/* * QEMU Sparc SLAVIO serial port emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* debug serial */ //#define DEBUG_SERIAL /* debug keyboard */ //#define DEBUG_KBD /* debug mouse */ //#define DEBUG_MOUSE /* * This is the serial port, mouse and keyboard part of chip STP2001 * (Slave I/O), also produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, * mouse and keyboard ports don't implement all functions and they are * only asynchronous. There is no DMA. * */ #ifdef DEBUG_SERIAL #define SER_DPRINTF(fmt, args...) \ do { printf("SER: " fmt , ##args); } while (0) #else #define SER_DPRINTF(fmt, args...) #endif #ifdef DEBUG_KBD #define KBD_DPRINTF(fmt, args...) \ do { printf("KBD: " fmt , ##args); } while (0) #else #define KBD_DPRINTF(fmt, args...) #endif #ifdef DEBUG_MOUSE #define MS_DPRINTF(fmt, args...) \ do { printf("SER: " fmt , ##args); } while (0) #else #define MS_DPRINTF(fmt, args...) #endif typedef enum { chn_a, chn_b, } chn_id_t; typedef enum { ser, kbd, mouse, } chn_type_t; #define KBD_QUEUE_SIZE 256 typedef struct { uint8_t data[KBD_QUEUE_SIZE]; int rptr, wptr, count; } KBDQueue; typedef struct ChannelState { int irq; int reg; int rxint, txint; chn_id_t chn; // this channel, A (base+4) or B (base+0) chn_type_t type; struct ChannelState *otherchn; uint8_t rx, tx, wregs[16], rregs[16]; KBDQueue queue; CharDriverState *chr; } ChannelState; struct SerialState { struct ChannelState chn[2]; }; #define SERIAL_MAXADDR 7 static void handle_kbd_command(ChannelState *s, int val); static int serial_can_receive(void *opaque); static void serial_receive_byte(ChannelState *s, int ch); static void put_queue(void *opaque, int b) { ChannelState *s = opaque; KBDQueue *q = &s->queue; KBD_DPRINTF("put: 0x%02x\n", b); if (q->count >= KBD_QUEUE_SIZE) return; q->data[q->wptr] = b; if (++q->wptr == KBD_QUEUE_SIZE) q->wptr = 0; q->count++; serial_receive_byte(s, 0); } static uint32_t get_queue(void *opaque) { ChannelState *s = opaque; KBDQueue *q = &s->queue; int val; if (q->count == 0) { return 0; } else { val = q->data[q->rptr]; if (++q->rptr == KBD_QUEUE_SIZE) q->rptr = 0; q->count--; } KBD_DPRINTF("get 0x%02x\n", val); if (q->count > 0) serial_receive_byte(s, 0); return val; } static void slavio_serial_update_irq(ChannelState *s) { if ((s->wregs[1] & 1) && // interrupts enabled (((s->wregs[1] & 2) && s->txint == 1) || // tx ints enabled, pending ((((s->wregs[1] & 0x18) == 8) || ((s->wregs[1] & 0x18) == 0x10)) && s->rxint == 1) || // rx ints enabled, pending ((s->wregs[15] & 0x80) && (s->rregs[0] & 0x80)))) { // break int e&p pic_set_irq(s->irq, 1); } else { pic_set_irq(s->irq, 0); } } static void slavio_serial_reset_chn(ChannelState *s) { int i; s->reg = 0; for (i = 0; i < SERIAL_MAXADDR; i++) { s->rregs[i] = 0; s->wregs[i] = 0; } s->wregs[4] = 4; s->wregs[9] = 0xc0; s->wregs[11] = 8; s->wregs[14] = 0x30; s->wregs[15] = 0xf8; s->rregs[0] = 0x44; s->rregs[1] = 6; s->rx = s->tx = 0; s->rxint = s->txint = 0; } static void slavio_serial_reset(void *opaque) { SerialState *s = opaque; slavio_serial_reset_chn(&s->chn[0]); slavio_serial_reset_chn(&s->chn[1]); } static void slavio_serial_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { SerialState *ser = opaque; ChannelState *s; uint32_t saddr; int newreg, channel; val &= 0xff; saddr = (addr & 3) >> 1; channel = (addr & SERIAL_MAXADDR) >> 2; s = &ser->chn[channel]; switch (saddr) { case 0: SER_DPRINTF("Write channel %c, reg[%d] = %2.2x\n", channel? 'b' : 'a', s->reg, val & 0xff); newreg = 0; switch (s->reg) { case 0: newreg = val & 7; val &= 0x38; switch (val) { case 8: s->reg |= 0x8; break; case 0x20: s->rxint = 0; break; case 0x28: s->txint = 0; break; default: break; } break; case 1 ... 8: case 10 ... 15: s->wregs[s->reg] = val; break; case 9: switch (val & 0xc0) { case 0: default: break; case 0x40: slavio_serial_reset_chn(&ser->chn[1]); return; case 0x80: slavio_serial_reset_chn(&ser->chn[0]); return; case 0xc0: slavio_serial_reset(ser); return; } break; default: break; } if (s->reg == 0) s->reg = newreg; else s->reg = 0; break; case 1: SER_DPRINTF("Write channel %c, ch %d\n", channel? 'b' : 'a', val); if (s->wregs[5] & 8) { // tx enabled s->tx = val; if (s->chr) qemu_chr_write(s->chr, &s->tx, 1); else if (s->type == kbd) { handle_kbd_command(s, val); } s->txint = 1; s->rregs[0] |= 4; // Interrupts reported only on channel A if (s->chn == 0) s->rregs[3] |= 0x10; else { s->otherchn->rregs[3] |= 2; } slavio_serial_update_irq(s); } break; default: break; } } static uint32_t slavio_serial_mem_readb(void *opaque, target_phys_addr_t addr) { SerialState *ser = opaque; ChannelState *s; uint32_t saddr; uint32_t ret; int channel; saddr = (addr & 3) >> 1; channel = (addr & SERIAL_MAXADDR) >> 2; s = &ser->chn[channel]; switch (saddr) { case 0: SER_DPRINTF("Read channel %c, reg[%d] = %2.2x\n", channel? 'b' : 'a', s->reg, s->rregs[s->reg]); ret = s->rregs[s->reg]; s->reg = 0; return ret; case 1: SER_DPRINTF("Read channel %c, ch %d\n", channel? 'b' : 'a', s->rx); s->rregs[0] &= ~1; if (s->type == kbd) ret = get_queue(s); else ret = s->rx; return ret; default: break; } return 0; } static int serial_can_receive(void *opaque) { ChannelState *s = opaque; if (((s->wregs[3] & 1) == 0) // Rx not enabled || ((s->rregs[0] & 1) == 1)) // char already available return 0; else return 1; } static void serial_receive_byte(ChannelState *s, int ch) { s->rregs[0] |= 1; // Interrupts reported only on channel A if (s->chn == 0) s->rregs[3] |= 0x20; else { s->otherchn->rregs[3] |= 4; } s->rx = ch; s->rxint = 1; slavio_serial_update_irq(s); } static void serial_receive_break(ChannelState *s) { s->rregs[0] |= 0x80; slavio_serial_update_irq(s); } static void serial_receive1(void *opaque, const uint8_t *buf, int size) { ChannelState *s = opaque; serial_receive_byte(s, buf[0]); } static void serial_event(void *opaque, int event) { ChannelState *s = opaque; if (event == CHR_EVENT_BREAK) serial_receive_break(s); } static CPUReadMemoryFunc *slavio_serial_mem_read[3] = { slavio_serial_mem_readb, slavio_serial_mem_readb, slavio_serial_mem_readb, }; static CPUWriteMemoryFunc *slavio_serial_mem_write[3] = { slavio_serial_mem_writeb, slavio_serial_mem_writeb, slavio_serial_mem_writeb, }; static void slavio_serial_save_chn(QEMUFile *f, ChannelState *s) { qemu_put_be32s(f, &s->irq); qemu_put_be32s(f, &s->reg); qemu_put_be32s(f, &s->rxint); qemu_put_be32s(f, &s->txint); qemu_put_8s(f, &s->rx); qemu_put_8s(f, &s->tx); qemu_put_buffer(f, s->wregs, 16); qemu_put_buffer(f, s->rregs, 16); } static void slavio_serial_save(QEMUFile *f, void *opaque) { SerialState *s = opaque; slavio_serial_save_chn(f, &s->chn[0]); slavio_serial_save_chn(f, &s->chn[1]); } static int slavio_serial_load_chn(QEMUFile *f, ChannelState *s, int version_id) { if (version_id != 1) return -EINVAL; qemu_get_be32s(f, &s->irq); qemu_get_be32s(f, &s->reg); qemu_get_be32s(f, &s->rxint); qemu_get_be32s(f, &s->txint); qemu_get_8s(f, &s->rx); qemu_get_8s(f, &s->tx); qemu_get_buffer(f, s->wregs, 16); qemu_get_buffer(f, s->rregs, 16); return 0; } static int slavio_serial_load(QEMUFile *f, void *opaque, int version_id) { SerialState *s = opaque; int ret; ret = slavio_serial_load_chn(f, &s->chn[0], version_id); if (ret != 0) return ret; ret = slavio_serial_load_chn(f, &s->chn[1], version_id); return ret; } SerialState *slavio_serial_init(int base, int irq, CharDriverState *chr1, CharDriverState *chr2) { int slavio_serial_io_memory, i; SerialState *s; s = qemu_mallocz(sizeof(SerialState)); if (!s) return NULL; slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s); cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory); s->chn[0].chr = chr1; s->chn[1].chr = chr2; for (i = 0; i < 2; i++) { s->chn[i].irq = irq; s->chn[i].chn = 1 - i; s->chn[i].type = ser; if (s->chn[i].chr) { qemu_chr_add_read_handler(s->chn[i].chr, serial_can_receive, serial_receive1, &s->chn[i]); qemu_chr_add_event_handler(s->chn[i].chr, serial_event); } } s->chn[0].otherchn = &s->chn[1]; s->chn[1].otherchn = &s->chn[0]; register_savevm("slavio_serial", base, 1, slavio_serial_save, slavio_serial_load, s); qemu_register_reset(slavio_serial_reset, s); slavio_serial_reset(s); return s; } static const uint8_t keycodes[128] = { 127, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 89, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 42, 99, 88, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 47, 19, 121, 119, 5, 6, 8, 10, 12, 14, 16, 17, 18, 7, 98, 23, 68, 69, 70, 71, 91, 92, 93, 125, 112, 113, 114, 94, 50, 0, 0, 124, 9, 11, 0, 0, 0, 0, 0, 0, 0, 90, 0, 46, 22, 13, 111, 52, 20, 96, 24, 28, 74, 27, 123, 44, 66, 0, 45, 2, 4, 48, 0, 0, 21, 0, 0, 0, 0, 0, 120, 122, 67, }; static void sunkbd_event(void *opaque, int ch) { ChannelState *s = opaque; int release = ch & 0x80; ch = keycodes[ch & 0x7f]; KBD_DPRINTF("Keycode %d (%s)\n", ch, release? "release" : "press"); put_queue(s, ch | release); } static void handle_kbd_command(ChannelState *s, int val) { KBD_DPRINTF("Command %d\n", val); switch (val) { case 1: // Reset, return type code put_queue(s, 0xff); put_queue(s, 0xff); put_queue(s, 5); // Type 5 break; case 7: // Query layout put_queue(s, 0xfe); put_queue(s, 0x20); // XXX, layout? break; default: break; } } static void sunmouse_event(void *opaque, int dx, int dy, int dz, int buttons_state) { ChannelState *s = opaque; int ch; // XXX ch = 0x42; serial_receive_byte(s, ch); } void slavio_serial_ms_kbd_init(int base, int irq) { int slavio_serial_io_memory, i; SerialState *s; s = qemu_mallocz(sizeof(SerialState)); if (!s) return; for (i = 0; i < 2; i++) { s->chn[i].irq = irq; s->chn[i].chn = 1 - i; s->chn[i].chr = NULL; } s->chn[0].otherchn = &s->chn[1]; s->chn[1].otherchn = &s->chn[0]; s->chn[0].type = mouse; s->chn[1].type = kbd; slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s); cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory); qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0]); qemu_add_kbd_event_handler(sunkbd_event, &s->chn[1]); qemu_register_reset(slavio_serial_reset, s); slavio_serial_reset(s); }