/* * Block model of SPI controller present in * Microsemi's SmartFusion2 and SmartFusion SoCs. * * Copyright (C) 2017 Subbaraya Sundeep * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/ssi/mss-spi.h" #include "qemu/log.h" #ifndef MSS_SPI_ERR_DEBUG #define MSS_SPI_ERR_DEBUG 0 #endif #define DB_PRINT_L(lvl, fmt, args...) do { \ if (MSS_SPI_ERR_DEBUG >= lvl) { \ qemu_log("%s: " fmt "\n", __func__, ## args); \ } \ } while (0) #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args) #define FIFO_CAPACITY 32 #define R_SPI_CONTROL 0 #define R_SPI_DFSIZE 1 #define R_SPI_STATUS 2 #define R_SPI_INTCLR 3 #define R_SPI_RX 4 #define R_SPI_TX 5 #define R_SPI_CLKGEN 6 #define R_SPI_SS 7 #define R_SPI_MIS 8 #define R_SPI_RIS 9 #define S_TXDONE (1 << 0) #define S_RXRDY (1 << 1) #define S_RXCHOVRF (1 << 2) #define S_RXFIFOFUL (1 << 4) #define S_RXFIFOFULNXT (1 << 5) #define S_RXFIFOEMP (1 << 6) #define S_RXFIFOEMPNXT (1 << 7) #define S_TXFIFOFUL (1 << 8) #define S_TXFIFOFULNXT (1 << 9) #define S_TXFIFOEMP (1 << 10) #define S_TXFIFOEMPNXT (1 << 11) #define S_FRAMESTART (1 << 12) #define S_SSEL (1 << 13) #define S_ACTIVE (1 << 14) #define C_ENABLE (1 << 0) #define C_MODE (1 << 1) #define C_INTRXDATA (1 << 4) #define C_INTTXDATA (1 << 5) #define C_INTRXOVRFLO (1 << 6) #define C_SPS (1 << 26) #define C_BIGFIFO (1 << 29) #define C_RESET (1 << 31) #define FRAMESZ_MASK 0x3F #define FMCOUNT_MASK 0x00FFFF00 #define FMCOUNT_SHIFT 8 #define FRAMESZ_MAX 32 static void txfifo_reset(MSSSpiState *s) { fifo32_reset(&s->tx_fifo); s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL; s->regs[R_SPI_STATUS] |= S_TXFIFOEMP; } static void rxfifo_reset(MSSSpiState *s) { fifo32_reset(&s->rx_fifo); s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL; s->regs[R_SPI_STATUS] |= S_RXFIFOEMP; } static void set_fifodepth(MSSSpiState *s) { unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK; if (size <= 8) { s->fifo_depth = 32; } else if (size <= 16) { s->fifo_depth = 16; } else { s->fifo_depth = 8; } } static void update_mis(MSSSpiState *s) { uint32_t reg = s->regs[R_SPI_CONTROL]; uint32_t tmp; /* * form the Control register interrupt enable bits * same as RIS, MIS and Interrupt clear registers for simplicity */ tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) | ((reg & C_INTTXDATA) >> 5); s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS]; } static void spi_update_irq(MSSSpiState *s) { int irq; update_mis(s); irq = !!(s->regs[R_SPI_MIS]); qemu_set_irq(s->irq, irq); } static void mss_spi_reset(DeviceState *d) { MSSSpiState *s = MSS_SPI(d); memset(s->regs, 0, sizeof s->regs); s->regs[R_SPI_CONTROL] = 0x80000102; s->regs[R_SPI_DFSIZE] = 0x4; s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP; s->regs[R_SPI_CLKGEN] = 0x7; s->regs[R_SPI_RIS] = 0x0; s->fifo_depth = 4; s->frame_count = 1; s->enabled = false; rxfifo_reset(s); txfifo_reset(s); } static uint64_t spi_read(void *opaque, hwaddr addr, unsigned int size) { MSSSpiState *s = opaque; uint32_t ret = 0; addr >>= 2; switch (addr) { case R_SPI_RX: s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL; s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF; ret = fifo32_pop(&s->rx_fifo); if (fifo32_is_empty(&s->rx_fifo)) { s->regs[R_SPI_STATUS] |= S_RXFIFOEMP; } break; case R_SPI_MIS: update_mis(s); ret = s->regs[R_SPI_MIS]; break; default: if (addr < ARRAY_SIZE(s->regs)) { ret = s->regs[addr]; } else { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr * 4); return ret; } break; } DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret); spi_update_irq(s); return ret; } static void assert_cs(MSSSpiState *s) { qemu_set_irq(s->cs_line, 0); } static void deassert_cs(MSSSpiState *s) { qemu_set_irq(s->cs_line, 1); } static void spi_flush_txfifo(MSSSpiState *s) { uint32_t tx; uint32_t rx; bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS); /* * Chip Select(CS) is automatically controlled by this controller. * If SPS bit is set in Control register then CS is asserted * until all the frames set in frame count of Control register are * transferred. If SPS is not set then CS pulses between frames. * Note that Slave Select register specifies which of the CS line * has to be controlled automatically by controller. Bits SS[7:1] are for * masters in FPGA fabric since we model only Microcontroller subsystem * of Smartfusion2 we control only one CS(SS[0]) line. */ while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) { assert_cs(s); s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY); tx = fifo32_pop(&s->tx_fifo); DB_PRINT("data tx:0x%" PRIx32, tx); rx = ssi_transfer(s->spi, tx); DB_PRINT("data rx:0x%" PRIx32, rx); if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) { s->regs[R_SPI_STATUS] |= S_RXCHOVRF; s->regs[R_SPI_RIS] |= S_RXCHOVRF; } else { fifo32_push(&s->rx_fifo, rx); s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP; if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) { s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT; } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) { s->regs[R_SPI_STATUS] |= S_RXFIFOFUL; } } s->frame_count--; if (!sps) { deassert_cs(s); } } if (!s->frame_count) { s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >> FMCOUNT_SHIFT; deassert_cs(s); s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY; s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY; } } static void spi_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { MSSSpiState *s = opaque; uint32_t value = val64; DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value); addr >>= 2; switch (addr) { case R_SPI_TX: /* adding to already full FIFO */ if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) { break; } s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP; fifo32_push(&s->tx_fifo, value); if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) { s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT; } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) { s->regs[R_SPI_STATUS] |= S_TXFIFOFUL; } if (s->enabled) { spi_flush_txfifo(s); } break; case R_SPI_CONTROL: s->regs[R_SPI_CONTROL] = value; if (value & C_BIGFIFO) { set_fifodepth(s); } else { s->fifo_depth = 4; } s->enabled = value & C_ENABLE; s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT; if (value & C_RESET) { mss_spi_reset(DEVICE(s)); } break; case R_SPI_DFSIZE: if (s->enabled) { break; } /* * [31:6] bits are reserved bits and for future use. * [5:0] are for frame size. Only [5:0] bits are validated * during write, [31:6] bits are untouched. */ if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided." "Maximum frame size is %u\n", __func__, value & FRAMESZ_MASK, FRAMESZ_MAX); break; } s->regs[R_SPI_DFSIZE] = value; break; case R_SPI_INTCLR: s->regs[R_SPI_INTCLR] = value; if (value & S_TXDONE) { s->regs[R_SPI_RIS] &= ~S_TXDONE; } if (value & S_RXRDY) { s->regs[R_SPI_RIS] &= ~S_RXRDY; } if (value & S_RXCHOVRF) { s->regs[R_SPI_RIS] &= ~S_RXCHOVRF; } break; case R_SPI_MIS: case R_SPI_STATUS: case R_SPI_RIS: qemu_log_mask(LOG_GUEST_ERROR, "%s: Write to read only register 0x%" HWADDR_PRIx "\n", __func__, addr * 4); break; default: if (addr < ARRAY_SIZE(s->regs)) { s->regs[addr] = value; } else { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr * 4); } break; } spi_update_irq(s); } static const MemoryRegionOps spi_ops = { .read = spi_read, .write = spi_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4 } }; static void mss_spi_realize(DeviceState *dev, Error **errp) { MSSSpiState *s = MSS_SPI(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); s->spi = ssi_create_bus(dev, "spi"); sysbus_init_irq(sbd, &s->irq); ssi_auto_connect_slaves(dev, &s->cs_line, s->spi); sysbus_init_irq(sbd, &s->cs_line); memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s, TYPE_MSS_SPI, R_SPI_MAX * 4); sysbus_init_mmio(sbd, &s->mmio); fifo32_create(&s->tx_fifo, FIFO_CAPACITY); fifo32_create(&s->rx_fifo, FIFO_CAPACITY); } static const VMStateDescription vmstate_mss_spi = { .name = TYPE_MSS_SPI, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_FIFO32(tx_fifo, MSSSpiState), VMSTATE_FIFO32(rx_fifo, MSSSpiState), VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX), VMSTATE_END_OF_LIST() } }; static void mss_spi_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = mss_spi_realize; dc->reset = mss_spi_reset; dc->vmsd = &vmstate_mss_spi; } static const TypeInfo mss_spi_info = { .name = TYPE_MSS_SPI, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(MSSSpiState), .class_init = mss_spi_class_init, }; static void mss_spi_register_types(void) { type_register_static(&mss_spi_info); } type_init(mss_spi_register_types)