/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_TIMER #ifdef DEBUG_TIMER #define DPRINTF(fmt, args...) \ do { printf("TIMER: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif /* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * */ typedef struct SLAVIO_TIMERState { uint32_t limit, count, counthigh; int64_t count_load_time; int64_t expire_time; int64_t stop_time, tick_offset; QEMUTimer *irq_timer; int irq; int reached, stopped; int mode; // 0 = processor, 1 = user, 2 = system } SLAVIO_TIMERState; #define TIMER_MAXADDR 0x1f #define CNT_FREQ 2000000 #define MAX_CPUS 16 // Update count, set irq, update expire_time static void slavio_timer_get_out(SLAVIO_TIMERState *s) { int out; int64_t diff, ticks, count; uint32_t limit; // There are three clock tick units: CPU ticks, register units // (nanoseconds), and counter ticks (500 ns). if (s->mode == 1 && s->stopped) ticks = s->stop_time; else ticks = qemu_get_clock(vm_clock) - s->tick_offset; out = (ticks >= s->expire_time); if (out) s->reached = 0x80000000; if (!s->limit) limit = 0x7fffffff; else limit = s->limit; // Convert register units to counter ticks limit = limit >> 9; // Convert cpu ticks to counter ticks diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec); // Calculate what the counter should be, convert to register // units count = diff % limit; s->count = count << 9; s->counthigh = count >> 22; // Expire time: CPU ticks left to next interrupt // Convert remaining counter ticks to CPU ticks s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ); DPRINTF("irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode); if (s->mode != 1) pic_set_irq(s->irq, out); } // timer callback static void slavio_timer_irq(void *opaque) { SLAVIO_TIMERState *s = opaque; if (!s->irq_timer) return; slavio_timer_get_out(s); if (s->mode != 1) qemu_mod_timer(s->irq_timer, s->expire_time); } static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_TIMERState *s = opaque; uint32_t saddr; saddr = (addr & TIMER_MAXADDR) >> 2; switch (saddr) { case 0: // read limit (system counter mode) or read most signifying // part of counter (user mode) if (s->mode != 1) { // clear irq pic_set_irq(s->irq, 0); s->count_load_time = qemu_get_clock(vm_clock); s->reached = 0; return s->limit; } else { slavio_timer_get_out(s); return s->counthigh & 0x7fffffff; } case 1: // read counter and reached bit (system mode) or read lsbits // of counter (user mode) slavio_timer_get_out(s); if (s->mode != 1) return (s->count & 0x7fffffff) | s->reached; else return s->count; case 3: // read start/stop status return s->stopped; case 4: // read user/system mode return s->mode & 1; default: return 0; } } static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_TIMERState *s = opaque; uint32_t saddr; saddr = (addr & TIMER_MAXADDR) >> 2; switch (saddr) { case 0: // set limit, reset counter s->count_load_time = qemu_get_clock(vm_clock); // fall through case 2: // set limit without resetting counter if (!val) s->limit = 0x7fffffff; else s->limit = val & 0x7fffffff; slavio_timer_irq(s); break; case 3: // start/stop user counter if (s->mode == 1) { if (val & 1) { s->stop_time = qemu_get_clock(vm_clock); s->stopped = 1; } else { if (s->stopped) s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time; s->stopped = 0; } } break; case 4: // bit 0: user (1) or system (0) counter mode if (s->mode == 0 || s->mode == 1) s->mode = val & 1; break; default: break; } } static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { slavio_timer_mem_readl, slavio_timer_mem_readl, slavio_timer_mem_readl, }; static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { slavio_timer_mem_writel, slavio_timer_mem_writel, slavio_timer_mem_writel, }; static void slavio_timer_save(QEMUFile *f, void *opaque) { SLAVIO_TIMERState *s = opaque; qemu_put_be32s(f, &s->limit); qemu_put_be32s(f, &s->count); qemu_put_be32s(f, &s->counthigh); qemu_put_be64s(f, &s->count_load_time); qemu_put_be64s(f, &s->expire_time); qemu_put_be64s(f, &s->stop_time); qemu_put_be64s(f, &s->tick_offset); qemu_put_be32s(f, &s->irq); qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &s->stopped); qemu_put_be32s(f, &s->mode); } static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) { SLAVIO_TIMERState *s = opaque; if (version_id != 1) return -EINVAL; qemu_get_be32s(f, &s->limit); qemu_get_be32s(f, &s->count); qemu_get_be32s(f, &s->counthigh); qemu_get_be64s(f, &s->count_load_time); qemu_get_be64s(f, &s->expire_time); qemu_get_be64s(f, &s->stop_time); qemu_get_be64s(f, &s->tick_offset); qemu_get_be32s(f, &s->irq); qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &s->stopped); qemu_get_be32s(f, &s->mode); return 0; } static void slavio_timer_reset(void *opaque) { SLAVIO_TIMERState *s = opaque; s->limit = 0; s->count = 0; s->count_load_time = qemu_get_clock(vm_clock);; s->stop_time = s->count_load_time; s->tick_offset = 0; s->reached = 0; s->mode &= 2; s->stopped = 1; slavio_timer_get_out(s); } static void slavio_timer_init_internal(uint32_t addr, int irq, int mode) { int slavio_timer_io_memory; SLAVIO_TIMERState *s; s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); if (!s) return; s->irq = irq; s->mode = mode; s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s); slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, slavio_timer_mem_write, s); cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory); register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s); qemu_register_reset(slavio_timer_reset, s); slavio_timer_reset(s); } void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2) { int i; for (i = 0; i < MAX_CPUS; i++) { slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0); } slavio_timer_init_internal(addr2, irq2, 2); }