/* * IMX25 Clock Control Module * * Copyright (C) 2012 NICTA * Updated by Jean-Christophe Dubois * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * To get the timer frequencies right, we need to emulate at least part of * the CCM. */ #include "qemu/osdep.h" #include "hw/misc/imx25_ccm.h" #include "qemu/log.h" #ifndef DEBUG_IMX25_CCM #define DEBUG_IMX25_CCM 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX25_CCM) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \ __func__, ##args); \ } \ } while (0) static const char *imx25_ccm_reg_name(uint32_t reg) { static char unknown[20]; switch (reg) { case IMX25_CCM_MPCTL_REG: return "mpctl"; case IMX25_CCM_UPCTL_REG: return "upctl"; case IMX25_CCM_CCTL_REG: return "cctl"; case IMX25_CCM_CGCR0_REG: return "cgcr0"; case IMX25_CCM_CGCR1_REG: return "cgcr1"; case IMX25_CCM_CGCR2_REG: return "cgcr2"; case IMX25_CCM_PCDR0_REG: return "pcdr0"; case IMX25_CCM_PCDR1_REG: return "pcdr1"; case IMX25_CCM_PCDR2_REG: return "pcdr2"; case IMX25_CCM_PCDR3_REG: return "pcdr3"; case IMX25_CCM_RCSR_REG: return "rcsr"; case IMX25_CCM_CRDR_REG: return "crdr"; case IMX25_CCM_DCVR0_REG: return "dcvr0"; case IMX25_CCM_DCVR1_REG: return "dcvr1"; case IMX25_CCM_DCVR2_REG: return "dcvr2"; case IMX25_CCM_DCVR3_REG: return "dcvr3"; case IMX25_CCM_LTR0_REG: return "ltr0"; case IMX25_CCM_LTR1_REG: return "ltr1"; case IMX25_CCM_LTR2_REG: return "ltr2"; case IMX25_CCM_LTR3_REG: return "ltr3"; case IMX25_CCM_LTBR0_REG: return "ltbr0"; case IMX25_CCM_LTBR1_REG: return "ltbr1"; case IMX25_CCM_PMCR0_REG: return "pmcr0"; case IMX25_CCM_PMCR1_REG: return "pmcr1"; case IMX25_CCM_PMCR2_REG: return "pmcr2"; case IMX25_CCM_MCR_REG: return "mcr"; case IMX25_CCM_LPIMR0_REG: return "lpimr0"; case IMX25_CCM_LPIMR1_REG: return "lpimr1"; default: sprintf(unknown, "[%d ?]", reg); return unknown; } } #define CKIH_FREQ 24000000 /* 24MHz crystal input */ static const VMStateDescription vmstate_imx25_ccm = { .name = TYPE_IMX25_CCM, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG), VMSTATE_END_OF_LIST() }, }; static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev) { uint32_t freq; IMX25CCMState *s = IMX25_CCM(dev); if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) { freq = CKIH_FREQ; } else { freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ); } DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev) { uint32_t freq; IMX25CCMState *s = IMX25_CCM(dev); freq = imx25_ccm_get_mpll_clk(dev); if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) { freq = (freq * 3 / 4); } freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV)); DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev) { uint32_t freq; IMX25CCMState *s = IMX25_CCM(dev); freq = imx25_ccm_get_mcu_clk(dev) / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV)); DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev) { uint32_t freq; freq = imx25_ccm_get_ahb_clk(dev) / 2; DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock) { uint32_t freq = 0; DPRINTF("Clock = %d)\n", clock); switch (clock) { case CLK_NONE: break; case CLK_IPG: case CLK_IPG_HIGH: freq = imx25_ccm_get_ipg_clk(dev); break; case CLK_32k: freq = CKIL_FREQ; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n", TYPE_IMX25_CCM, __func__, clock); break; } DPRINTF("Clock = %d) = %d\n", clock, freq); return freq; } static void imx25_ccm_reset(DeviceState *dev) { IMX25CCMState *s = IMX25_CCM(dev); DPRINTF("\n"); memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t)); s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01; s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800; /* * The value below gives: * CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz. */ s->reg[IMX25_CCM_CCTL_REG] = 0xd0030000; s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100; s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100; s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438; s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101; s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101; s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101; s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101; s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000; s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030; s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030; s->reg[IMX25_CCM_MCR_REG] = 0x43000000; /* * default boot will change the reset values to allow: * CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz. * For some reason, this doesn't work. With the value below, linux * detects a 88 MHz IPG CLK instead of 66,5 MHz. s->reg[IMX25_CCM_CCTL_REG] = 0x20032000; */ } static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value = 0; IMX25CCMState *s = (IMX25CCMState *)opaque; if (offset < 0x70) { value = s->reg[offset >> 2]; } else { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset); } DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2), value); return value; } static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMX25CCMState *s = (IMX25CCMState *)opaque; DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2), (uint32_t)value); if (offset < 0x70) { /* * We will do a better implementation later. In particular some bits * cannot be written to. */ s->reg[offset >> 2] = value; } else { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset); } } static const struct MemoryRegionOps imx25_ccm_ops = { .read = imx25_ccm_read, .write = imx25_ccm_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { /* * Our device would not work correctly if the guest was doing * unaligned access. This might not be a limitation on the real * device but in practice there is no reason for a guest to access * this device unaligned. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void imx25_ccm_init(Object *obj) { DeviceState *dev = DEVICE(obj); SysBusDevice *sd = SYS_BUS_DEVICE(obj); IMX25CCMState *s = IMX25_CCM(obj); memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s, TYPE_IMX25_CCM, 0x1000); sysbus_init_mmio(sd, &s->iomem); } static void imx25_ccm_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IMXCCMClass *ccm = IMX_CCM_CLASS(klass); dc->reset = imx25_ccm_reset; dc->vmsd = &vmstate_imx25_ccm; dc->desc = "i.MX25 Clock Control Module"; ccm->get_clock_frequency = imx25_ccm_get_clock_frequency; } static const TypeInfo imx25_ccm_info = { .name = TYPE_IMX25_CCM, .parent = TYPE_IMX_CCM, .instance_size = sizeof(IMX25CCMState), .instance_init = imx25_ccm_init, .class_init = imx25_ccm_class_init, }; static void imx25_ccm_register_types(void) { type_register_static(&imx25_ccm_info); } type_init(imx25_ccm_register_types)