/* * qemu user main * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "qemu.h" #define DEBUG_LOGFILE "/tmp/qemu.log" static const char *interp_prefix = CONFIG_QEMU_PREFIX; #if defined(__i386__) && !defined(CONFIG_STATIC) /* Force usage of an ELF interpreter even if it is an ELF shared object ! */ const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2"; #endif /* for recent libc, we add these dummy symbols which are not declared when generating a linked object (bug in ld ?) */ #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3) long __init_array_start[0]; long __init_array_end[0]; long __fini_array_start[0]; long __fini_array_end[0]; #endif /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so we allocate a bigger stack. Need a better solution, for example by remapping the process stack directly at the right place */ unsigned long x86_stack_size = 512 * 1024; void gemu_log(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } #ifdef TARGET_I386 /***********************************************************/ /* CPUX86 core interface */ void cpu_x86_outb(CPUX86State *env, int addr, int val) { fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val); } void cpu_x86_outw(CPUX86State *env, int addr, int val) { fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val); } void cpu_x86_outl(CPUX86State *env, int addr, int val) { fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val); } int cpu_x86_inb(CPUX86State *env, int addr) { fprintf(stderr, "inb: port=0x%04x\n", addr); return 0; } int cpu_x86_inw(CPUX86State *env, int addr) { fprintf(stderr, "inw: port=0x%04x\n", addr); return 0; } int cpu_x86_inl(CPUX86State *env, int addr) { fprintf(stderr, "inl: port=0x%04x\n", addr); return 0; } int cpu_x86_get_pic_interrupt(CPUX86State *env) { return -1; } static void write_dt(void *ptr, unsigned long addr, unsigned long limit, int flags) { unsigned int e1, e2; e1 = (addr << 16) | (limit & 0xffff); e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); e2 |= flags; stl((uint8_t *)ptr, e1); stl((uint8_t *)ptr + 4, e2); } static void set_gate(void *ptr, unsigned int type, unsigned int dpl, unsigned long addr, unsigned int sel) { unsigned int e1, e2; e1 = (addr & 0xffff) | (sel << 16); e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); stl((uint8_t *)ptr, e1); stl((uint8_t *)ptr + 4, e2); } uint64_t gdt_table[6]; uint64_t idt_table[256]; /* only dpl matters as we do only user space emulation */ static void set_idt(int n, unsigned int dpl) { set_gate(idt_table + n, 0, dpl, 0, 0); } void cpu_loop(CPUX86State *env) { int trapnr; uint8_t *pc; target_siginfo_t info; for(;;) { trapnr = cpu_x86_exec(env); switch(trapnr) { case 0x80: /* linux syscall */ env->regs[R_EAX] = do_syscall(env, env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP]); break; case EXCP0B_NOSEG: case EXCP0C_STACK: info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(info.si_signo, &info); break; case EXCP0D_GPF: if (env->eflags & VM_MASK) { handle_vm86_fault(env); } else { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(info.si_signo, &info); } break; case EXCP0E_PAGE: info.si_signo = SIGSEGV; info.si_errno = 0; if (!(env->error_code & 1)) info.si_code = TARGET_SEGV_MAPERR; else info.si_code = TARGET_SEGV_ACCERR; info._sifields._sigfault._addr = env->cr[2]; queue_signal(info.si_signo, &info); break; case EXCP00_DIVZ: if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else { /* division by zero */ info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = TARGET_FPE_INTDIV; info._sifields._sigfault._addr = env->eip; queue_signal(info.si_signo, &info); } break; case EXCP01_SSTP: case EXCP03_INT3: if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else { info.si_signo = SIGTRAP; info.si_errno = 0; if (trapnr == EXCP01_SSTP) { info.si_code = TARGET_TRAP_BRKPT; info._sifields._sigfault._addr = env->eip; } else { info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; } queue_signal(info.si_signo, &info); } break; case EXCP04_INTO: case EXCP05_BOUND: if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(info.si_signo, &info); } break; case EXCP06_ILLOP: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->eip; queue_signal(info.si_signo, &info); break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; default: pc = env->segs[R_CS].base + env->eip; fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", (long)pc, trapnr); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_ARM void cpu_loop(CPUARMState *env) { int trapnr; unsigned int n, insn; target_siginfo_t info; for(;;) { trapnr = cpu_arm_exec(env); switch(trapnr) { case EXCP_UDEF: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->regs[15]; queue_signal(info.si_signo, &info); break; case EXCP_SWI: { /* system call */ insn = ldl((void *)(env->regs[15] - 4)); n = insn & 0xffffff; if (n >= ARM_SYSCALL_BASE) { /* linux syscall */ n -= ARM_SYSCALL_BASE; env->regs[0] = do_syscall(env, n, env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], 0); } else { goto error; } } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; default: error: fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); cpu_arm_dump_state(env, stderr, 0); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_SPARC //#define DEBUG_WIN /* WARNING: dealing with register windows _is_ complicated */ static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) { index = (index + cwp * 16) & (16 * NWINDOWS - 1); /* wrap handling : if cwp is on the last window, then we use the registers 'after' the end */ if (index < 8 && env->cwp == (NWINDOWS - 1)) index += (16 * NWINDOWS); return index; } static inline void save_window_offset(CPUSPARCState *env, int offset) { unsigned int new_wim, i, cwp1; uint32_t *sp_ptr; new_wim = ((env->wim >> 1) | (env->wim << (NWINDOWS - 1))) & ((1LL << NWINDOWS) - 1); /* save the window */ cwp1 = (env->cwp + offset) & (NWINDOWS - 1); sp_ptr = (uint32_t *)(env->regbase[get_reg_index(env, cwp1, 6)]); #if defined(DEBUG_WIN) printf("win_overflow: sp_ptr=0x%x save_cwp=%d\n", (int)sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) stl_raw(sp_ptr + i, env->regbase[get_reg_index(env, cwp1, 8 + i)]); env->wim = new_wim; } static void save_window(CPUSPARCState *env) { save_window_offset(env, 2); } static void restore_window(CPUSPARCState *env) { unsigned int new_wim, i, cwp1; uint32_t *sp_ptr; new_wim = ((env->wim << 1) | (env->wim >> (NWINDOWS - 1))) & ((1LL << NWINDOWS) - 1); /* restore the invalid window */ cwp1 = (env->cwp + 1) & (NWINDOWS - 1); sp_ptr = (uint32_t *)(env->regbase[get_reg_index(env, cwp1, 6)]); #if defined(DEBUG_WIN) printf("win_underflow: sp_ptr=0x%x load_cwp=%d\n", (int)sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) env->regbase[get_reg_index(env, cwp1, 8 + i)] = ldl_raw(sp_ptr + i); env->wim = new_wim; } static void flush_windows(CPUSPARCState *env) { int offset, cwp1; #if defined(DEBUG_WIN) printf("flush_windows:\n"); #endif offset = 2; for(;;) { /* if restore would invoke restore_window(), then we can stop */ cwp1 = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp1)) break; #if defined(DEBUG_WIN) printf("offset=%d: ", offset); #endif save_window_offset(env, offset); offset++; } } void cpu_loop (CPUSPARCState *env) { int trapnr, ret; while (1) { trapnr = cpu_sparc_exec (env); switch (trapnr) { case 0x88: case 0x90: ret = do_syscall (env, env->gregs[1], env->regwptr[0], env->regwptr[1], env->regwptr[2], env->regwptr[3], env->regwptr[4], env->regwptr[5]); if ((unsigned int)ret >= (unsigned int)(-515)) { env->psr |= PSR_CARRY; ret = -ret; } else { env->psr &= ~PSR_CARRY; } env->regwptr[0] = ret; /* next instruction */ env->pc = env->npc; env->npc = env->npc + 4; break; case 0x83: /* flush windows */ // flush_windows(env); /* next instruction */ env->pc = env->npc; env->npc = env->npc + 4; break; case TT_WIN_OVF: /* window overflow */ save_window(env); break; case TT_WIN_UNF: /* window underflow */ restore_window(env); break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_sparc_dump_state(env, stderr, 0); exit (1); } process_pending_signals (env); } } #endif #ifdef TARGET_PPC void cpu_loop(CPUPPCState *env) { int trapnr; target_siginfo_t info; for(;;) { trapnr = cpu_ppc_exec(env); switch(trapnr) { case EXCP_NONE: case EXCP_INTERRUPT: case EXCP_MTMSR: /* mtmsr instruction: */ case EXCP_BRANCH: /* branch instruction */ /* Single step mode */ break; #if 0 case EXCP_RESET: /* System reset */ fprintf(stderr, "RESET asked... Stop emulation\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); #endif case EXCP_MACHINE_CHECK: /* Machine check exception */ fprintf(stderr, "Machine check exeption... " "See you in kernel code !\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); case EXCP_DSI: /* Impossible memory access */ fprintf(stderr, "Invalid memory access\n"); info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->nip; queue_signal(info.si_signo, &info); break; case EXCP_ISI: /* Impossible instruction fetch */ fprintf(stderr, "Invalid instruction fetch\n"); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->nip; queue_signal(info.si_signo, &info); break; case EXCP_EXTERNAL: /* External interruption */ fprintf(stderr, "External access exeption\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); case EXCP_ALIGN: /* Alignment exception */ fprintf(stderr, "Alignment exception\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); case EXCP_PROGRAM: /* Program exception */ fprintf(stderr, "Program exception\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); break; /* Trap */ case EXCP_TRAP: /* Trap */ case EXCP_TRACE: /* Trace exception (optional) */ info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->nip; queue_signal(info.si_signo, &info); break; /* Invalid instruction */ case EXCP_INVAL: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->nip; queue_signal(info.si_signo, &info); break; /* Privileged instruction */ case EXCP_PRIV: /* Privileged instruction */ info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->nip; queue_signal(info.si_signo, &info); break; case EXCP_NO_FP: /* No floating point */ case EXCP_DECR: /* Decrementer exception */ case EXCP_RESA: /* Implementation specific */ case EXCP_RESB: /* Implementation specific */ case EXCP_FP_ASSIST: /* Floating-point assist (optional) */ fprintf(stderr, "Misc expt...\n"); cpu_ppc_dump_state(env, stderr, 0); abort(); case EXCP_SYSCALL: { uint32_t ret; /* system call */ /* WARNING: * PPC ABI uses overflow flag in cr0 to signal an error * in syscalls. */ env->crf[0] &= ~0x1; ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], env->gpr[5], env->gpr[6], env->gpr[7], env->gpr[8]); if (ret > (uint32_t)(-515)) { env->crf[0] |= 0x1; ret = -ret; } env->gpr[3] = ret; break; } default: // error: fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); cpu_ppc_dump_state(env, stderr, 0); abort(); } process_pending_signals(env); } } #endif void usage(void) { printf("qemu-" TARGET_ARCH " version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n" "usage: qemu-" TARGET_ARCH " [-h] [-d] [-L path] [-s size] program [arguments...]\n" "Linux CPU emulator (compiled for %s emulation)\n" "\n" "-h print this help\n" "-L path set the elf interpreter prefix (default=%s)\n" "-s size set the stack size in bytes (default=%ld)\n" "\n" "debug options:\n" "-d activate log (logfile=%s)\n" "-p pagesize set the host page size to 'pagesize'\n", TARGET_ARCH, interp_prefix, x86_stack_size, DEBUG_LOGFILE); _exit(1); } /* XXX: currently only used for async signals (see signal.c) */ CPUState *global_env; /* used only if single thread */ CPUState *cpu_single_env = NULL; /* used to free thread contexts */ TaskState *first_task_state; int main(int argc, char **argv) { const char *filename; struct target_pt_regs regs1, *regs = ®s1; struct image_info info1, *info = &info1; TaskState ts1, *ts = &ts1; CPUState *env; int optind; const char *r; if (argc <= 1) usage(); /* init debug */ cpu_set_log_filename(DEBUG_LOGFILE); optind = 1; for(;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') break; optind++; r++; if (!strcmp(r, "-")) { break; } else if (!strcmp(r, "d")) { cpu_set_log(CPU_LOG_ALL); } else if (!strcmp(r, "s")) { r = argv[optind++]; x86_stack_size = strtol(r, (char **)&r, 0); if (x86_stack_size <= 0) usage(); if (*r == 'M') x86_stack_size *= 1024 * 1024; else if (*r == 'k' || *r == 'K') x86_stack_size *= 1024; } else if (!strcmp(r, "L")) { interp_prefix = argv[optind++]; } else if (!strcmp(r, "p")) { host_page_size = atoi(argv[optind++]); if (host_page_size == 0 || (host_page_size & (host_page_size - 1)) != 0) { fprintf(stderr, "page size must be a power of two\n"); exit(1); } } else { usage(); } } if (optind >= argc) usage(); filename = argv[optind]; /* Zero out regs */ memset(regs, 0, sizeof(struct target_pt_regs)); /* Zero out image_info */ memset(info, 0, sizeof(struct image_info)); /* Scan interp_prefix dir for replacement files. */ init_paths(interp_prefix); /* NOTE: we need to init the CPU at this stage to get the host_page_size */ env = cpu_init(); if (elf_exec(filename, argv+optind, environ, regs, info) != 0) { printf("Error loading %s\n", filename); _exit(1); } if (loglevel) { page_dump(logfile); fprintf(logfile, "start_brk 0x%08lx\n" , info->start_brk); fprintf(logfile, "end_code 0x%08lx\n" , info->end_code); fprintf(logfile, "start_code 0x%08lx\n" , info->start_code); fprintf(logfile, "end_data 0x%08lx\n" , info->end_data); fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack); fprintf(logfile, "brk 0x%08lx\n" , info->brk); fprintf(logfile, "entry 0x%08lx\n" , info->entry); } target_set_brk((char *)info->brk); syscall_init(); signal_init(); global_env = env; /* build Task State */ memset(ts, 0, sizeof(TaskState)); env->opaque = ts; ts->used = 1; env->user_mode_only = 1; #if defined(TARGET_I386) cpu_x86_set_cpl(env, 3); env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; /* linux register setup */ env->regs[R_EAX] = regs->eax; env->regs[R_EBX] = regs->ebx; env->regs[R_ECX] = regs->ecx; env->regs[R_EDX] = regs->edx; env->regs[R_ESI] = regs->esi; env->regs[R_EDI] = regs->edi; env->regs[R_EBP] = regs->ebp; env->regs[R_ESP] = regs->esp; env->eip = regs->eip; /* linux interrupt setup */ env->idt.base = (void *)idt_table; env->idt.limit = sizeof(idt_table) - 1; set_idt(0, 0); set_idt(1, 0); set_idt(2, 0); set_idt(3, 3); set_idt(4, 3); set_idt(5, 3); set_idt(6, 0); set_idt(7, 0); set_idt(8, 0); set_idt(9, 0); set_idt(10, 0); set_idt(11, 0); set_idt(12, 0); set_idt(13, 0); set_idt(14, 0); set_idt(15, 0); set_idt(16, 0); set_idt(17, 0); set_idt(18, 0); set_idt(19, 0); set_idt(0x80, 3); /* linux segment setup */ env->gdt.base = (void *)gdt_table; env->gdt.limit = sizeof(gdt_table) - 1; write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_FS, __USER_DS); cpu_x86_load_seg(env, R_GS, __USER_DS); #elif defined(TARGET_ARM) { int i; for(i = 0; i < 16; i++) { env->regs[i] = regs->uregs[i]; } env->cpsr = regs->uregs[16]; } #elif defined(TARGET_SPARC) { int i; env->pc = regs->pc; env->npc = regs->npc; env->y = regs->y; for(i = 0; i < 8; i++) env->gregs[i] = regs->u_regs[i]; for(i = 0; i < 8; i++) env->regwptr[i] = regs->u_regs[i + 8]; } #elif defined(TARGET_PPC) { int i; for (i = 0; i < 32; i++) env->msr[i] = (regs->msr >> i) & 1; env->nip = regs->nip; for(i = 0; i < 32; i++) { env->gpr[i] = regs->gpr[i]; } } #else #error unsupported target CPU #endif cpu_loop(env); /* never exits */ return 0; }