/* * Status and system control registers for Xilinx Zynq Platform * * Copyright (c) 2011 Michal Simek * Copyright (c) 2012 PetaLogix Pty Ltd. * Based on hw/arm_sysctl.c, written by Paul Brook * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/hw.h" #include "qemu/timer.h" #include "hw/sysbus.h" #include "sysemu/sysemu.h" #include "qemu/log.h" #ifndef ZYNQ_SLCR_ERR_DEBUG #define ZYNQ_SLCR_ERR_DEBUG 0 #endif #define DB_PRINT(...) do { \ if (ZYNQ_SLCR_ERR_DEBUG) { \ fprintf(stderr, ": %s: ", __func__); \ fprintf(stderr, ## __VA_ARGS__); \ } \ } while (0) #define XILINX_LOCK_KEY 0x767b #define XILINX_UNLOCK_KEY 0xdf0d #define R_PSS_RST_CTRL_SOFT_RST 0x1 enum { SCL = 0x000 / 4, LOCK, UNLOCK, LOCKSTA, ARM_PLL_CTRL = 0x100 / 4, DDR_PLL_CTRL, IO_PLL_CTRL, PLL_STATUS, ARM_PLL_CFG, DDR_PLL_CFG, IO_PLL_CFG, ARM_CLK_CTRL = 0x120 / 4, DDR_CLK_CTRL, DCI_CLK_CTRL, APER_CLK_CTRL, USB0_CLK_CTRL, USB1_CLK_CTRL, GEM0_RCLK_CTRL, GEM1_RCLK_CTRL, GEM0_CLK_CTRL, GEM1_CLK_CTRL, SMC_CLK_CTRL, LQSPI_CLK_CTRL, SDIO_CLK_CTRL, UART_CLK_CTRL, SPI_CLK_CTRL, CAN_CLK_CTRL, CAN_MIOCLK_CTRL, DBG_CLK_CTRL, PCAP_CLK_CTRL, TOPSW_CLK_CTRL, #define FPGA_CTRL_REGS(n, start) \ FPGA ## n ## _CLK_CTRL = (start) / 4, \ FPGA ## n ## _THR_CTRL, \ FPGA ## n ## _THR_CNT, \ FPGA ## n ## _THR_STA, FPGA_CTRL_REGS(0, 0x170) FPGA_CTRL_REGS(1, 0x180) FPGA_CTRL_REGS(2, 0x190) FPGA_CTRL_REGS(3, 0x1a0) BANDGAP_TRIP = 0x1b8 / 4, PLL_PREDIVISOR = 0x1c0 / 4, CLK_621_TRUE, PSS_RST_CTRL = 0x200 / 4, DDR_RST_CTRL, TOPSW_RESET_CTRL, DMAC_RST_CTRL, USB_RST_CTRL, GEM_RST_CTRL, SDIO_RST_CTRL, SPI_RST_CTRL, CAN_RST_CTRL, I2C_RST_CTRL, UART_RST_CTRL, GPIO_RST_CTRL, LQSPI_RST_CTRL, SMC_RST_CTRL, OCM_RST_CTRL, FPGA_RST_CTRL = 0x240 / 4, A9_CPU_RST_CTRL, RS_AWDT_CTRL = 0x24c / 4, RST_REASON, REBOOT_STATUS = 0x258 / 4, BOOT_MODE, APU_CTRL = 0x300 / 4, WDT_CLK_SEL, TZ_DMA_NS = 0x440 / 4, TZ_DMA_IRQ_NS, TZ_DMA_PERIPH_NS, PSS_IDCODE = 0x530 / 4, DDR_URGENT = 0x600 / 4, DDR_CAL_START = 0x60c / 4, DDR_REF_START = 0x614 / 4, DDR_CMD_STA, DDR_URGENT_SEL, DDR_DFI_STATUS, MIO = 0x700 / 4, #define MIO_LENGTH 54 MIO_LOOPBACK = 0x804 / 4, MIO_MST_TRI0, MIO_MST_TRI1, SD0_WP_CD_SEL = 0x830 / 4, SD1_WP_CD_SEL, LVL_SHFTR_EN = 0x900 / 4, OCM_CFG = 0x910 / 4, CPU_RAM = 0xa00 / 4, IOU = 0xa30 / 4, DMAC_RAM = 0xa50 / 4, AFI0 = 0xa60 / 4, AFI1 = AFI0 + 3, AFI2 = AFI1 + 3, AFI3 = AFI2 + 3, #define AFI_LENGTH 3 OCM = 0xa90 / 4, DEVCI_RAM = 0xaa0 / 4, CSG_RAM = 0xab0 / 4, GPIOB_CTRL = 0xb00 / 4, GPIOB_CFG_CMOS18, GPIOB_CFG_CMOS25, GPIOB_CFG_CMOS33, GPIOB_CFG_HSTL = 0xb14 / 4, GPIOB_DRVR_BIAS_CTRL, DDRIOB = 0xb40 / 4, #define DDRIOB_LENGTH 14 }; #define ZYNQ_SLCR_MMIO_SIZE 0x1000 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4) #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr" #define ZYNQ_SLCR(obj) OBJECT_CHECK(ZynqSLCRState, (obj), TYPE_ZYNQ_SLCR) typedef struct ZynqSLCRState { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t regs[ZYNQ_SLCR_NUM_REGS]; } ZynqSLCRState; static void zynq_slcr_reset(DeviceState *d) { ZynqSLCRState *s = ZYNQ_SLCR(d); int i; DB_PRINT("RESET\n"); s->regs[LOCKSTA] = 1; /* 0x100 - 0x11C */ s->regs[ARM_PLL_CTRL] = 0x0001A008; s->regs[DDR_PLL_CTRL] = 0x0001A008; s->regs[IO_PLL_CTRL] = 0x0001A008; s->regs[PLL_STATUS] = 0x0000003F; s->regs[ARM_PLL_CFG] = 0x00014000; s->regs[DDR_PLL_CFG] = 0x00014000; s->regs[IO_PLL_CFG] = 0x00014000; /* 0x120 - 0x16C */ s->regs[ARM_CLK_CTRL] = 0x1F000400; s->regs[DDR_CLK_CTRL] = 0x18400003; s->regs[DCI_CLK_CTRL] = 0x01E03201; s->regs[APER_CLK_CTRL] = 0x01FFCCCD; s->regs[USB0_CLK_CTRL] = s->regs[USB1_CLK_CTRL] = 0x00101941; s->regs[GEM0_RCLK_CTRL] = s->regs[GEM1_RCLK_CTRL] = 0x00000001; s->regs[GEM0_CLK_CTRL] = s->regs[GEM1_CLK_CTRL] = 0x00003C01; s->regs[SMC_CLK_CTRL] = 0x00003C01; s->regs[LQSPI_CLK_CTRL] = 0x00002821; s->regs[SDIO_CLK_CTRL] = 0x00001E03; s->regs[UART_CLK_CTRL] = 0x00003F03; s->regs[SPI_CLK_CTRL] = 0x00003F03; s->regs[CAN_CLK_CTRL] = 0x00501903; s->regs[DBG_CLK_CTRL] = 0x00000F03; s->regs[PCAP_CLK_CTRL] = 0x00000F01; /* 0x170 - 0x1AC */ s->regs[FPGA0_CLK_CTRL] = s->regs[FPGA1_CLK_CTRL] = s->regs[FPGA2_CLK_CTRL] = s->regs[FPGA3_CLK_CTRL] = 0x00101800; s->regs[FPGA0_THR_STA] = s->regs[FPGA1_THR_STA] = s->regs[FPGA2_THR_STA] = s->regs[FPGA3_THR_STA] = 0x00010000; /* 0x1B0 - 0x1D8 */ s->regs[BANDGAP_TRIP] = 0x0000001F; s->regs[PLL_PREDIVISOR] = 0x00000001; s->regs[CLK_621_TRUE] = 0x00000001; /* 0x200 - 0x25C */ s->regs[FPGA_RST_CTRL] = 0x01F33F0F; s->regs[RST_REASON] = 0x00000040; s->regs[BOOT_MODE] = 0x00000001; /* 0x700 - 0x7D4 */ for (i = 0; i < 54; i++) { s->regs[MIO + i] = 0x00001601; } for (i = 2; i <= 8; i++) { s->regs[MIO + i] = 0x00000601; } s->regs[MIO_MST_TRI0] = s->regs[MIO_MST_TRI1] = 0xFFFFFFFF; s->regs[CPU_RAM + 0] = s->regs[CPU_RAM + 1] = s->regs[CPU_RAM + 3] = s->regs[CPU_RAM + 4] = s->regs[CPU_RAM + 7] = 0x00010101; s->regs[CPU_RAM + 2] = s->regs[CPU_RAM + 5] = 0x01010101; s->regs[CPU_RAM + 6] = 0x00000001; s->regs[IOU + 0] = s->regs[IOU + 1] = s->regs[IOU + 2] = s->regs[IOU + 3] = 0x09090909; s->regs[IOU + 4] = s->regs[IOU + 5] = 0x00090909; s->regs[IOU + 6] = 0x00000909; s->regs[DMAC_RAM] = 0x00000009; s->regs[AFI0 + 0] = s->regs[AFI0 + 1] = 0x09090909; s->regs[AFI1 + 0] = s->regs[AFI1 + 1] = 0x09090909; s->regs[AFI2 + 0] = s->regs[AFI2 + 1] = 0x09090909; s->regs[AFI3 + 0] = s->regs[AFI3 + 1] = 0x09090909; s->regs[AFI0 + 2] = s->regs[AFI1 + 2] = s->regs[AFI2 + 2] = s->regs[AFI3 + 2] = 0x00000909; s->regs[OCM + 0] = 0x01010101; s->regs[OCM + 1] = s->regs[OCM + 2] = 0x09090909; s->regs[DEVCI_RAM] = 0x00000909; s->regs[CSG_RAM] = 0x00000001; s->regs[DDRIOB + 0] = s->regs[DDRIOB + 1] = s->regs[DDRIOB + 2] = s->regs[DDRIOB + 3] = 0x00000e00; s->regs[DDRIOB + 4] = s->regs[DDRIOB + 5] = s->regs[DDRIOB + 6] = 0x00000e00; s->regs[DDRIOB + 12] = 0x00000021; } static bool zynq_slcr_check_offset(hwaddr offset, bool rnw) { switch (offset) { case LOCK: case UNLOCK: case DDR_CAL_START: case DDR_REF_START: return !rnw; /* Write only */ case LOCKSTA: case FPGA0_THR_STA: case FPGA1_THR_STA: case FPGA2_THR_STA: case FPGA3_THR_STA: case BOOT_MODE: case PSS_IDCODE: case DDR_CMD_STA: case DDR_DFI_STATUS: case PLL_STATUS: return rnw;/* read only */ case SCL: case ARM_PLL_CTRL ... IO_PLL_CTRL: case ARM_PLL_CFG ... IO_PLL_CFG: case ARM_CLK_CTRL ... TOPSW_CLK_CTRL: case FPGA0_CLK_CTRL ... FPGA0_THR_CNT: case FPGA1_CLK_CTRL ... FPGA1_THR_CNT: case FPGA2_CLK_CTRL ... FPGA2_THR_CNT: case FPGA3_CLK_CTRL ... FPGA3_THR_CNT: case BANDGAP_TRIP: case PLL_PREDIVISOR: case CLK_621_TRUE: case PSS_RST_CTRL ... A9_CPU_RST_CTRL: case RS_AWDT_CTRL: case RST_REASON: case REBOOT_STATUS: case APU_CTRL: case WDT_CLK_SEL: case TZ_DMA_NS ... TZ_DMA_PERIPH_NS: case DDR_URGENT: case DDR_URGENT_SEL: case MIO ... MIO + MIO_LENGTH - 1: case MIO_LOOPBACK ... MIO_MST_TRI1: case SD0_WP_CD_SEL: case SD1_WP_CD_SEL: case LVL_SHFTR_EN: case OCM_CFG: case CPU_RAM: case IOU: case DMAC_RAM: case AFI0 ... AFI3 + AFI_LENGTH - 1: case OCM: case DEVCI_RAM: case CSG_RAM: case GPIOB_CTRL ... GPIOB_CFG_CMOS33: case GPIOB_CFG_HSTL: case GPIOB_DRVR_BIAS_CTRL: case DDRIOB ... DDRIOB + DDRIOB_LENGTH - 1: return true; default: return false; } } static uint64_t zynq_slcr_read(void *opaque, hwaddr offset, unsigned size) { ZynqSLCRState *s = opaque; offset /= 4; uint32_t ret = s->regs[offset]; if (!zynq_slcr_check_offset(offset, true)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to " " addr %" HWADDR_PRIx "\n", offset * 4); } DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret); return ret; } static void zynq_slcr_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { ZynqSLCRState *s = (ZynqSLCRState *)opaque; offset /= 4; DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val); if (!zynq_slcr_check_offset(offset, false)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to " "addr %" HWADDR_PRIx "\n", offset * 4); return; } switch (offset) { case SCL: s->regs[SCL] = val & 0x1; return; case LOCK: if ((val & 0xFFFF) == XILINX_LOCK_KEY) { DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); s->regs[LOCKSTA] = 1; } else { DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); } return; case UNLOCK: if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) { DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); s->regs[LOCKSTA] = 0; } else { DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); } return; } if (s->regs[LOCKSTA]) { qemu_log_mask(LOG_GUEST_ERROR, "SCLR registers are locked. Unlock them first\n"); return; } s->regs[offset] = val; switch (offset) { case PSS_RST_CTRL: if (val & R_PSS_RST_CTRL_SOFT_RST) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; } } static const MemoryRegionOps slcr_ops = { .read = zynq_slcr_read, .write = zynq_slcr_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void zynq_slcr_init(Object *obj) { ZynqSLCRState *s = ZYNQ_SLCR(obj); memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr", ZYNQ_SLCR_MMIO_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); } static const VMStateDescription vmstate_zynq_slcr = { .name = "zynq_slcr", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS), VMSTATE_END_OF_LIST() } }; static void zynq_slcr_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_zynq_slcr; dc->reset = zynq_slcr_reset; } static const TypeInfo zynq_slcr_info = { .class_init = zynq_slcr_class_init, .name = TYPE_ZYNQ_SLCR, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ZynqSLCRState), .instance_init = zynq_slcr_init, }; static void zynq_slcr_register_types(void) { type_register_static(&zynq_slcr_info); } type_init(zynq_slcr_register_types)