0x48 #define IPMI_CMD_SET_SEL_TIME 0x49 /* Same as a timespec struct. */ struct ipmi_time { long tv_sec; long tv_nsec; }; #define MAX_SEL_SIZE 128 typedef struct IPMISel { uint8_t sel[MAX_SEL_SIZE][16]; unsigned int next_free; long time_offset; uint16_t reservation; uint8_t last_addition[4]; uint8_t last_clear[4]; uint8_t overflow; } IPMISel; #define MAX_SDR_SIZE 16384 typedef struct IPMISdr { uint8_t sdr[MAX_SDR_SIZE]; unsigned int next_free; uint16_t next_rec_id; uint16_t reservation; uint8_t last_addition[4]; uint8_t last_clear[4]; uint8_t overflow; } IPMISdr; typedef struct IPMIFru { char *filename; unsigned int nentries; uint16_t areasize; uint8_t *data; } IPMIFru; typedef struct IPMISensor { uint8_t status; uint8_t reading; uint16_t states_suppt; uint16_t assert_suppt; uint16_t deassert_suppt; uint16_t states; uint16_t assert_states; uint16_t deassert_states; uint16_t assert_enable; uint16_t deassert_enable; uint8_t sensor_type; uint8_t evt_reading_type_code; } IPMISensor; #define IPMI_SENSOR_GET_PRESENT(s) ((s)->status & 0x01) #define IPMI_SENSOR_SET_PRESENT(s, v) ((s)->status = (s->status & ~0x01) | \ !!(v)) #define IPMI_SENSOR_GET_SCAN_ON(s) ((s)->status & 0x40) #define IPMI_SENSOR_SET_SCAN_ON(s, v) ((s)->status = (s->status & ~0x40) | \ ((!!(v)) << 6)) #define IPMI_SENSOR_GET_EVENTS_ON(s) ((s)->status & 0x80) #define IPMI_SENSOR_SET_EVENTS_ON(s, v) ((s)->status = (s->status & ~0x80) | \ ((!!(v)) << 7)) #define IPMI_SENSOR_GET_RET_STATUS(s) ((s)->status & 0xc0) #define IPMI_SENSOR_SET_RET_STATUS(s, v) ((s)->status = (s->status & ~0xc0) | \ (v & 0xc0)) #define IPMI_SENSOR_IS_DISCRETE(s) ((s)->evt_reading_type_code != 1) #define MAX_SENSORS 20 #define IPMI_WATCHDOG_SENSOR 0 typedef struct IPMIBmcSim IPMIBmcSim; typedef struct RspBuffer RspBuffer; #define MAX_NETFNS 64 typedef struct IPMICmdHandler { void (*cmd_handler)(IPMIBmcSim *s, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp); unsigned int cmd_len_min; } IPMICmdHandler; typedef struct IPMINetfn { unsigned int cmd_nums; const IPMICmdHandler *cmd_handlers; } IPMINetfn; typedef struct IPMIRcvBufEntry { QTAILQ_ENTRY(IPMIRcvBufEntry) entry; uint8_t len; uint8_t buf[MAX_IPMI_MSG_SIZE]; } IPMIRcvBufEntry; #define TYPE_IPMI_BMC_SIMULATOR "ipmi-bmc-sim" #define IPMI_BMC_SIMULATOR(obj) OBJECT_CHECK(IPMIBmcSim, (obj), \ TYPE_IPMI_BMC_SIMULATOR) struct IPMIBmcSim { IPMIBmc parent; QEMUTimer *timer; uint8_t bmc_global_enables; uint8_t msg_flags; bool watchdog_initialized; uint8_t watchdog_use; uint8_t watchdog_action; uint8_t watchdog_pretimeout; /* In seconds */ bool watchdog_expired; uint16_t watchdog_timeout; /* in 100's of milliseconds */ bool watchdog_running; bool watchdog_preaction_ran; int64_t watchdog_expiry; uint8_t device_id; uint8_t ipmi_version; uint8_t device_rev; uint8_t fwrev1; uint8_t fwrev2; uint32_t mfg_id; uint16_t product_id; uint8_t restart_cause; uint8_t acpi_power_state[2]; uint8_t uuid[16]; IPMISel sel; IPMISdr sdr; IPMIFru fru; IPMISensor sensors[MAX_SENSORS]; char *sdr_filename; /* Odd netfns are for responses, so we only need the even ones. */ const IPMINetfn *netfns[MAX_NETFNS / 2]; /* We allow one event in the buffer */ uint8_t evtbuf[16]; QTAILQ_HEAD(, IPMIRcvBufEntry) rcvbufs; }; #define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK (1 << 3) #define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL (1 << 1) #define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE (1 << 0) #define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(s) \ (IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK & (s)->msg_flags) #define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(s) \ (IPMI_BMC_MSG_FLAG_EVT_BUF_FULL & (s)->msg_flags) #define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(s) \ (IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE & (s)->msg_flags) #define IPMI_BMC_RCV_MSG_QUEUE_INT_BIT 0 #define IPMI_BMC_EVBUF_FULL_INT_BIT 1 #define IPMI_BMC_EVENT_MSG_BUF_BIT 2 #define IPMI_BMC_EVENT_LOG_BIT 3 #define IPMI_BMC_MSG_INTS_ON(s) ((s)->bmc_global_enables & \ (1 << IPMI_BMC_RCV_MSG_QUEUE_INT_BIT)) #define IPMI_BMC_EVBUF_FULL_INT_ENABLED(s) ((s)->bmc_global_enables & \ (1 << IPMI_BMC_EVBUF_FULL_INT_BIT)) #define IPMI_BMC_EVENT_LOG_ENABLED(s) ((s)->bmc_global_enables & \ (1 << IPMI_BMC_EVENT_LOG_BIT)) #define IPMI_BMC_EVENT_MSG_BUF_ENABLED(s) ((s)->bmc_global_enables & \ (1 << IPMI_BMC_EVENT_MSG_BUF_BIT)) #define IPMI_BMC_WATCHDOG_USE_MASK 0xc7 #define IPMI_BMC_WATCHDOG_ACTION_MASK 0x77 #define IPMI_BMC_WATCHDOG_GET_USE(s) ((s)->watchdog_use & 0x7) #define IPMI_BMC_WATCHDOG_GET_DONT_LOG(s) (((s)->watchdog_use >> 7) & 0x1) #define IPMI_BMC_WATCHDOG_GET_DONT_STOP(s) (((s)->watchdog_use >> 6) & 0x1) #define IPMI_BMC_WATCHDOG_GET_PRE_ACTION(s) (((s)->watchdog_action >> 4) & 0x7) #define IPMI_BMC_WATCHDOG_PRE_NONE 0 #define IPMI_BMC_WATCHDOG_PRE_SMI 1 #define IPMI_BMC_WATCHDOG_PRE_NMI 2 #define IPMI_BMC_WATCHDOG_PRE_MSG_INT 3 #define IPMI_BMC_WATCHDOG_GET_ACTION(s) ((s)->watchdog_action & 0x7) #define IPMI_BMC_WATCHDOG_ACTION_NONE 0 #define IPMI_BMC_WATCHDOG_ACTION_RESET 1 #define IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN 2 #define IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE 3 struct RspBuffer { uint8_t buffer[MAX_IPMI_MSG_SIZE]; unsigned int len; }; #define RSP_BUFFER_INITIALIZER { } static inline void rsp_buffer_set_error(RspBuffer *rsp, uint8_t byte) { rsp->buffer[2] = byte; } /* Add a byte to the response. */ static inline void rsp_buffer_push(RspBuffer *rsp, uint8_t byte) { if (rsp->len >= sizeof(rsp->buffer)) { rsp_buffer_set_error(rsp, IPMI_CC_REQUEST_DATA_TRUNCATED); return; } rsp->buffer[rsp->len++] = byte; } static inline void rsp_buffer_pushmore(RspBuffer *rsp, uint8_t *bytes, unsigned int n) { if (rsp->len + n >= sizeof(rsp->buffer)) { rsp_buffer_set_error(rsp, IPMI_CC_REQUEST_DATA_TRUNCATED); return; } memcpy(&rsp->buffer[rsp->len], bytes, n); rsp->len += n; } static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs); static void ipmi_gettime(struct ipmi_time *time) { int64_t stime; stime = qemu_clock_get_ns(QEMU_CLOCK_HOST); time->tv_sec = stime / 1000000000LL; time->tv_nsec = stime % 1000000000LL; } static int64_t ipmi_getmonotime(void) { return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); } static void ipmi_timeout(void *opaque) { IPMIBmcSim *ibs = opaque; ipmi_sim_handle_timeout(ibs); } static void set_timestamp(IPMIBmcSim *ibs, uint8_t *ts) { unsigned int val; struct ipmi_time now; ipmi_gettime(&now); val = now.tv_sec + ibs->sel.time_offset; ts[0] = val & 0xff; ts[1] = (val >> 8) & 0xff; ts[2] = (val >> 16) & 0xff; ts[3] = (val >> 24) & 0xff; } static void sdr_inc_reservation(IPMISdr *sdr) { sdr->reservation++; if (sdr->reservation == 0) { sdr->reservation = 1; } } static int sdr_add_entry(IPMIBmcSim *ibs, const struct ipmi_sdr_header *sdrh_entry, unsigned int len, uint16_t *recid) { struct ipmi_sdr_header *sdrh = (struct ipmi_sdr_header *) &ibs->sdr.sdr[ibs->sdr.next_free]; if ((len < IPMI_SDR_HEADER_SIZE) || (len > 255)) { return 1; } if (ipmi_sdr_length(sdrh_entry) != len) { return 1; } if (ibs->sdr.next_free + len > MAX_SDR_SIZE) { ibs->sdr.overflow = 1; return 1; } memcpy(sdrh, sdrh_entry, len); sdrh->rec_id[0] = ibs->sdr.next_rec_id & 0xff; sdrh->rec_id[1] = (ibs->sdr.next_rec_id >> 8) & 0xff; sdrh->sdr_version = 0x51; /* Conform to IPMI 1.5 spec */ if (recid) { *recid = ibs->sdr.next_rec_id; } ibs->sdr.next_rec_id++; set_timestamp(ibs, ibs->sdr.last_addition); ibs->sdr.next_free += len; sdr_inc_reservation(&ibs->sdr); return 0; } static int sdr_find_entry(IPMISdr *sdr, uint16_t recid, unsigned int *retpos, uint16_t *nextrec) { unsigned int pos = *retpos; while (pos < sdr->next_free) { struct ipmi_sdr_header *sdrh = (struct ipmi_sdr_header *) &sdr->sdr[pos]; uint16_t trec = ipmi_sdr_recid(sdrh); unsigned int nextpos = pos + ipmi_sdr_length(sdrh); if (trec == recid) { if (nextrec) { if (nextpos >= sdr->next_free) { *nextrec = 0xffff; } else { *nextrec = (sdr->sdr[nextpos] | (sdr->sdr[nextpos + 1] << 8)); } } *retpos = pos; return 0; } pos = nextpos; } return 1; } int ipmi_bmc_sdr_find(IPMIBmc *b, uint16_t recid, const struct ipmi_sdr_compact **sdr, uint16_t *nextrec) { IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b); unsigned int pos; pos = 0; if (sdr_find_entry(&ibs->sdr, recid, &pos, nextrec)) { return -1; } *sdr = (const struct ipmi_sdr_compact *) &ibs->sdr.sdr[pos]; return 0; } static void sel_inc_reservation(IPMISel *sel) { sel->reservation++; if (sel->reservation == 0) { sel->reservation = 1; } } /* Returns 1 if the SEL is full and can't hold the event. */ static int sel_add_event(IPMIBmcSim *ibs, uint8_t *event) { uint8_t ts[4]; event[0] = 0xff; event[1] = 0xff; set_timestamp(ibs, ts); if (event[2] < 0xe0) { /* Don't set timestamps for type 0xe0-0xff. */ memcpy(event + 3, ts, 4); } if (ibs->sel.next_free == MAX_SEL_SIZE) { ibs->sel.overflow = 1; return 1; } event[0] = ibs->sel.next_free & 0xff; event[1] = (ibs->sel.next_free >> 8) & 0xff; memcpy(ibs->sel.last_addition, ts, 4); memcpy(ibs->sel.sel[ibs->sel.next_free], event, 16); ibs->sel.next_free++; sel_inc_reservation(&ibs->sel); return 0; } static int attn_set(IPMIBmcSim *ibs) { return IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs) || IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs) || IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(ibs); } static int attn_irq_enabled(IPMIBmcSim *ibs) { return (IPMI_BMC_MSG_INTS_ON(ibs) && IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs)) || (IPMI_BMC_EVBUF_FULL_INT_ENABLED(ibs) && IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs)); } void ipmi_bmc_gen_event(IPMIBmc *b, uint8_t *evt, bool log) { IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b); IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); if (!IPMI_BMC_EVENT_MSG_BUF_ENABLED(ibs)) { return; } if (log && IPMI_BMC_EVENT_LOG_ENABLED(ibs)) { sel_add_event(ibs, evt); } if (ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL) { goto out; } memcpy(ibs->evtbuf, evt, 16); ibs->msg_flags |= IPMI_BMC_MSG_FLAG_EVT_BUF_FULL; k->set_atn(s, 1, attn_irq_enabled(ibs)); out: return; } static void gen_event(IPMIBmcSim *ibs, unsigned int sens_num, uint8_t deassert, uint8_t evd1, uint8_t evd2, uint8_t evd3) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); uint8_t evt[16]; IPMISensor *sens = ibs->sensors + sens_num; if (!IPMI_BMC_EVENT_MSG_BUF_ENABLED(ibs)) { return; } if (!IPMI_SENSOR_GET_EVENTS_ON(sens)) { return; } evt[2] = 0x2; /* System event record */ evt[7] = ibs->parent.slave_addr; evt[8] = 0; evt[9] = 0x04; /* Format version */ evt[10] = sens->sensor_type; evt[11] = sens_num; evt[12] = sens->evt_reading_type_code | (!!deassert << 7); evt[13] = evd1; evt[14] = evd2; evt[15] = evd3; if (IPMI_BMC_EVENT_LOG_ENABLED(ibs)) { sel_add_event(ibs, evt); } if (ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL) { return; } memcpy(ibs->evtbuf, evt, 16); ibs->msg_flags |= IPMI_BMC_MSG_FLAG_EVT_BUF_FULL; k->set_atn(s, 1, attn_irq_enabled(ibs)); } static void sensor_set_discrete_bit(IPMIBmcSim *ibs, unsigned int sensor, unsigned int bit, unsigned int val, uint8_t evd1, uint8_t evd2, uint8_t evd3) { IPMISensor *sens; uint16_t mask; if (sensor >= MAX_SENSORS) { return; } if (bit >= 16) { return; } mask = (1 << bit); sens = ibs->sensors + sensor; if (val) { sens->states |= mask & sens->states_suppt; if (sens->assert_states & mask) { return; /* Already asserted */ } sens->assert_states |= mask & sens->assert_suppt; if (sens->assert_enable & mask & sens->assert_states) { /* Send an event on assert */ gen_event(ibs, sensor, 0, evd1, evd2, evd3); } } else { sens->states &= ~(mask & sens->states_suppt); if (sens->deassert_states & mask) { return; /* Already deasserted */ } sens->deassert_states |= mask & sens->deassert_suppt; if (sens->deassert_enable & mask & sens->deassert_states) { /* Send an event on deassert */ gen_event(ibs, sensor, 1, evd1, evd2, evd3); } } } static void ipmi_init_sensors_from_sdrs(IPMIBmcSim *s) { unsigned int i, pos; IPMISensor *sens; for (i = 0; i < MAX_SENSORS; i++) { memset(s->sensors + i, 0, sizeof(*sens)); } pos = 0; for (i = 0; !sdr_find_entry(&s->sdr, i, &pos, NULL); i++) { struct ipmi_sdr_compact *sdr = (struct ipmi_sdr_compact *) &s->sdr.sdr[pos]; unsigned int len = sdr->header.rec_length; if (len < 20) { continue; } if (sdr->header.rec_type != IPMI_SDR_COMPACT_TYPE) { continue; /* Not a sensor SDR we set from */ } if (sdr->sensor_owner_number >= MAX_SENSORS) { continue; } sens = s->sensors + sdr->sensor_owner_number; IPMI_SENSOR_SET_PRESENT(sens, 1); IPMI_SENSOR_SET_SCAN_ON(sens, (sdr->sensor_init >> 6) & 1); IPMI_SENSOR_SET_EVENTS_ON(sens, (sdr->sensor_init >> 5) & 1); sens->assert_suppt = sdr->assert_mask[0] | (sdr->assert_mask[1] << 8); sens->deassert_suppt = sdr->deassert_mask[0] | (sdr->deassert_mask[1] << 8); sens->states_suppt = sdr->discrete_mask[0] | (sdr->discrete_mask[1] << 8); sens->sensor_type = sdr->sensor_type; sens->evt_reading_type_code = sdr->reading_type & 0x7f; /* Enable all the events that are supported. */ sens->assert_enable = sens->assert_suppt; sens->deassert_enable = sens->deassert_suppt; } } static int ipmi_register_netfn(IPMIBmcSim *s, unsigned int netfn, const IPMINetfn *netfnd) { if ((netfn & 1) || (netfn >= MAX_NETFNS) || (s->netfns[netfn / 2])) { return -1; } s->netfns[netfn / 2] = netfnd; return 0; } static const IPMICmdHandler *ipmi_get_handler(IPMIBmcSim *ibs, unsigned int netfn, unsigned int cmd) { const IPMICmdHandler *hdl; if (netfn & 1 || netfn >= MAX_NETFNS || !ibs->netfns[netfn / 2]) { return NULL; } if (cmd >= ibs->netfns[netfn / 2]->cmd_nums) { return NULL; } hdl = &ibs->netfns[netfn / 2]->cmd_handlers[cmd]; if (!hdl->cmd_handler) { return NULL; } return hdl; } static void next_timeout(IPMIBmcSim *ibs) { int64_t next; if (ibs->watchdog_running) { next = ibs->watchdog_expiry; } else { /* Wait a minute */ next = ipmi_getmonotime() + 60 * 1000000000LL; } timer_mod_ns(ibs->timer, next); } static void ipmi_sim_handle_command(IPMIBmc *b, uint8_t *cmd, unsigned int cmd_len, unsigned int max_cmd_len, uint8_t msg_id) { IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b); IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); const IPMICmdHandler *hdl; RspBuffer rsp = RSP_BUFFER_INITIALIZER; /* Set up the response, set the low bit of NETFN. */ /* Note that max_rsp_len must be at least 3 */ if (sizeof(rsp.buffer) < 3) { rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_TRUNCATED); goto out; } rsp_buffer_push(&rsp, cmd[0] | 0x04); rsp_buffer_push(&rsp, cmd[1]); rsp_buffer_push(&rsp, 0); /* Assume success */ /* If it's too short or it was truncated, return an error. */ if (cmd_len < 2) { rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID); goto out; } if (cmd_len > max_cmd_len) { rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_TRUNCATED); goto out; } if ((cmd[0] & 0x03) != 0) { /* Only have stuff on LUN 0 */ rsp_buffer_set_error(&rsp, IPMI_CC_COMMAND_INVALID_FOR_LUN); goto out; } hdl = ipmi_get_handler(ibs, cmd[0] >> 2, cmd[1]); if (!hdl) { rsp_buffer_set_error(&rsp, IPMI_CC_INVALID_CMD); goto out; } if (cmd_len < hdl->cmd_len_min) { rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID); goto out; } hdl->cmd_handler(ibs, cmd, cmd_len, &rsp); out: k->handle_rsp(s, msg_id, rsp.buffer, rsp.len); next_timeout(ibs); } static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); if (!ibs->watchdog_running) { goto out; } if (!ibs->watchdog_preaction_ran) { switch (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs)) { case IPMI_BMC_WATCHDOG_PRE_NMI: ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK; k->do_hw_op(s, IPMI_SEND_NMI, 0); sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1, 0xc8, (2 << 4) | 0xf, 0xff); break; case IPMI_BMC_WATCHDOG_PRE_MSG_INT: ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK; k->set_atn(s, 1, attn_irq_enabled(ibs)); sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1, 0xc8, (3 << 4) | 0xf, 0xff); break; default: goto do_full_expiry; } ibs->watchdog_preaction_ran = 1; /* Issued the pretimeout, do the rest of the timeout now. */ ibs->watchdog_expiry = ipmi_getmonotime(); ibs->watchdog_expiry += ibs->watchdog_pretimeout * 1000000000LL; goto out; } do_full_expiry: ibs->watchdog_running = 0; /* Stop the watchdog on a timeout */ ibs->watchdog_expired |= (1 << IPMI_BMC_WATCHDOG_GET_USE(ibs)); switch (IPMI_BMC_WATCHDOG_GET_ACTION(ibs)) { case IPMI_BMC_WATCHDOG_ACTION_NONE: sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 0, 1, 0xc0, ibs->watchdog_use & 0xf, 0xff); break; case IPMI_BMC_WATCHDOG_ACTION_RESET: sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 1, 1, 0xc1, ibs->watchdog_use & 0xf, 0xff); k->do_hw_op(s, IPMI_RESET_CHASSIS, 0); break; case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN: sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1, 0xc2, ibs->watchdog_use & 0xf, 0xff); k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0); break; case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE: sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1, 0xc3, ibs->watchdog_use & 0xf, 0xff); k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0); break; } out: next_timeout(ibs); } static void chassis_capabilities(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, 0); rsp_buffer_push(rsp, ibs->parent.slave_addr); rsp_buffer_push(rsp, ibs->parent.slave_addr); rsp_buffer_push(rsp, ibs->parent.slave_addr); rsp_buffer_push(rsp, ibs->parent.slave_addr); } static void chassis_status(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, 0x61); /* Unknown power restore, power is on */ rsp_buffer_push(rsp, 0); rsp_buffer_push(rsp, 0); rsp_buffer_push(rsp, 0); } static void chassis_control(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); switch (cmd[2] & 0xf) { case 0: /* power down */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0)); break; case 1: /* power up */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERON_CHASSIS, 0)); break; case 2: /* power cycle */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0)); break; case 3: /* hard reset */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_RESET_CHASSIS, 0)); break; case 4: /* pulse diagnostic interrupt */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_PULSE_DIAG_IRQ, 0)); break; case 5: /* soft shutdown via ACPI by overtemp emulation */ rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_SHUTDOWN_VIA_ACPI_OVERTEMP, 0)); break; default: rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } } static void chassis_get_sys_restart_cause(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->restart_cause & 0xf); /* Restart Cause */ rsp_buffer_push(rsp, 0); /* Channel 0 */ } static void get_device_id(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->device_id); rsp_buffer_push(rsp, ibs->device_rev & 0xf); rsp_buffer_push(rsp, ibs->fwrev1 & 0x7f); rsp_buffer_push(rsp, ibs->fwrev2); rsp_buffer_push(rsp, ibs->ipmi_version); rsp_buffer_push(rsp, 0x07); /* sensor, SDR, and SEL. */ rsp_buffer_push(rsp, ibs->mfg_id & 0xff); rsp_buffer_push(rsp, (ibs->mfg_id >> 8) & 0xff); rsp_buffer_push(rsp, (ibs->mfg_id >> 16) & 0xff); rsp_buffer_push(rsp, ibs->product_id & 0xff); rsp_buffer_push(rsp, (ibs->product_id >> 8) & 0xff); } static void set_global_enables(IPMIBmcSim *ibs, uint8_t val) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); bool irqs_on; ibs->bmc_global_enables = val; irqs_on = val & (IPMI_BMC_EVBUF_FULL_INT_BIT | IPMI_BMC_RCV_MSG_QUEUE_INT_BIT); k->set_irq_enable(s, irqs_on); } static void cold_reset(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); /* Disable all interrupts */ set_global_enables(ibs, 1 << IPMI_BMC_EVENT_LOG_BIT); if (k->reset) { k->reset(s, true); } } static void warm_reset(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); if (k->reset) { k->reset(s, false); } } static void set_acpi_power_state(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { ibs->acpi_power_state[0] = cmd[2]; ibs->acpi_power_state[1] = cmd[3]; } static void get_acpi_power_state(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->acpi_power_state[0]); rsp_buffer_push(rsp, ibs->acpi_power_state[1]); } static void get_device_guid(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { unsigned int i; for (i = 0; i < 16; i++) { rsp_buffer_push(rsp, ibs->uuid[i]); } } static void set_bmc_global_enables(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { set_global_enables(ibs, cmd[2]); } static void get_bmc_global_enables(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->bmc_global_enables); } static void clr_msg_flags(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); ibs->msg_flags &= ~cmd[2]; k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs)); } static void get_msg_flags(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->msg_flags); } static void read_evt_msg_buf(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); unsigned int i; if (!(ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL)) { rsp_buffer_set_error(rsp, 0x80); return; } for (i = 0; i < 16; i++) { rsp_buffer_push(rsp, ibs->evtbuf[i]); } ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_EVT_BUF_FULL; k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs)); } static void get_msg(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIRcvBufEntry *msg; if (QTAILQ_EMPTY(&ibs->rcvbufs)) { rsp_buffer_set_error(rsp, 0x80); /* Queue empty */ goto out; } rsp_buffer_push(rsp, 0); /* Channel 0 */ msg = QTAILQ_FIRST(&ibs->rcvbufs); rsp_buffer_pushmore(rsp, msg->buf, msg->len); QTAILQ_REMOVE(&ibs->rcvbufs, msg, entry); g_free(msg); if (QTAILQ_EMPTY(&ibs->rcvbufs)) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE; k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs)); } out: return; } static unsigned char ipmb_checksum(unsigned char *data, int size, unsigned char csum) { for (; size > 0; size--, data++) { csum += *data; } return -csum; } static void send_msg(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); IPMIRcvBufEntry *msg; uint8_t *buf; uint8_t netfn, rqLun, rsLun, rqSeq; if (cmd[2] != 0) { /* We only handle channel 0 with no options */ rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (cmd_len < 10) { rsp_buffer_set_error(rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID); return; } if (cmd[3] != 0x40) { /* We only emulate a MC at address 0x40. */ rsp_buffer_set_error(rsp, 0x83); /* NAK on write */ return; } cmd += 3; /* Skip the header. */ cmd_len -= 3; /* * At this point we "send" the message successfully. Any error will * be returned in the response. */ if (ipmb_checksum(cmd, cmd_len, 0) != 0 || cmd[3] != 0x20) { /* Improper response address */ return; /* No response */ } netfn = cmd[1] >> 2; rqLun = cmd[4] & 0x3; rsLun = cmd[1] & 0x3; rqSeq = cmd[4] >> 2; if (rqLun != 2) { /* We only support LUN 2 coming back to us. */ return; } msg = g_malloc(sizeof(*msg)); msg->buf[0] = ((netfn | 1) << 2) | rqLun; /* NetFN, and make a response */ msg->buf[1] = ipmb_checksum(msg->buf, 1, 0); msg->buf[2] = cmd[0]; /* rsSA */ msg->buf[3] = (rqSeq << 2) | rsLun; msg->buf[4] = cmd[5]; /* Cmd */ msg->buf[5] = 0; /* Completion Code */ msg->len = 6; if ((cmd[1] >> 2) != IPMI_NETFN_APP || cmd[5] != IPMI_CMD_GET_DEVICE_ID) { /* Not a command we handle. */ msg->buf[5] = IPMI_CC_INVALID_CMD; goto end_msg; } buf = msg->buf + msg->len; /* After the CC */ buf[0] = 0; buf[1] = 0; buf[2] = 0; buf[3] = 0; buf[4] = 0x51; buf[5] = 0; buf[6] = 0; buf[7] = 0; buf[8] = 0; buf[9] = 0; buf[10] = 0; msg->len += 11; end_msg: msg->buf[msg->len] = ipmb_checksum(msg->buf, msg->len, 0); msg->len++; QTAILQ_INSERT_TAIL(&ibs->rcvbufs, msg, entry); ibs->msg_flags |= IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE; k->set_atn(s, 1, attn_irq_enabled(ibs)); } static void do_watchdog_reset(IPMIBmcSim *ibs) { if (IPMI_BMC_WATCHDOG_GET_ACTION(ibs) == IPMI_BMC_WATCHDOG_ACTION_NONE) { ibs->watchdog_running = 0; return; } ibs->watchdog_preaction_ran = 0; /* Timeout is in tenths of a second, offset is in seconds */ ibs->watchdog_expiry = ipmi_getmonotime(); ibs->watchdog_expiry += ibs->watchdog_timeout * 100000000LL; if (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs) != IPMI_BMC_WATCHDOG_PRE_NONE) { ibs->watchdog_expiry -= ibs->watchdog_pretimeout * 1000000000LL; } ibs->watchdog_running = 1; } static void reset_watchdog_timer(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { if (!ibs->watchdog_initialized) { rsp_buffer_set_error(rsp, 0x80); return; } do_watchdog_reset(ibs); } static void set_watchdog_timer(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMIInterface *s = ibs->parent.intf; IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s); unsigned int val; val = cmd[2] & 0x7; /* Validate use */ if (val == 0 || val > 5) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } val = cmd[3] & 0x7; /* Validate action */ switch (val) { case IPMI_BMC_WATCHDOG_ACTION_NONE: break; case IPMI_BMC_WATCHDOG_ACTION_RESET: rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_RESET_CHASSIS, 1)); break; case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN: rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 1)); break; case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE: rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 1)); break; default: rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); } if (rsp->buffer[2]) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } val = (cmd[3] >> 4) & 0x7; /* Validate preaction */ switch (val) { case IPMI_BMC_WATCHDOG_PRE_MSG_INT: case IPMI_BMC_WATCHDOG_PRE_NONE: break; case IPMI_BMC_WATCHDOG_PRE_NMI: if (!k->do_hw_op(s, IPMI_SEND_NMI, 1)) { /* NMI not supported. */ rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } break; default: /* We don't support PRE_SMI */ rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } ibs->watchdog_initialized = 1; ibs->watchdog_use = cmd[2] & IPMI_BMC_WATCHDOG_USE_MASK; ibs->watchdog_action = cmd[3] & IPMI_BMC_WATCHDOG_ACTION_MASK; ibs->watchdog_pretimeout = cmd[4]; ibs->watchdog_expired &= ~cmd[5]; ibs->watchdog_timeout = cmd[6] | (((uint16_t) cmd[7]) << 8); if (ibs->watchdog_running & IPMI_BMC_WATCHDOG_GET_DONT_STOP(ibs)) { do_watchdog_reset(ibs); } else { ibs->watchdog_running = 0; } } static void get_watchdog_timer(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->watchdog_use); rsp_buffer_push(rsp, ibs->watchdog_action); rsp_buffer_push(rsp, ibs->watchdog_pretimeout); rsp_buffer_push(rsp, ibs->watchdog_expired); if (ibs->watchdog_running) { long timeout; timeout = ((ibs->watchdog_expiry - ipmi_getmonotime() + 50000000) / 100000000); rsp_buffer_push(rsp, timeout & 0xff); rsp_buffer_push(rsp, (timeout >> 8) & 0xff); } else { rsp_buffer_push(rsp, 0); rsp_buffer_push(rsp, 0); } } static void get_sdr_rep_info(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { unsigned int i; rsp_buffer_push(rsp, 0x51); /* Conform to IPMI 1.5 spec */ rsp_buffer_push(rsp, ibs->sdr.next_rec_id & 0xff); rsp_buffer_push(rsp, (ibs->sdr.next_rec_id >> 8) & 0xff); rsp_buffer_push(rsp, (MAX_SDR_SIZE - ibs->sdr.next_free) & 0xff); rsp_buffer_push(rsp, ((MAX_SDR_SIZE - ibs->sdr.next_free) >> 8) & 0xff); for (i = 0; i < 4; i++) { rsp_buffer_push(rsp, ibs->sdr.last_addition[i]); } for (i = 0; i < 4; i++) { rsp_buffer_push(rsp, ibs->sdr.last_clear[i]); } /* Only modal support, reserve supported */ rsp_buffer_push(rsp, (ibs->sdr.overflow << 7) | 0x22); } static void reserve_sdr_rep(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->sdr.reservation & 0xff); rsp_buffer_push(rsp, (ibs->sdr.reservation >> 8) & 0xff); } static void get_sdr(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { unsigned int pos; uint16_t nextrec; struct ipmi_sdr_header *sdrh; if (cmd[6]) { if ((cmd[2] | (cmd[3] << 8)) != ibs->sdr.reservation) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION); return; } } pos = 0; if (sdr_find_entry(&ibs->sdr, cmd[4] | (cmd[5] << 8), &pos, &nextrec)) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sdrh = (struct ipmi_sdr_header *) &ibs->sdr.sdr[pos]; if (cmd[6] > ipmi_sdr_length(sdrh)) { rsp_buffer_set_error(rsp, IPMI_CC_PARM_OUT_OF_RANGE); return; } rsp_buffer_push(rsp, nextrec & 0xff); rsp_buffer_push(rsp, (nextrec >> 8) & 0xff); if (cmd[7] == 0xff) { cmd[7] = ipmi_sdr_length(sdrh) - cmd[6]; } if ((cmd[7] + rsp->len) > sizeof(rsp->buffer)) { rsp_buffer_set_error(rsp, IPMI_CC_CANNOT_RETURN_REQ_NUM_BYTES); return; } rsp_buffer_pushmore(rsp, ibs->sdr.sdr + pos + cmd[6], cmd[7]); } static void add_sdr(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint16_t recid; struct ipmi_sdr_header *sdrh = (struct ipmi_sdr_header *) cmd + 2; if (sdr_add_entry(ibs, sdrh, cmd_len - 2, &recid)) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } rsp_buffer_push(rsp, recid & 0xff); rsp_buffer_push(rsp, (recid >> 8) & 0xff); } static void clear_sdr_rep(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { if ((cmd[2] | (cmd[3] << 8)) != ibs->sdr.reservation) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION); return; } if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (cmd[7] == 0xaa) { ibs->sdr.next_free = 0; ibs->sdr.overflow = 0; set_timestamp(ibs, ibs->sdr.last_clear); rsp_buffer_push(rsp, 1); /* Erasure complete */ sdr_inc_reservation(&ibs->sdr); } else if (cmd[7] == 0) { rsp_buffer_push(rsp, 1); /* Erasure complete */ } else { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } } static void get_sel_info(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { unsigned int i, val; rsp_buffer_push(rsp, 0x51); /* Conform to IPMI 1.5 */ rsp_buffer_push(rsp, ibs->sel.next_free & 0xff); rsp_buffer_push(rsp, (ibs->sel.next_free >> 8) & 0xff); val = (MAX_SEL_SIZE - ibs->sel.next_free) * 16; rsp_buffer_push(rsp, val & 0xff); rsp_buffer_push(rsp, (val >> 8) & 0xff); for (i = 0; i < 4; i++) { rsp_buffer_push(rsp, ibs->sel.last_addition[i]); } for (i = 0; i < 4; i++) { rsp_buffer_push(rsp, ibs->sel.last_clear[i]); } /* Only support Reserve SEL */ rsp_buffer_push(rsp, (ibs->sel.overflow << 7) | 0x02); } static void get_fru_area_info(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint8_t fruid; uint16_t fru_entry_size; fruid = cmd[2]; if (fruid >= ibs->fru.nentries) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } fru_entry_size = ibs->fru.areasize; rsp_buffer_push(rsp, fru_entry_size & 0xff); rsp_buffer_push(rsp, fru_entry_size >> 8 & 0xff); rsp_buffer_push(rsp, 0x0); } static void read_fru_data(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint8_t fruid; uint16_t offset; int i; uint8_t *fru_entry; unsigned int count; fruid = cmd[2]; offset = (cmd[3] | cmd[4] << 8); if (fruid >= ibs->fru.nentries) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (offset >= ibs->fru.areasize - 1) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } fru_entry = &ibs->fru.data[fruid * ibs->fru.areasize]; count = MIN(cmd[5], ibs->fru.areasize - offset); rsp_buffer_push(rsp, count & 0xff); for (i = 0; i < count; i++) { rsp_buffer_push(rsp, fru_entry[offset + i]); } } static void write_fru_data(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint8_t fruid; uint16_t offset; uint8_t *fru_entry; unsigned int count; fruid = cmd[2]; offset = (cmd[3] | cmd[4] << 8); if (fruid >= ibs->fru.nentries) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (offset >= ibs->fru.areasize - 1) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } fru_entry = &ibs->fru.data[fruid * ibs->fru.areasize]; count = MIN(cmd_len - 5, ibs->fru.areasize - offset); memcpy(fru_entry + offset, cmd + 5, count); rsp_buffer_push(rsp, count & 0xff); } static void reserve_sel(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { rsp_buffer_push(rsp, ibs->sel.reservation & 0xff); rsp_buffer_push(rsp, (ibs->sel.reservation >> 8) & 0xff); } static void get_sel_entry(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { unsigned int val; if (cmd[6]) { if ((cmd[2] | (cmd[3] << 8)) != ibs->sel.reservation) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION); return; } } if (ibs->sel.next_free == 0) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } if (cmd[6] > 15) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (cmd[7] == 0xff) { cmd[7] = 16; } else if ((cmd[7] + cmd[6]) > 16) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } else { cmd[7] += cmd[6]; } val = cmd[4] | (cmd[5] << 8); if (val == 0xffff) { val = ibs->sel.next_free - 1; } else if (val >= ibs->sel.next_free) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } if ((val + 1) == ibs->sel.next_free) { rsp_buffer_push(rsp, 0xff); rsp_buffer_push(rsp, 0xff); } else { rsp_buffer_push(rsp, (val + 1) & 0xff); rsp_buffer_push(rsp, ((val + 1) >> 8) & 0xff); } for (; cmd[6] < cmd[7]; cmd[6]++) { rsp_buffer_push(rsp, ibs->sel.sel[val][cmd[6]]); } } static void add_sel_entry(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { if (sel_add_event(ibs, cmd + 2)) { rsp_buffer_set_error(rsp, IPMI_CC_OUT_OF_SPACE); return; } /* sel_add_event fills in the record number. */ rsp_buffer_push(rsp, cmd[2]); rsp_buffer_push(rsp, cmd[3]); } static void clear_sel(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { if ((cmd[2] | (cmd[3] << 8)) != ibs->sel.reservation) { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION); return; } if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } if (cmd[7] == 0xaa) { ibs->sel.next_free = 0; ibs->sel.overflow = 0; set_timestamp(ibs, ibs->sdr.last_clear); rsp_buffer_push(rsp, 1); /* Erasure complete */ sel_inc_reservation(&ibs->sel); } else if (cmd[7] == 0) { rsp_buffer_push(rsp, 1); /* Erasure complete */ } else { rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } } static void get_sel_time(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint32_t val; struct ipmi_time now; ipmi_gettime(&now); val = now.tv_sec + ibs->sel.time_offset; rsp_buffer_push(rsp, val & 0xff); rsp_buffer_push(rsp, (val >> 8) & 0xff); rsp_buffer_push(rsp, (val >> 16) & 0xff); rsp_buffer_push(rsp, (val >> 24) & 0xff); } static void set_sel_time(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint32_t val; struct ipmi_time now; val = cmd[2] | (cmd[3] << 8) | (cmd[4] << 16) | (cmd[5] << 24); ipmi_gettime(&now); ibs->sel.time_offset = now.tv_sec - ((long) val); } static void platform_event_msg(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { uint8_t event[16]; event[2] = 2; /* System event record */ event[7] = cmd[2]; /* Generator ID */ event[8] = 0; event[9] = cmd[3]; /* EvMRev */ event[10] = cmd[4]; /* Sensor type */ event[11] = cmd[5]; /* Sensor number */ event[12] = cmd[6]; /* Event dir / Event type */ event[13] = cmd[7]; /* Event data 1 */ event[14] = cmd[8]; /* Event data 2 */ event[15] = cmd[9]; /* Event data 3 */ if (sel_add_event(ibs, event)) { rsp_buffer_set_error(rsp, IPMI_CC_OUT_OF_SPACE); } } static void set_sensor_evt_enable(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; switch ((cmd[3] >> 4) & 0x3) { case 0: /* Do not change */ break; case 1: /* Enable bits */ if (cmd_len > 4) { sens->assert_enable |= cmd[4]; } if (cmd_len > 5) { sens->assert_enable |= cmd[5] << 8; } if (cmd_len > 6) { sens->deassert_enable |= cmd[6]; } if (cmd_len > 7) { sens->deassert_enable |= cmd[7] << 8; } break; case 2: /* Disable bits */ if (cmd_len > 4) { sens->assert_enable &= ~cmd[4]; } if (cmd_len > 5) { sens->assert_enable &= ~(cmd[5] << 8); } if (cmd_len > 6) { sens->deassert_enable &= ~cmd[6]; } if (cmd_len > 7) { sens->deassert_enable &= ~(cmd[7] << 8); } break; case 3: rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD); return; } IPMI_SENSOR_SET_RET_STATUS(sens, cmd[3]); } static void get_sensor_evt_enable(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens)); rsp_buffer_push(rsp, sens->assert_enable & 0xff); rsp_buffer_push(rsp, (sens->assert_enable >> 8) & 0xff); rsp_buffer_push(rsp, sens->deassert_enable & 0xff); rsp_buffer_push(rsp, (sens->deassert_enable >> 8) & 0xff); } static void rearm_sensor_evts(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; if ((cmd[3] & 0x80) == 0) { /* Just clear everything */ sens->states = 0; return; } } static void get_sensor_evt_status(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; rsp_buffer_push(rsp, sens->reading); rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens)); rsp_buffer_push(rsp, sens->assert_states & 0xff); rsp_buffer_push(rsp, (sens->assert_states >> 8) & 0xff); rsp_buffer_push(rsp, sens->deassert_states & 0xff); rsp_buffer_push(rsp, (sens->deassert_states >> 8) & 0xff); } static void get_sensor_reading(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; rsp_buffer_push(rsp, sens->reading); rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens)); rsp_buffer_push(rsp, sens->states & 0xff); if (IPMI_SENSOR_IS_DISCRETE(sens)) { rsp_buffer_push(rsp, (sens->states >> 8) & 0xff); } } static void set_sensor_type(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; sens->sensor_type = cmd[3]; sens->evt_reading_type_code = cmd[4] & 0x7f; } static void get_sensor_type(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, RspBuffer *rsp) { IPMISensor *sens; if ((cmd[2] >= MAX_SENSORS) || !IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) { rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT); return; } sens = ibs->sensors + cmd[2]; rsp_buffer_push(rsp, sens->sensor_type); rsp_buffer_push(rsp, sens->evt_reading_type_code); } static const IPMICmdHandler chassis_cmds[] = { [IPMI_CMD_GET_CHASSIS_CAPABILITIES] = { chassis_capabilities }, [IPMI_CMD_GET_CHASSIS_STATUS] = { chassis_status }, [IPMI_CMD_CHASSIS_CONTROL] = { chassis_control, 3 }, [IPMI_CMD_GET_SYS_RESTART_CAUSE] = { chassis_get_sys_restart_cause } }; static const IPMINetfn chassis_netfn = { .cmd_nums = ARRAY_SIZE(chassis_cmds), .cmd_handlers = chassis_cmds }; static const IPMICmdHandler sensor_event_cmds[] = { [IPMI_CMD_PLATFORM_EVENT_MSG] = { platform_event_msg, 10 }, [IPMI_CMD_SET_SENSOR_EVT_ENABLE] = { set_sensor_evt_enable, 4 }, [IPMI_CMD_GET_SENSOR_EVT_ENABLE] = { get_sensor_evt_enable, 3 }, [IPMI_CMD_REARM_SENSOR_EVTS] = { rearm_sensor_evts, 4 }, [IPMI_CMD_GET_SENSOR_EVT_STATUS] = { get_sensor_evt_status, 3 }, [IPMI_CMD_GET_SENSOR_READING] = { get_sensor_reading, 3 }, [IPMI_CMD_SET_SENSOR_TYPE] = { set_sensor_type, 5 }, [IPMI_CMD_GET_SENSOR_TYPE] = { get_sensor_type, 3 }, }; static const IPMINetfn sensor_event_netfn = { .cmd_nums = ARRAY_SIZE(sensor_event_cmds), .cmd_handlers = sensor_event_cmds }; static const IPMICmdHandler app_cmds[] = { [IPMI_CMD_GET_DEVICE_ID] = { get_device_id }, [IPMI_CMD_COLD_RESET] = { cold_reset }, [IPMI_CMD_WARM_RESET] = { warm_reset }, [IPMI_CMD_SET_ACPI_POWER_STATE] = { set_acpi_power_state, 4 }, [IPMI_CMD_GET_ACPI_POWER_STATE] = { get_acpi_power_state }, [IPMI_CMD_GET_DEVICE_GUID] = { get_device_guid }, [IPMI_CMD_SET_BMC_GLOBAL_ENABLES] = { set_bmc_global_enables, 3 }, [IPMI_CMD_GET_BMC_GLOBAL_ENABLES] = { get_bmc_global_enables }, [IPMI_CMD_CLR_MSG_FLAGS] = { clr_msg_flags, 3 }, [IPMI_CMD_GET_MSG_FLAGS] = { get_msg_flags }, [IPMI_CMD_GET_MSG] = { get_msg }, [IPMI_CMD_SEND_MSG] = { send_msg, 3 }, [IPMI_CMD_READ_EVT_MSG_BUF] = { read_evt_msg_buf }, [IPMI_CMD_RESET_WATCHDOG_TIMER] = { reset_watchdog_timer }, [IPMI_CMD_SET_WATCHDOG_TIMER] = { set_watchdog_timer, 8 }, [IPMI_CMD_GET_WATCHDOG_TIMER] = { get_watchdog_timer }, }; static const IPMINetfn app_netfn = { .cmd_nums = ARRAY_SIZE(app_cmds), .cmd_handlers = app_cmds }; static const IPMICmdHandler storage_cmds[] = { [IPMI_CMD_GET_FRU_AREA_INFO] = { get_fru_area_info, 3 }, [IPMI_CMD_READ_FRU_DATA] = { read_fru_data, 5 }, [IPMI_CMD_WRITE_FRU_DATA] = { write_fru_data, 5 }, [IPMI_CMD_GET_SDR_REP_INFO] = { get_sdr_rep_info }, [IPMI_CMD_RESERVE_SDR_REP] = { reserve_sdr_rep }, [IPMI_CMD_GET_SDR] = { get_sdr, 8 }, [IPMI_CMD_ADD_SDR] = { add_sdr }, [IPMI_CMD_CLEAR_SDR_REP] = { clear_sdr_rep, 8 }, [IPMI_CMD_GET_SEL_INFO] = { get_sel_info }, [IPMI_CMD_RESERVE_SEL] = { reserve_sel }, [IPMI_CMD_GET_SEL_ENTRY] = { get_sel_entry, 8 }, [IPMI_CMD_ADD_SEL_ENTRY] = { add_sel_entry, 18 }, [IPMI_CMD_CLEAR_SEL] = { clear_sel, 8 }, [IPMI_CMD_GET_SEL_TIME] = { get_sel_time }, [IPMI_CMD_SET_SEL_TIME] = { set_sel_time, 6 }, }; static const IPMINetfn storage_netfn = { .cmd_nums = ARRAY_SIZE(storage_cmds), .cmd_handlers = storage_cmds }; static void register_cmds(IPMIBmcSim *s) { ipmi_register_netfn(s, IPMI_NETFN_CHASSIS, &chassis_netfn); ipmi_register_netfn(s, IPMI_NETFN_SENSOR_EVENT, &sensor_event_netfn); ipmi_register_netfn(s, IPMI_NETFN_APP, &app_netfn); ipmi_register_netfn(s, IPMI_NETFN_STORAGE, &storage_netfn); } static uint8_t init_sdrs[] = { /* Watchdog device */ 0x00, 0x00, 0x51, 0x02, 35, 0x20, 0x00, 0x00, 0x23, 0x01, 0x63, 0x00, 0x23, 0x6f, 0x0f, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc8, 'W', 'a', 't', 'c', 'h', 'd', 'o', 'g', }; static void ipmi_sdr_init(IPMIBmcSim *ibs) { unsigned int i; int len; size_t sdrs_size; uint8_t *sdrs; sdrs_size = sizeof(init_sdrs); sdrs = init_sdrs; if (ibs->sdr_filename && !g_file_get_contents(ibs->sdr_filename, (gchar **) &sdrs, &sdrs_size, NULL)) { error_report("failed to load sdr file '%s'", ibs->sdr_filename); sdrs_size = sizeof(init_sdrs); sdrs = init_sdrs; } for (i = 0; i < sdrs_size; i += len) { struct ipmi_sdr_header *sdrh; if (i + IPMI_SDR_HEADER_SIZE > sdrs_size) { error_report("Problem with recid 0x%4.4x", i); break; } sdrh = (struct ipmi_sdr_header *) &sdrs[i]; len = ipmi_sdr_length(sdrh); if (i + len > sdrs_size) { error_report("Problem with recid 0x%4.4x", i); break; } sdr_add_entry(ibs, sdrh, len, NULL); } if (sdrs != init_sdrs) { g_free(sdrs); } } static const VMStateDescription vmstate_ipmi_sim = { .name = TYPE_IPMI_BMC_SIMULATOR, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(bmc_global_enables, IPMIBmcSim), VMSTATE_UINT8(msg_flags, IPMIBmcSim), VMSTATE_BOOL(watchdog_initialized, IPMIBmcSim), VMSTATE_UINT8(watchdog_use, IPMIBmcSim), VMSTATE_UINT8(watchdog_action, IPMIBmcSim), VMSTATE_UINT8(watchdog_pretimeout, IPMIBmcSim), VMSTATE_BOOL(watchdog_expired, IPMIBmcSim), VMSTATE_UINT16(watchdog_timeout, IPMIBmcSim), VMSTATE_BOOL(watchdog_running, IPMIBmcSim), VMSTATE_BOOL(watchdog_preaction_ran, IPMIBmcSim), VMSTATE_INT64(watchdog_expiry, IPMIBmcSim), VMSTATE_UINT8_ARRAY(evtbuf, IPMIBmcSim, 16), VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].status, IPMIBmcSim), VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].reading, IPMIBmcSim), VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].states, IPMIBmcSim), VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_states, IPMIBmcSim), VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].deassert_states, IPMIBmcSim), VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_enable, IPMIBmcSim), VMSTATE_END_OF_LIST() } }; static void ipmi_fru_init(IPMIFru *fru) { int fsize; int size = 0; if (!fru->filename) { goto out; } fsize = get_image_size(fru->filename); if (fsize > 0) { size = QEMU_ALIGN_UP(fsize, fru->areasize); fru->data = g_malloc0(size); if (load_image_size(fru->filename, fru->data, fsize) != fsize) { error_report("Could not load file '%s'", fru->filename); g_free(fru->data); fru->data = NULL; } } out: if (!fru->data) { /* give one default FRU */ size = fru->areasize; fru->data = g_malloc0(size); } fru->nentries = size / fru->areasize; } static void ipmi_sim_realize(DeviceState *dev, Error **errp) { IPMIBmc *b = IPMI_BMC(dev); unsigned int i; IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b); QTAILQ_INIT(&ibs->rcvbufs); ibs->bmc_global_enables = (1 << IPMI_BMC_EVENT_LOG_BIT); ibs->device_id = 0x20; ibs->ipmi_version = 0x02; /* IPMI 2.0 */ ibs->restart_cause = 0; for (i = 0; i < 4; i++) { ibs->sel.last_addition[i] = 0xff; ibs->sel.last_clear[i] = 0xff; ibs->sdr.last_addition[i] = 0xff; ibs->sdr.last_clear[i] = 0xff; } ipmi_sdr_init(ibs); ipmi_fru_init(&ibs->fru); ibs->acpi_power_state[0] = 0; ibs->acpi_power_state[1] = 0; if (qemu_uuid_set) { memcpy(&ibs->uuid, &qemu_uuid, 16); } else { memset(&ibs->uuid, 0, 16); } ipmi_init_sensors_from_sdrs(ibs); register_cmds(ibs); ibs->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ipmi_timeout, ibs); vmstate_register(NULL, 0, &vmstate_ipmi_sim, ibs); } static Property ipmi_sim_properties[] = { DEFINE_PROP_UINT16("fruareasize", IPMIBmcSim, fru.areasize, 1024), DEFINE_PROP_STRING("frudatafile", IPMIBmcSim, fru.filename), DEFINE_PROP_STRING("sdrfile", IPMIBmcSim, sdr_filename), DEFINE_PROP_UINT8("device_id", IPMIBmcSim, device_id, 0x20), DEFINE_PROP_UINT8("ipmi_version", IPMIBmcSim, ipmi_version, 0x02), DEFINE_PROP_UINT8("device_rev", IPMIBmcSim, device_rev, 0), DEFINE_PROP_UINT8("fwrev1", IPMIBmcSim, fwrev1, 0), DEFINE_PROP_UINT8("fwrev2", IPMIBmcSim, fwrev2, 0), DEFINE_PROP_UINT32("mfg_id", IPMIBmcSim, mfg_id, 0), DEFINE_PROP_UINT16("product_id", IPMIBmcSim, product_id, 0), DEFINE_PROP_END_OF_LIST(), }; static void ipmi_sim_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); IPMIBmcClass *bk = IPMI_BMC_CLASS(oc); dc->hotpluggable = false; dc->realize = ipmi_sim_realize; dc->props = ipmi_sim_properties; bk->handle_command = ipmi_sim_handle_command; } static const TypeInfo ipmi_sim_type = { .name = TYPE_IPMI_BMC_SIMULATOR, .parent = TYPE_IPMI_BMC, .instance_size = sizeof(IPMIBmcSim), .class_init = ipmi_sim_class_init, }; static void ipmi_sim_register_types(void) { type_register_static(&ipmi_sim_type); } type_init(ipmi_sim_register_types)