/* * QEMU PowerPC PowerNV machine model * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "sysemu/cpus.h" #include "hw/hw.h" #include "target/ppc/cpu.h" #include "qemu/log.h" #include "hw/ppc/fdt.h" #include "hw/ppc/ppc.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_core.h" #include "hw/loader.h" #include "exec/address-spaces.h" #include "qemu/cutils.h" #include "qapi/visitor.h" #include "monitor/monitor.h" #include "hw/intc/intc.h" #include "hw/ipmi/ipmi.h" #include "target/ppc/mmu-hash64.h" #include "hw/ppc/xics.h" #include "hw/ppc/pnv_xscom.h" #include "hw/isa/isa.h" #include "hw/char/serial.h" #include "hw/timer/mc146818rtc.h" #include #define FDT_MAX_SIZE 0x00100000 #define FW_FILE_NAME "skiboot.lid" #define FW_LOAD_ADDR 0x0 #define FW_MAX_SIZE 0x00400000 #define KERNEL_LOAD_ADDR 0x20000000 #define INITRD_LOAD_ADDR 0x60000000 static const char *pnv_chip_core_typename(const PnvChip *o) { const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); const char *core_type = object_class_get_name(object_class_by_name(s)); g_free(s); return core_type; } /* * On Power Systems E880 (POWER8), the max cpus (threads) should be : * 4 * 4 sockets * 12 cores * 8 threads = 1536 * Let's make it 2^11 */ #define MAX_CPUS 2048 /* * Memory nodes are created by hostboot, one for each range of memory * that has a different "affinity". In practice, it means one range * per chip. */ static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) { char *mem_name; uint64_t mem_reg_property[2]; int off; mem_reg_property[0] = cpu_to_be64(start); mem_reg_property[1] = cpu_to_be64(size); mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); off = fdt_add_subnode(fdt, 0, mem_name); g_free(mem_name); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); } static int get_cpus_node(void *fdt) { int cpus_offset = fdt_path_offset(fdt, "/cpus"); if (cpus_offset < 0) { cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); if (cpus_offset) { _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); } } _FDT(cpus_offset); return cpus_offset; } /* * The PowerNV cores (and threads) need to use real HW ids and not an * incremental index like it has been done on other platforms. This HW * id is stored in the CPU PIR, it is used to create cpu nodes in the * device tree, used in XSCOM to address cores and in interrupt * servers. */ static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) { CPUState *cs = CPU(DEVICE(pc->threads)); DeviceClass *dc = DEVICE_GET_CLASS(cs); PowerPCCPU *cpu = POWERPC_CPU(cs); int smt_threads = CPU_CORE(pc)->nr_threads; CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); uint32_t servers_prop[smt_threads]; int i; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = PNV_TIMEBASE_FREQ; uint32_t cpufreq = 1000000000; uint32_t page_sizes_prop[64]; size_t page_sizes_prop_size; const uint8_t pa_features[] = { 24, 0, 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; int offset; char *nodename; int cpus_offset = get_cpus_node(fdt); nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); offset = fdt_add_subnode(fdt, cpus_offset, nodename); _FDT(offset); g_free(nodename); _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", env->icache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", env->icache_line_size))); if (pcc->l1_dcache_size) { _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", pcc->l1_dcache_size))); } else { warn_report("Unknown L1 dcache size for cpu"); } if (pcc->l1_icache_size) { _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", pcc->l1_icache_size))); } else { warn_report("Unknown L1 icache size for cpu"); } _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); if (env->spr_cb[SPR_PURR].oea_read) { _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); } if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); } /* Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (env->insns_flags2 & PPC2_DFP) { _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); } page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, sizeof(page_sizes_prop)); if (page_sizes_prop_size) { _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", page_sizes_prop, page_sizes_prop_size))); } _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, sizeof(pa_features)))); /* Build interrupt servers properties */ for (i = 0; i < smt_threads; i++) { servers_prop[i] = cpu_to_be32(pc->pir + i); } _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(servers_prop)))); } static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, uint32_t nr_threads) { uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); char *name; const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; uint32_t irange[2], i, rsize; uint64_t *reg; int offset; irange[0] = cpu_to_be32(pir); irange[1] = cpu_to_be32(nr_threads); rsize = sizeof(uint64_t) * 2 * nr_threads; reg = g_malloc(rsize); for (i = 0; i < nr_threads; i++) { reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); reg[i * 2 + 1] = cpu_to_be64(0x1000); } name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); offset = fdt_add_subnode(fdt, 0, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", irange, sizeof(irange)))); _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); g_free(reg); } static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt) { char *name; int offset; name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE); offset = fdt_path_offset(fdt, name); g_free(name); return offset; } static void pnv_dt_chip(PnvChip *chip, void *fdt) { const char *typename = pnv_chip_core_typename(chip); size_t typesize = object_type_get_instance_size(typename); int i; pnv_dt_xscom(chip, fdt, 0); /* The default LPC bus of a multichip system is on chip 0. It's * recognized by the firmware (skiboot) using a "primary" * property. */ if (chip->chip_id == 0x0) { int lpc_offset = pnv_chip_lpc_offset(chip, fdt); _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0))); } for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); pnv_dt_core(chip, pnv_core, fdt); /* Interrupt Control Presenters (ICP). One per core. */ pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); } if (chip->ram_size) { pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); } } static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) { uint32_t io_base = d->ioport_id; uint32_t io_regs[] = { cpu_to_be32(1), cpu_to_be32(io_base), cpu_to_be32(2) }; char *name; int node; name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); } static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) { const char compatible[] = "ns16550\0pnpPNP,501"; uint32_t io_base = d->ioport_id; uint32_t io_regs[] = { cpu_to_be32(1), cpu_to_be32(io_base), cpu_to_be32(8) }; char *name; int node; name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop(fdt, node, "compatible", compatible, sizeof(compatible)))); _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", fdt_get_phandle(fdt, lpc_off)))); /* This is needed by Linux */ _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); } static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) { const char compatible[] = "bt\0ipmi-bt"; uint32_t io_base; uint32_t io_regs[] = { cpu_to_be32(1), 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ cpu_to_be32(3) }; uint32_t irq; char *name; int node; io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); io_regs[1] = cpu_to_be32(io_base); irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop(fdt, node, "compatible", compatible, sizeof(compatible)))); /* Mark it as reserved to avoid Linux trying to claim it */ _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", fdt_get_phandle(fdt, lpc_off)))); } typedef struct ForeachPopulateArgs { void *fdt; int offset; } ForeachPopulateArgs; static int pnv_dt_isa_device(DeviceState *dev, void *opaque) { ForeachPopulateArgs *args = opaque; ISADevice *d = ISA_DEVICE(dev); if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { pnv_dt_rtc(d, args->fdt, args->offset); } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { pnv_dt_serial(d, args->fdt, args->offset); } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { pnv_dt_ipmi_bt(d, args->fdt, args->offset); } else { error_report("unknown isa device %s@i%x", qdev_fw_name(dev), d->ioport_id); } return 0; } static void pnv_dt_isa(ISABus *bus, void *fdt, int lpc_offset) { ForeachPopulateArgs args = { .fdt = fdt, .offset = lpc_offset, }; /* ISA devices are not necessarily parented to the ISA bus so we * can not use object_child_foreach() */ qbus_walk_children(BUS(bus), pnv_dt_isa_device, NULL, NULL, NULL, &args); } static void *pnv_dt_create(MachineState *machine) { const char plat_compat[] = "qemu,powernv\0ibm,powernv"; PnvMachineState *pnv = PNV_MACHINE(machine); void *fdt; char *buf; int off; int i; int lpc_offset; fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); /* Root node */ _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); _FDT((fdt_setprop_string(fdt, 0, "model", "IBM PowerNV (emulated by qemu)"))); _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat, sizeof(plat_compat)))); buf = qemu_uuid_unparse_strdup(&qemu_uuid); _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); if (qemu_uuid_set) { _FDT((fdt_property_string(fdt, "system-id", buf))); } g_free(buf); off = fdt_add_subnode(fdt, 0, "chosen"); if (machine->kernel_cmdline) { _FDT((fdt_setprop_string(fdt, off, "bootargs", machine->kernel_cmdline))); } if (pnv->initrd_size) { uint32_t start_prop = cpu_to_be32(pnv->initrd_base); uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); _FDT((fdt_setprop(fdt, off, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_setprop(fdt, off, "linux,initrd-end", &end_prop, sizeof(end_prop)))); } /* Populate device tree for each chip */ for (i = 0; i < pnv->num_chips; i++) { pnv_dt_chip(pnv->chips[i], fdt); } /* Populate ISA devices on chip 0 */ lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt); pnv_dt_isa(pnv->isa_bus, fdt, lpc_offset); if (pnv->bmc) { pnv_dt_bmc_sensors(pnv->bmc, fdt); } return fdt; } static void pnv_powerdown_notify(Notifier *n, void *opaque) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); if (pnv->bmc) { pnv_bmc_powerdown(pnv->bmc); } } static void pnv_reset(void) { MachineState *machine = MACHINE(qdev_get_machine()); PnvMachineState *pnv = PNV_MACHINE(machine); void *fdt; Object *obj; qemu_devices_reset(); /* OpenPOWER systems have a BMC, which can be defined on the * command line with: * * -device ipmi-bmc-sim,id=bmc0 * * This is the internal simulator but it could also be an external * BMC. */ obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); if (obj) { pnv->bmc = IPMI_BMC(obj); } fdt = pnv_dt_create(machine); /* Pack resulting tree */ _FDT((fdt_pack(fdt))); cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); } static ISABus *pnv_isa_create(PnvChip *chip) { PnvLpcController *lpc = &chip->lpc; ISABus *isa_bus; qemu_irq *irqs; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); /* let isa_bus_new() create its own bridge on SysBus otherwise * devices speficied on the command line won't find the bus and * will fail to create. */ isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &error_fatal); irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS); isa_bus_irqs(isa_bus, irqs); return isa_bus; } static void pnv_init(MachineState *machine) { PnvMachineState *pnv = PNV_MACHINE(machine); MemoryRegion *ram; char *fw_filename; long fw_size; int i; char *chip_typename; /* allocate RAM */ if (machine->ram_size < (1 * G_BYTE)) { warn_report("skiboot may not work with < 1GB of RAM"); } ram = g_new(MemoryRegion, 1); memory_region_allocate_system_memory(ram, NULL, "pnv.ram", machine->ram_size); memory_region_add_subregion(get_system_memory(), 0, ram); /* load skiboot firmware */ if (bios_name == NULL) { bios_name = FW_FILE_NAME; } fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (!fw_filename) { error_report("Could not find OPAL firmware '%s'", bios_name); exit(1); } fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); if (fw_size < 0) { error_report("Could not load OPAL firmware '%s'", fw_filename); exit(1); } g_free(fw_filename); /* load kernel */ if (machine->kernel_filename) { long kernel_size; kernel_size = load_image_targphys(machine->kernel_filename, KERNEL_LOAD_ADDR, 0x2000000); if (kernel_size < 0) { error_report("Could not load kernel '%s'", machine->kernel_filename); exit(1); } } /* load initrd */ if (machine->initrd_filename) { pnv->initrd_base = INITRD_LOAD_ADDR; pnv->initrd_size = load_image_targphys(machine->initrd_filename, pnv->initrd_base, 0x10000000); /* 128MB max */ if (pnv->initrd_size < 0) { error_report("Could not load initial ram disk '%s'", machine->initrd_filename); exit(1); } } /* Create the processor chips */ i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), i, machine->cpu_type); if (!object_class_by_name(chip_typename)) { error_report("invalid CPU model '%.*s' for %s machine", i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name); exit(1); } pnv->chips = g_new0(PnvChip *, pnv->num_chips); for (i = 0; i < pnv->num_chips; i++) { char chip_name[32]; Object *chip = object_new(chip_typename); pnv->chips[i] = PNV_CHIP(chip); /* TODO: put all the memory in one node on chip 0 until we find a * way to specify different ranges for each chip */ if (i == 0) { object_property_set_int(chip, machine->ram_size, "ram-size", &error_fatal); } snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", &error_fatal); object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); object_property_set_bool(chip, true, "realized", &error_fatal); } g_free(chip_typename); /* Instantiate ISA bus on chip 0 */ pnv->isa_bus = pnv_isa_create(pnv->chips[0]); /* Create serial port */ serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); /* Create an RTC ISA device too */ mc146818_rtc_init(pnv->isa_bus, 2000, NULL); /* OpenPOWER systems use a IPMI SEL Event message to notify the * host to powerdown */ pnv->powerdown_notifier.notify = pnv_powerdown_notify; qemu_register_powerdown_notifier(&pnv->powerdown_notifier); } /* * 0:21 Reserved - Read as zeros * 22:24 Chip ID * 25:28 Core number * 29:31 Thread ID */ static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) { return (chip->chip_id << 7) | (core_id << 3); } /* * 0:48 Reserved - Read as zeroes * 49:52 Node ID * 53:55 Chip ID * 56 Reserved - Read as zero * 57:61 Core number * 62:63 Thread ID * * We only care about the lower bits. uint32_t is fine for the moment. */ static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) { return (chip->chip_id << 8) | (core_id << 2); } /* Allowed core identifiers on a POWER8 Processor Chip : * * * EX1 - Venice only * EX2 - Venice only * EX3 - Venice only * EX4 * EX5 * EX6 * * EX9 - Venice only * EX10 - Venice only * EX11 - Venice only * EX12 * EX13 * EX14 * */ #define POWER8E_CORE_MASK (0x7070ull) #define POWER8_CORE_MASK (0x7e7eull) /* * POWER9 has 24 cores, ids starting at 0x0 */ #define POWER9_CORE_MASK (0xffffffffffffffull) static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_type = PNV_CHIP_POWER8E; k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ k->cores_mask = POWER8E_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; dc->desc = "PowerNV Chip POWER8E"; } static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_type = PNV_CHIP_POWER8; k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ k->cores_mask = POWER8_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; dc->desc = "PowerNV Chip POWER8"; } static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_type = PNV_CHIP_POWER8NVL; k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ k->cores_mask = POWER8_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; dc->desc = "PowerNV Chip POWER8NVL"; } static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_type = PNV_CHIP_POWER9; k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ k->cores_mask = POWER9_CORE_MASK; k->core_pir = pnv_chip_core_pir_p9; k->xscom_base = 0x00603fc00000000ull; dc->desc = "PowerNV Chip POWER9"; } static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); int cores_max; /* * No custom mask for this chip, let's use the default one from * * the chip class */ if (!chip->cores_mask) { chip->cores_mask = pcc->cores_mask; } /* filter alien core ids ! some are reserved */ if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", chip->cores_mask); return; } chip->cores_mask &= pcc->cores_mask; /* now that we have a sane layout, let check the number of cores */ cores_max = ctpop64(chip->cores_mask); if (chip->nr_cores > cores_max) { error_setg(errp, "warning: too many cores for chip ! Limit is %d", cores_max); return; } } static void pnv_chip_init(Object *obj) { PnvChip *chip = PNV_CHIP(obj); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); chip->xscom_base = pcc->xscom_base; object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC); object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL); object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI); object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL); object_property_add_const_link(OBJECT(&chip->psi), "xics", OBJECT(qdev_get_machine()), &error_abort); object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC); object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL); object_property_add_const_link(OBJECT(&chip->occ), "psi", OBJECT(&chip->psi), &error_abort); /* The LPC controller needs PSI to generate interrupts */ object_property_add_const_link(OBJECT(&chip->lpc), "psi", OBJECT(&chip->psi), &error_abort); } static void pnv_chip_icp_realize(PnvChip *chip, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); const char *typename = pnv_chip_core_typename(chip); size_t typesize = object_type_get_instance_size(typename); int i, j; char *name; XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); name = g_strdup_printf("icp-%x", chip->chip_id); memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio); g_free(name); sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); /* Map the ICP registers for each thread */ for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); int core_hwid = CPU_CORE(pnv_core)->core_id; for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { uint32_t pir = pcc->core_pir(chip, core_hwid) + j; PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio); } } } static void pnv_chip_realize(DeviceState *dev, Error **errp) { PnvChip *chip = PNV_CHIP(dev); Error *error = NULL; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); const char *typename = pnv_chip_core_typename(chip); size_t typesize = object_type_get_instance_size(typename); int i, core_hwid; if (!object_class_by_name(typename)) { error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); return; } /* XSCOM bridge */ pnv_xscom_realize(chip, &error); if (error) { error_propagate(errp, error); return; } sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); /* Cores */ pnv_chip_core_sanitize(chip, &error); if (error) { error_propagate(errp, error); return; } chip->cores = g_malloc0(typesize * chip->nr_cores); for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) && (i < chip->nr_cores); core_hwid++) { char core_name[32]; void *pnv_core = chip->cores + i * typesize; uint64_t xscom_core_base; if (!(chip->cores_mask & (1ull << core_hwid))) { continue; } object_initialize(pnv_core, typesize, typename); snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core), &error_fatal); object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", &error_fatal); object_property_set_int(OBJECT(pnv_core), core_hwid, CPU_CORE_PROP_CORE_ID, &error_fatal); object_property_set_int(OBJECT(pnv_core), pcc->core_pir(chip, core_hwid), "pir", &error_fatal); object_property_add_const_link(OBJECT(pnv_core), "xics", qdev_get_machine(), &error_fatal); object_property_set_bool(OBJECT(pnv_core), true, "realized", &error_fatal); object_unref(OBJECT(pnv_core)); /* Each core has an XSCOM MMIO region */ if (!pnv_chip_is_power9(chip)) { xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid); } else { xscom_core_base = PNV_XSCOM_P9_EC_BASE(core_hwid); } pnv_xscom_add_subregion(chip, xscom_core_base, &PNV_CORE(pnv_core)->xscom_regs); i++; } /* Create LPC controller */ object_property_set_bool(OBJECT(&chip->lpc), true, "realized", &error_fatal); pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs); /* Interrupt Management Area. This is the memory region holding * all the Interrupt Control Presenter (ICP) registers */ pnv_chip_icp_realize(chip, &error); if (error) { error_propagate(errp, error); return; } /* Processor Service Interface (PSI) Host Bridge */ object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip), "bar", &error_fatal); object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error); if (error) { error_propagate(errp, error); return; } pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs); /* Create the simplified OCC model */ object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error); if (error) { error_propagate(errp, error); return; } pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs); } static Property pnv_chip_properties[] = { DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_chip_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_CPU, dc->categories); dc->realize = pnv_chip_realize; dc->props = pnv_chip_properties; dc->desc = "PowerNV Chip"; } static ICSState *pnv_ics_get(XICSFabric *xi, int irq) { PnvMachineState *pnv = PNV_MACHINE(xi); int i; for (i = 0; i < pnv->num_chips; i++) { if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) { return &pnv->chips[i]->psi.ics; } } return NULL; } static void pnv_ics_resend(XICSFabric *xi) { PnvMachineState *pnv = PNV_MACHINE(xi); int i; for (i = 0; i < pnv->num_chips; i++) { ics_resend(&pnv->chips[i]->psi.ics); } } static PowerPCCPU *ppc_get_vcpu_by_pir(int pir) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (env->spr_cb[SPR_PIR].default_value == pir) { return cpu; } } return NULL; } static ICPState *pnv_icp_get(XICSFabric *xi, int pir) { PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); return cpu ? ICP(cpu->intc) : NULL; } static void pnv_pic_print_info(InterruptStatsProvider *obj, Monitor *mon) { PnvMachineState *pnv = PNV_MACHINE(obj); int i; CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_pic_print_info(ICP(cpu->intc), mon); } for (i = 0; i < pnv->num_chips; i++) { ics_pic_print_info(&pnv->chips[i]->psi.ics, mon); } } static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp); } static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); uint32_t num_chips; Error *local_err = NULL; visit_type_uint32(v, name, &num_chips, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * TODO: should we decide on how many chips we can create based * on #cores and Venice vs. Murano vs. Naples chip type etc..., */ if (!is_power_of_2(num_chips) || num_chips > 4) { error_setg(errp, "invalid number of chips: '%d'", num_chips); return; } pnv->num_chips = num_chips; } static void pnv_machine_initfn(Object *obj) { PnvMachineState *pnv = PNV_MACHINE(obj); pnv->num_chips = 1; } static void pnv_machine_class_props_init(ObjectClass *oc) { object_class_property_add(oc, "num-chips", "uint32", pnv_get_num_chips, pnv_set_num_chips, NULL, NULL, NULL); object_class_property_set_description(oc, "num-chips", "Specifies the number of processor chips", NULL); } static void pnv_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); mc->desc = "IBM PowerNV (Non-Virtualized)"; mc->init = pnv_init; mc->reset = pnv_reset; mc->max_cpus = MAX_CPUS; mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for * storage */ mc->no_parallel = 1; mc->default_boot_order = NULL; mc->default_ram_size = 1 * G_BYTE; xic->icp_get = pnv_icp_get; xic->ics_get = pnv_ics_get; xic->ics_resend = pnv_ics_resend; ispc->print_info = pnv_pic_print_info; pnv_machine_class_props_init(oc); } #define DEFINE_PNV_CHIP_TYPE(type, class_initfn) \ { \ .name = type, \ .class_init = class_initfn, \ .parent = TYPE_PNV_CHIP, \ } static const TypeInfo types[] = { { .name = TYPE_PNV_MACHINE, .parent = TYPE_MACHINE, .instance_size = sizeof(PnvMachineState), .instance_init = pnv_machine_initfn, .class_init = pnv_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XICS_FABRIC }, { TYPE_INTERRUPT_STATS_PROVIDER }, { }, }, }, { .name = TYPE_PNV_CHIP, .parent = TYPE_SYS_BUS_DEVICE, .class_init = pnv_chip_class_init, .instance_init = pnv_chip_init, .instance_size = sizeof(PnvChip), .class_size = sizeof(PnvChipClass), .abstract = true, }, DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, pnv_chip_power8nvl_class_init), }; DEFINE_TYPES(types)