/* * qemu main * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "qemu.h" #include "cpu-i386.h" #define DEBUG_LOGFILE "/tmp/qemu.log" FILE *logfile = NULL; int loglevel; static const char *interp_prefix = CONFIG_QEMU_PREFIX; #ifdef __i386__ /* Force usage of an ELF interpreter even if it is an ELF shared object ! */ const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2"; /* for recent libc, we add these dummies symbol which are not declared when generating a linked object (bug in ld ?) */ #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3) long __init_array_start[0]; long __init_array_end[0]; long __fini_array_start[0]; long __fini_array_end[0]; #endif #endif /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so we allocate a bigger stack. Need a better solution, for example by remapping the process stack directly at the right place */ unsigned long x86_stack_size = 512 * 1024; void gemu_log(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } /***********************************************************/ /* CPUX86 core interface */ void cpu_x86_outb(int addr, int val) { fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val); } void cpu_x86_outw(int addr, int val) { fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val); } void cpu_x86_outl(int addr, int val) { fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val); } int cpu_x86_inb(int addr) { fprintf(stderr, "inb: port=0x%04x\n", addr); return 0; } int cpu_x86_inw(int addr) { fprintf(stderr, "inw: port=0x%04x\n", addr); return 0; } int cpu_x86_inl(int addr) { fprintf(stderr, "inl: port=0x%04x\n", addr); return 0; } void write_dt(void *ptr, unsigned long addr, unsigned long limit, int seg32_bit) { unsigned int e1, e2, limit_in_pages; limit_in_pages = 0; if (limit > 0xffff) { limit = limit >> 12; limit_in_pages = 1; } e1 = (addr << 16) | (limit & 0xffff); e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); e2 |= limit_in_pages << 23; /* byte granularity */ e2 |= seg32_bit << 22; /* 32 bit segment */ stl((uint8_t *)ptr, e1); stl((uint8_t *)ptr + 4, e2); } uint64_t gdt_table[6]; //#define DEBUG_VM86 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) { return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1; } static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg) { return (uint8_t *)((seg << 4) + (reg & 0xffff)); } static inline void pushw(CPUX86State *env, int val) { env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | ((env->regs[R_ESP] - 2) & 0xffff); *(uint16_t *)seg_to_linear(env->segs[R_SS], env->regs[R_ESP]) = val; } static inline unsigned int get_vflags(CPUX86State *env) { unsigned int eflags; eflags = env->eflags & ~(VM_MASK | RF_MASK | IF_MASK); if (eflags & VIF_MASK) eflags |= IF_MASK; return eflags; } void save_v86_state(CPUX86State *env) { TaskState *ts = env->opaque; #ifdef DEBUG_VM86 printf("save_v86_state\n"); #endif /* put the VM86 registers in the userspace register structure */ ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]); ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]); ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]); ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]); ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]); ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]); ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]); ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]); ts->target_v86->regs.eip = tswap32(env->eip); ts->target_v86->regs.cs = tswap16(env->segs[R_CS]); ts->target_v86->regs.ss = tswap16(env->segs[R_SS]); ts->target_v86->regs.ds = tswap16(env->segs[R_DS]); ts->target_v86->regs.es = tswap16(env->segs[R_ES]); ts->target_v86->regs.fs = tswap16(env->segs[R_FS]); ts->target_v86->regs.gs = tswap16(env->segs[R_GS]); ts->target_v86->regs.eflags = tswap32(env->eflags); /* restore 32 bit registers */ env->regs[R_EAX] = ts->vm86_saved_regs.eax; env->regs[R_EBX] = ts->vm86_saved_regs.ebx; env->regs[R_ECX] = ts->vm86_saved_regs.ecx; env->regs[R_EDX] = ts->vm86_saved_regs.edx; env->regs[R_ESI] = ts->vm86_saved_regs.esi; env->regs[R_EDI] = ts->vm86_saved_regs.edi; env->regs[R_EBP] = ts->vm86_saved_regs.ebp; env->regs[R_ESP] = ts->vm86_saved_regs.esp; env->eflags = ts->vm86_saved_regs.eflags; env->eip = ts->vm86_saved_regs.eip; cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); } /* return from vm86 mode to 32 bit. The vm86() syscall will return 'retval' */ static inline void return_to_32bit(CPUX86State *env, int retval) { #ifdef DEBUG_VM86 printf("return_to_32bit: ret=0x%x\n", retval); #endif save_v86_state(env); env->regs[R_EAX] = retval; } /* handle VM86 interrupt (NOTE: the CPU core currently does not support TSS interrupt revectoring, so this code is always executed) */ static void do_int(CPUX86State *env, int intno) { TaskState *ts = env->opaque; uint32_t *int_ptr, segoffs; if (env->segs[R_CS] == TARGET_BIOSSEG) goto cannot_handle; /* XXX: I am not sure this is really useful */ if (is_revectored(intno, &ts->target_v86->int_revectored)) goto cannot_handle; if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, &ts->target_v86->int21_revectored)) goto cannot_handle; int_ptr = (uint32_t *)(intno << 2); segoffs = tswap32(*int_ptr); if ((segoffs >> 16) == TARGET_BIOSSEG) goto cannot_handle; #ifdef DEBUG_VM86 printf("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", intno, segoffs >> 16, segoffs & 0xffff); #endif /* save old state */ pushw(env, get_vflags(env)); pushw(env, env->segs[R_CS]); pushw(env, env->eip); /* goto interrupt handler */ env->eip = segoffs & 0xffff; cpu_x86_load_seg(env, R_CS, segoffs >> 16); env->eflags &= ~(VIF_MASK | TF_MASK); return; cannot_handle: #ifdef DEBUG_VM86 printf("VM86: return to 32 bits int 0x%x\n", intno); #endif return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); } void cpu_loop(struct CPUX86State *env) { int trapnr; uint8_t *pc; target_siginfo_t info; for(;;) { trapnr = cpu_x86_exec(env); pc = env->seg_cache[R_CS].base + env->eip; switch(trapnr) { case EXCP0D_GPF: if (env->eflags & VM_MASK) { #ifdef DEBUG_VM86 printf("VM86 exception %04x:%08x %02x %02x\n", env->segs[R_CS], env->eip, pc[0], pc[1]); #endif /* VM86 mode */ switch(pc[0]) { case 0xcd: /* int */ env->eip += 2; do_int(env, pc[1]); break; case 0x66: switch(pc[1]) { case 0xfb: /* sti */ case 0x9d: /* popf */ case 0xcf: /* iret */ env->eip += 2; return_to_32bit(env, TARGET_VM86_STI); break; default: goto vm86_gpf; } break; case 0xfb: /* sti */ case 0x9d: /* popf */ case 0xcf: /* iret */ env->eip++; return_to_32bit(env, TARGET_VM86_STI); break; default: vm86_gpf: /* real VM86 GPF exception */ return_to_32bit(env, TARGET_VM86_UNKNOWN); break; } } else { if (pc[0] == 0xcd && pc[1] == 0x80) { /* syscall */ env->eip += 2; env->regs[R_EAX] = do_syscall(env, env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP]); } else { /* XXX: more precise info */ info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = 0; info._sifields._sigfault._addr = 0; queue_signal(info.si_signo, &info); } } break; case EXCP00_DIVZ: if (env->eflags & VM_MASK) { do_int(env, trapnr); } else { /* division by zero */ info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = TARGET_FPE_INTDIV; info._sifields._sigfault._addr = env->eip; queue_signal(info.si_signo, &info); } break; case EXCP04_INTO: case EXCP05_BOUND: if (env->eflags & VM_MASK) { do_int(env, trapnr); } else { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = 0; info._sifields._sigfault._addr = 0; queue_signal(info.si_signo, &info); } break; case EXCP06_ILLOP: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->eip; queue_signal(info.si_signo, &info); break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; default: fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", (long)pc, trapnr); abort(); } process_pending_signals(env); } } void usage(void) { printf("qemu version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n" "usage: qemu [-h] [-d] [-L path] [-s size] program [arguments...]\n" "Linux x86 emulator\n" "\n" "-h print this help\n" "-d activate log (logfile=%s)\n" "-L path set the x86 elf interpreter prefix (default=%s)\n" "-s size set the x86 stack size in bytes (default=%ld)\n", DEBUG_LOGFILE, interp_prefix, x86_stack_size); _exit(1); } /* XXX: currently only used for async signals (see signal.c) */ CPUX86State *global_env; /* used to free thread contexts */ TaskState *first_task_state; int main(int argc, char **argv) { const char *filename; struct target_pt_regs regs1, *regs = ®s1; struct image_info info1, *info = &info1; TaskState ts1, *ts = &ts1; CPUX86State *env; int optind; const char *r; if (argc <= 1) usage(); loglevel = 0; optind = 1; for(;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') break; optind++; r++; if (!strcmp(r, "-")) { break; } else if (!strcmp(r, "d")) { loglevel = 1; } else if (!strcmp(r, "s")) { r = argv[optind++]; x86_stack_size = strtol(r, (char **)&r, 0); if (x86_stack_size <= 0) usage(); if (*r == 'M') x86_stack_size *= 1024 * 1024; else if (*r == 'k' || *r == 'K') x86_stack_size *= 1024; } else if (!strcmp(r, "L")) { interp_prefix = argv[optind++]; } else { usage(); } } if (optind >= argc) usage(); filename = argv[optind]; /* init debug */ if (loglevel) { logfile = fopen(DEBUG_LOGFILE, "w"); if (!logfile) { perror(DEBUG_LOGFILE); _exit(1); } setvbuf(logfile, NULL, _IOLBF, 0); } /* Zero out regs */ memset(regs, 0, sizeof(struct target_pt_regs)); /* Zero out image_info */ memset(info, 0, sizeof(struct image_info)); /* Scan interp_prefix dir for replacement files. */ init_paths(interp_prefix); if (elf_exec(filename, argv+optind, environ, regs, info) != 0) { printf("Error loading %s\n", filename); _exit(1); } if (loglevel) { fprintf(logfile, "start_brk 0x%08lx\n" , info->start_brk); fprintf(logfile, "end_code 0x%08lx\n" , info->end_code); fprintf(logfile, "start_code 0x%08lx\n" , info->start_code); fprintf(logfile, "end_data 0x%08lx\n" , info->end_data); fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack); fprintf(logfile, "brk 0x%08lx\n" , info->brk); fprintf(logfile, "esp 0x%08lx\n" , regs->esp); fprintf(logfile, "eip 0x%08lx\n" , regs->eip); } target_set_brk((char *)info->brk); syscall_init(); signal_init(); env = cpu_x86_init(); global_env = env; /* build Task State */ memset(ts, 0, sizeof(TaskState)); env->opaque = ts; ts->used = 1; /* linux register setup */ env->regs[R_EAX] = regs->eax; env->regs[R_EBX] = regs->ebx; env->regs[R_ECX] = regs->ecx; env->regs[R_EDX] = regs->edx; env->regs[R_ESI] = regs->esi; env->regs[R_EDI] = regs->edi; env->regs[R_EBP] = regs->ebp; env->regs[R_ESP] = regs->esp; env->eip = regs->eip; /* linux segment setup */ env->gdt.base = (void *)gdt_table; env->gdt.limit = sizeof(gdt_table) - 1; write_dt(&gdt_table[__USER_CS >> 3], 0, 0xffffffff, 1); write_dt(&gdt_table[__USER_DS >> 3], 0, 0xffffffff, 1); cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_FS, __USER_DS); cpu_x86_load_seg(env, R_GS, __USER_DS); cpu_loop(env); /* never exits */ return 0; }