/* * MIPS emulation helpers for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "exec.h" #define GETPC() (__builtin_return_address(0)) /*****************************************************************************/ /* Exceptions processing helpers */ void do_raise_exception_err (uint32_t exception, int error_code) { #if 1 if (logfile && exception < 0x100) fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code); #endif env->exception_index = exception; env->error_code = error_code; T0 = 0; cpu_loop_exit(); } void do_raise_exception (uint32_t exception) { do_raise_exception_err(exception, 0); } void do_restore_state (void *pc_ptr) { TranslationBlock *tb; unsigned long pc = (unsigned long) pc_ptr; tb = tb_find_pc (pc); cpu_restore_state (tb, env, pc, NULL); } void do_raise_exception_direct_err (uint32_t exception, int error_code) { do_restore_state (GETPC ()); do_raise_exception_err (exception, error_code); } void do_raise_exception_direct (uint32_t exception) { do_raise_exception_direct_err (exception, 0); } #define MEMSUFFIX _raw #include "op_helper_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_helper_mem.c" #undef MEMSUFFIX #endif #ifdef TARGET_MIPS64 #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void do_dsll (void) { T0 = T0 << T1; } void do_dsll32 (void) { T0 = T0 << (T1 + 32); } void do_dsra (void) { T0 = (int64_t)T0 >> T1; } void do_dsra32 (void) { T0 = (int64_t)T0 >> (T1 + 32); } void do_dsrl (void) { T0 = T0 >> T1; } void do_dsrl32 (void) { T0 = T0 >> (T1 + 32); } void do_drotr (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - T1); T0 = (T0 >> T1) | tmp; } } void do_drotr32 (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - (32 + T1)); T0 = (T0 >> (32 + T1)) | tmp; } } void do_dsllv (void) { T0 = T1 << (T0 & 0x3F); } void do_dsrav (void) { T0 = (int64_t)T1 >> (T0 & 0x3F); } void do_dsrlv (void) { T0 = T1 >> (T0 & 0x3F); } void do_drotrv (void) { target_ulong tmp; T0 &= 0x3F; if (T0) { tmp = T1 << (0x40 - T0); T0 = (T1 >> T0) | tmp; } else T0 = T1; } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #endif /* TARGET_MIPS64 */ /* 64 bits arithmetic for 32 bits hosts */ #if TARGET_LONG_BITS > HOST_LONG_BITS static inline uint64_t get_HILO (void) { return (env->HI << 32) | (uint32_t)env->LO; } static inline void set_HILO (uint64_t HILO) { env->LO = (int32_t)HILO; env->HI = (int32_t)(HILO >> 32); } void do_mult (void) { set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); } void do_multu (void) { set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); } void do_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); } void do_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); } void do_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); } void do_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); } #endif #if HOST_LONG_BITS < 64 void do_div (void) { /* 64bit datatypes because we may see overflow/underflow. */ if (T1 != 0) { env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1); env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1); } } #endif #ifdef TARGET_MIPS64 void do_ddiv (void) { if (T1 != 0) { lldiv_t res = lldiv((int64_t)T0, (int64_t)T1); env->LO = res.quot; env->HI = res.rem; } } #if TARGET_LONG_BITS > HOST_LONG_BITS void do_ddivu (void) { if (T1 != 0) { env->LO = T0 / T1; env->HI = T0 % T1; } } #endif #endif /* TARGET_MIPS64 */ #if defined(CONFIG_USER_ONLY) void do_mfc0_random (void) { cpu_abort(env, "mfc0 random\n"); } void do_mfc0_count (void) { cpu_abort(env, "mfc0 count\n"); } void cpu_mips_store_count(CPUState *env, uint32_t value) { cpu_abort(env, "mtc0 count\n"); } void cpu_mips_store_compare(CPUState *env, uint32_t value) { cpu_abort(env, "mtc0 compare\n"); } void cpu_mips_update_irq(CPUState *env) { cpu_abort(env, "mtc0 status / mtc0 cause\n"); } void do_mtc0_status_debug(uint32_t old, uint32_t val) { cpu_abort(env, "mtc0 status debug\n"); } void do_mtc0_status_irqraise_debug (void) { cpu_abort(env, "mtc0 status irqraise debug\n"); } void cpu_mips_tlb_flush (CPUState *env, int flush_global) { cpu_abort(env, "mips_tlb_flush\n"); } #else /* CP0 helpers */ void do_mfc0_random (void) { T0 = (int32_t)cpu_mips_get_random(env); } void do_mfc0_count (void) { T0 = (int32_t)cpu_mips_get_count(env); } void do_mtc0_status_debug(uint32_t old, uint32_t val) { fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x", old, old & env->CP0_Cause & CP0Ca_IP_mask, val, val & env->CP0_Cause & CP0Ca_IP_mask, env->CP0_Cause); (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile) : fputs("\n", logfile); } void do_mtc0_status_irqraise_debug(void) { fprintf(logfile, "Raise pending IRQs\n"); } void fpu_handle_exception(void) { #ifdef CONFIG_SOFTFLOAT int flags = get_float_exception_flags(&env->fp_status); unsigned int cpuflags = 0, enable, cause = 0; enable = GET_FP_ENABLE(env->fcr31); /* determine current flags */ if (flags & float_flag_invalid) { cpuflags |= FP_INVALID; cause |= FP_INVALID & enable; } if (flags & float_flag_divbyzero) { cpuflags |= FP_DIV0; cause |= FP_DIV0 & enable; } if (flags & float_flag_overflow) { cpuflags |= FP_OVERFLOW; cause |= FP_OVERFLOW & enable; } if (flags & float_flag_underflow) { cpuflags |= FP_UNDERFLOW; cause |= FP_UNDERFLOW & enable; } if (flags & float_flag_inexact) { cpuflags |= FP_INEXACT; cause |= FP_INEXACT & enable; } SET_FP_FLAGS(env->fcr31, cpuflags); SET_FP_CAUSE(env->fcr31, cause); #else SET_FP_FLAGS(env->fcr31, 0); SET_FP_CAUSE(env->fcr31, 0); #endif } /* TLB management */ void cpu_mips_tlb_flush (CPUState *env, int flush_global) { /* Flush qemu's TLB and discard all shadowed entries. */ tlb_flush (env, flush_global); env->tlb_in_use = env->nb_tlb; } static void r4k_mips_tlb_flush_extra (CPUState *env, int first) { /* Discard entries from env->tlb[first] onwards. */ while (env->tlb_in_use > first) { r4k_invalidate_tlb(env, --env->tlb_in_use, 0); } } static void r4k_fill_tlb (int idx) { r4k_tlb_t *tlb; /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ tlb = &env->mmu.r4k.tlb[idx]; tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #ifdef TARGET_MIPS64 tlb->VPN &= env->SEGMask; #endif tlb->ASID = env->CP0_EntryHi & 0xFF; tlb->PageMask = env->CP0_PageMask; tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; } void r4k_do_tlbwi (void) { /* Discard cached TLB entries. We could avoid doing this if the tlbwi is just upgrading access permissions on the current entry; that might be a further win. */ r4k_mips_tlb_flush_extra (env, env->nb_tlb); r4k_invalidate_tlb(env, env->CP0_Index % env->nb_tlb, 0); r4k_fill_tlb(env->CP0_Index % env->nb_tlb); } void r4k_do_tlbwr (void) { int r = cpu_mips_get_random(env); r4k_invalidate_tlb(env, r, 1); r4k_fill_tlb(r); } void r4k_do_tlbp (void) { r4k_tlb_t *tlb; target_ulong mask; target_ulong tag; target_ulong VPN; uint8_t ASID; int i; ASID = env->CP0_EntryHi & 0xFF; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { /* TLB match */ env->CP0_Index = i; break; } } if (i == env->nb_tlb) { /* No match. Discard any shadow entries, if any of them match. */ for (i = env->nb_tlb; i < env->tlb_in_use; i++) { tlb = &env->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { r4k_mips_tlb_flush_extra (env, i); break; } } env->CP0_Index |= 0x80000000; } } void r4k_do_tlbr (void) { r4k_tlb_t *tlb; uint8_t ASID; ASID = env->CP0_EntryHi & 0xFF; tlb = &env->mmu.r4k.tlb[env->CP0_Index % env->nb_tlb]; /* If this will change the current ASID, flush qemu's TLB. */ if (ASID != tlb->ASID) cpu_mips_tlb_flush (env, 1); r4k_mips_tlb_flush_extra(env, env->nb_tlb); env->CP0_EntryHi = tlb->VPN | tlb->ASID; env->CP0_PageMask = tlb->PageMask; env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | (tlb->C0 << 3) | (tlb->PFN[0] >> 6); env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | (tlb->C1 << 3) | (tlb->PFN[1] >> 6); } #endif /* !CONFIG_USER_ONLY */ void dump_ldst (const unsigned char *func) { if (loglevel) fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1); } void dump_sc (void) { if (loglevel) { fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__, T1, T0, env->CP0_LLAddr); } } void debug_pre_eret (void) { fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); fputs("\n", logfile); } void debug_post_eret (void) { fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); if (env->hflags & MIPS_HFLAG_UM) fputs(", UM\n", logfile); else fputs("\n", logfile); } void do_pmon (int function) { function /= 2; switch (function) { case 2: /* TODO: char inbyte(int waitflag); */ if (env->gpr[4] == 0) env->gpr[2] = -1; /* Fall through */ case 11: /* TODO: char inbyte (void); */ env->gpr[2] = -1; break; case 3: case 12: printf("%c", (char)(env->gpr[4] & 0xFF)); break; case 17: break; case 158: { unsigned char *fmt = (void *)(unsigned long)env->gpr[4]; printf("%s", fmt); } break; } } #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) { env->CP0_BadVAddr = addr; do_restore_state (retaddr); do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); } void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } do_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } #endif /* Complex FPU operations which may need stack space. */ #define FLOAT_SIGN32 (1 << 31) #define FLOAT_SIGN64 (1ULL << 63) #define FLOAT_ONE32 (0x3f8 << 20) #define FLOAT_ONE64 (0x3ffULL << 52) #define FLOAT_TWO32 (1 << 30) #define FLOAT_TWO64 (1ULL << 62) /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; #define RESTORE_ROUNDING_MODE \ set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status) void do_ctc1 (void) { switch(T1) { case 25: if (T0 & 0xffffff00) return; env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) | ((T0 & 0x1) << 23); break; case 26: if (T0 & 0x007c0000) return; env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c); break; case 28: if (T0 & 0x007c0000) return; env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) | ((T0 & 0x4) << 22); break; case 31: if (T0 & 0x007c0000) return; env->fcr31 = T0; break; default: return; } /* set rounding mode */ RESTORE_ROUNDING_MODE; set_float_exception_flags(0, &env->fp_status); if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31)) do_raise_exception(EXCP_FPE); } inline char ieee_ex_to_mips(char xcpt) { return (xcpt & float_flag_inexact) >> 5 | (xcpt & float_flag_underflow) >> 3 | (xcpt & float_flag_overflow) >> 1 | (xcpt & float_flag_divbyzero) << 1 | (xcpt & float_flag_invalid) << 4; } inline char mips_ex_to_ieee(char xcpt) { return (xcpt & FP_INEXACT) << 5 | (xcpt & FP_UNDERFLOW) << 3 | (xcpt & FP_OVERFLOW) << 1 | (xcpt & FP_DIV0) >> 1 | (xcpt & FP_INVALID) >> 4; } inline void update_fcr31(void) { int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status)); SET_FP_CAUSE(env->fcr31, tmp); if (GET_FP_ENABLE(env->fcr31) & tmp) do_raise_exception(EXCP_FPE); else UPDATE_FP_FLAGS(env->fcr31, tmp); } #define FLOAT_OP(name, p) void do_float_##name##_##p(void) FLOAT_OP(cvtd, s) { set_float_exception_flags(0, &env->fp_status); FDT2 = float32_to_float64(FST0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvtd, w) { set_float_exception_flags(0, &env->fp_status); FDT2 = int32_to_float64(WT0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvtd, l) { set_float_exception_flags(0, &env->fp_status); FDT2 = int64_to_float64(DT0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvtl, d) { set_float_exception_flags(0, &env->fp_status); DT2 = float64_to_int64(FDT0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(cvtl, s) { set_float_exception_flags(0, &env->fp_status); DT2 = float32_to_int64(FST0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(cvtps, pw) { set_float_exception_flags(0, &env->fp_status); FST2 = int32_to_float32(WT0, &env->fp_status); FSTH2 = int32_to_float32(WTH0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvtpw, ps) { set_float_exception_flags(0, &env->fp_status); WT2 = float32_to_int32(FST0, &env->fp_status); WTH2 = float32_to_int32(FSTH0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(cvts, d) { set_float_exception_flags(0, &env->fp_status); FST2 = float64_to_float32(FDT0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvts, w) { set_float_exception_flags(0, &env->fp_status); FST2 = int32_to_float32(WT0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvts, l) { set_float_exception_flags(0, &env->fp_status); FST2 = int64_to_float32(DT0, &env->fp_status); update_fcr31(); } FLOAT_OP(cvts, pl) { set_float_exception_flags(0, &env->fp_status); WT2 = WT0; update_fcr31(); } FLOAT_OP(cvts, pu) { set_float_exception_flags(0, &env->fp_status); WT2 = WTH0; update_fcr31(); } FLOAT_OP(cvtw, s) { set_float_exception_flags(0, &env->fp_status); WT2 = float32_to_int32(FST0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(cvtw, d) { set_float_exception_flags(0, &env->fp_status); WT2 = float64_to_int32(FDT0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(roundl, d) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); DT2 = float64_to_int64(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(roundl, s) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); DT2 = float32_to_int64(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(roundw, d) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); WT2 = float64_to_int32(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(roundw, s) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); WT2 = float32_to_int32(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(truncl, d) { DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(truncl, s) { DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(truncw, d) { WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(truncw, s) { WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(ceill, d) { set_float_rounding_mode(float_round_up, &env->fp_status); DT2 = float64_to_int64(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(ceill, s) { set_float_rounding_mode(float_round_up, &env->fp_status); DT2 = float32_to_int64(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(ceilw, d) { set_float_rounding_mode(float_round_up, &env->fp_status); WT2 = float64_to_int32(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(ceilw, s) { set_float_rounding_mode(float_round_up, &env->fp_status); WT2 = float32_to_int32(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(floorl, d) { set_float_rounding_mode(float_round_down, &env->fp_status); DT2 = float64_to_int64(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(floorl, s) { set_float_rounding_mode(float_round_down, &env->fp_status); DT2 = float32_to_int64(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = 0x7fffffffffffffffULL; } FLOAT_OP(floorw, d) { set_float_rounding_mode(float_round_down, &env->fp_status); WT2 = float64_to_int32(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } FLOAT_OP(floorw, s) { set_float_rounding_mode(float_round_down, &env->fp_status); WT2 = float32_to_int32(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = 0x7fffffff; } /* MIPS specific unary operations */ FLOAT_OP(recip, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status); update_fcr31(); } FLOAT_OP(recip, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status); update_fcr31(); } FLOAT_OP(rsqrt, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_sqrt(FDT0, &env->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status); update_fcr31(); } FLOAT_OP(rsqrt, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_sqrt(FST0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status); update_fcr31(); } FLOAT_OP(recip1, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status); update_fcr31(); } FLOAT_OP(recip1, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status); update_fcr31(); } FLOAT_OP(recip1, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status); FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_sqrt(FDT0, &env->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_sqrt(FST0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_sqrt(FST0, &env->fp_status); FSTH2 = float32_sqrt(FSTH0, &env->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status); FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fp_status); update_fcr31(); } /* binary operations */ #define FLOAT_BINOP(name) \ FLOAT_OP(name, d) \ { \ set_float_exception_flags(0, &env->fp_status); \ FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) \ FDT2 = 0x7ff7ffffffffffffULL; \ else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ if ((env->fcr31 & 0x3) == 0) \ FDT2 &= FLOAT_SIGN64; \ } \ } \ FLOAT_OP(name, s) \ { \ set_float_exception_flags(0, &env->fp_status); \ FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) \ FST2 = 0x7fbfffff; \ else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ if ((env->fcr31 & 0x3) == 0) \ FST2 &= FLOAT_SIGN32; \ } \ } \ FLOAT_OP(name, ps) \ { \ set_float_exception_flags(0, &env->fp_status); \ FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \ FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) { \ FST2 = 0x7fbfffff; \ FSTH2 = 0x7fbfffff; \ } else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ if ((env->fcr31 & 0x3) == 0) { \ FST2 &= FLOAT_SIGN32; \ FSTH2 &= FLOAT_SIGN32; \ } \ } \ } FLOAT_BINOP(add) FLOAT_BINOP(sub) FLOAT_BINOP(mul) FLOAT_BINOP(div) #undef FLOAT_BINOP /* MIPS specific binary operations */ FLOAT_OP(recip2, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_mul(FDT0, FDT2, &env->fp_status); FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status) ^ FLOAT_SIGN64; update_fcr31(); } FLOAT_OP(recip2, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_mul(FST0, FST2, &env->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32; update_fcr31(); } FLOAT_OP(recip2, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_mul(FST0, FST2, &env->fp_status); FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32; FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32; update_fcr31(); } FLOAT_OP(rsqrt2, d) { set_float_exception_flags(0, &env->fp_status); FDT2 = float64_mul(FDT0, FDT2, &env->fp_status); FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status); FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fp_status) ^ FLOAT_SIGN64; update_fcr31(); } FLOAT_OP(rsqrt2, s) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_mul(FST0, FST2, &env->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status); FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32; update_fcr31(); } FLOAT_OP(rsqrt2, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_mul(FST0, FST2, &env->fp_status); FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status); FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status); FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32; FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32; update_fcr31(); } FLOAT_OP(addr, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_add (FST0, FSTH0, &env->fp_status); FSTH2 = float32_add (FST1, FSTH1, &env->fp_status); update_fcr31(); } FLOAT_OP(mulr, ps) { set_float_exception_flags(0, &env->fp_status); FST2 = float32_mul (FST0, FSTH0, &env->fp_status); FSTH2 = float32_mul (FST1, FSTH1, &env->fp_status); update_fcr31(); } /* compare operations */ #define FOP_COND_D(op, cond) \ void do_cmp_d_ ## op (long cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ } \ void do_cmpabs_d_ ## op (long cc) \ { \ int c; \ FDT0 &= ~FLOAT_SIGN64; \ FDT1 &= ~FLOAT_SIGN64; \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ } int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b) || (sig && (float64_is_nan(a) || float64_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float64_is_nan(a) || float64_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0)) FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)) FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0)) FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status)) FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status)) FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status)) #define FOP_COND_S(op, cond) \ void do_cmp_s_ ## op (long cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ } \ void do_cmpabs_s_ ## op (long cc) \ { \ int c; \ FST0 &= ~FLOAT_SIGN32; \ FST1 &= ~FLOAT_SIGN32; \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ } flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b) || (sig && (float32_is_nan(a) || float32_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float32_is_nan(a) || float32_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0)) FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fp_status)) FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status)) FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status)) FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status)) FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status)) FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status)) FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0)) FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status)) FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status)) FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status)) FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status)) FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status)) FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status)) FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status)) #define FOP_COND_PS(op, condl, condh) \ void do_cmp_ps_ ## op (long cc) \ { \ int cl = condl; \ int ch = condh; \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ if (ch) \ SET_FP_COND(cc + 1, env); \ else \ CLEAR_FP_COND(cc + 1, env); \ } \ void do_cmpabs_ps_ ## op (long cc) \ { \ int cl, ch; \ FST0 &= ~FLOAT_SIGN32; \ FSTH0 &= ~FLOAT_SIGN32; \ FST1 &= ~FLOAT_SIGN32; \ FSTH1 &= ~FLOAT_SIGN32; \ cl = condl; \ ch = condh; \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env); \ else \ CLEAR_FP_COND(cc, env); \ if (ch) \ SET_FP_COND(cc + 1, env); \ else \ CLEAR_FP_COND(cc + 1, env); \ } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0), (float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0)) FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)) FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0), (float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0)) FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)) FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status)) FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status))