/* * RISC-V FPU Emulation Helpers for QEMU. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include #include "cpu.h" #include "qemu/host-utils.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" target_ulong cpu_riscv_get_fflags(CPURISCVState *env) { int soft = get_float_exception_flags(&env->fp_status); target_ulong hard = 0; hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0; hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0; hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0; hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0; hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0; return hard; } void cpu_riscv_set_fflags(CPURISCVState *env, target_ulong hard) { int soft = 0; soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0; soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0; soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0; soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0; soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0; set_float_exception_flags(soft, &env->fp_status); } void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm) { int softrm; if (rm == 7) { rm = env->frm; } switch (rm) { case 0: softrm = float_round_nearest_even; break; case 1: softrm = float_round_to_zero; break; case 2: softrm = float_round_down; break; case 3: softrm = float_round_up; break; case 4: softrm = float_round_ties_away; break; default: do_raise_exception_err(env, RISCV_EXCP_ILLEGAL_INST, GETPC()); } set_float_rounding_mode(softrm, &env->fp_status); } uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status); } uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status); } uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c, &env->fp_status); } uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c, &env->fp_status); } uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product, &env->fp_status); } uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product, &env->fp_status); } uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c | float_muladd_negate_product, &env->fp_status); } uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, uint64_t frs3) { return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c | float_muladd_negate_product, &env->fp_status); } uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_add(frs1, frs2, &env->fp_status); } uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_sub(frs1, frs2, &env->fp_status); } uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_mul(frs1, frs2, &env->fp_status); } uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_div(frs1, frs2, &env->fp_status); } uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_minnum(frs1, frs2, &env->fp_status); } uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_maxnum(frs1, frs2, &env->fp_status); } uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1) { return float32_sqrt(frs1, &env->fp_status); } target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_le(frs1, frs2, &env->fp_status); } target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_lt(frs1, frs2, &env->fp_status); } target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float32_eq_quiet(frs1, frs2, &env->fp_status); } target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1) { return float32_to_int32(frs1, &env->fp_status); } target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1) { return (int32_t)float32_to_uint32(frs1, &env->fp_status); } #if defined(TARGET_RISCV64) uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1) { return float32_to_int64(frs1, &env->fp_status); } uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1) { return float32_to_uint64(frs1, &env->fp_status); } #endif uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1) { return int32_to_float32((int32_t)rs1, &env->fp_status); } uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1) { return uint32_to_float32((uint32_t)rs1, &env->fp_status); } #if defined(TARGET_RISCV64) uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1) { return int64_to_float32(rs1, &env->fp_status); } uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1) { return uint64_to_float32(rs1, &env->fp_status); } #endif target_ulong helper_fclass_s(uint64_t frs1) { float32 f = frs1; bool sign = float32_is_neg(f); if (float32_is_infinity(f)) { return sign ? 1 << 0 : 1 << 7; } else if (float32_is_zero(f)) { return sign ? 1 << 3 : 1 << 4; } else if (float32_is_zero_or_denormal(f)) { return sign ? 1 << 2 : 1 << 5; } else if (float32_is_any_nan(f)) { float_status s = { }; /* for snan_bit_is_one */ return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; } else { return sign ? 1 << 1 : 1 << 6; } } uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_add(frs1, frs2, &env->fp_status); } uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_sub(frs1, frs2, &env->fp_status); } uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_mul(frs1, frs2, &env->fp_status); } uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_div(frs1, frs2, &env->fp_status); } uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_minnum(frs1, frs2, &env->fp_status); } uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_maxnum(frs1, frs2, &env->fp_status); } uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1) { rs1 = float64_to_float32(rs1, &env->fp_status); return float32_maybe_silence_nan(rs1, &env->fp_status); } uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1) { rs1 = float32_to_float64(rs1, &env->fp_status); return float64_maybe_silence_nan(rs1, &env->fp_status); } uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1) { return float64_sqrt(frs1, &env->fp_status); } target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_le(frs1, frs2, &env->fp_status); } target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_lt(frs1, frs2, &env->fp_status); } target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) { return float64_eq_quiet(frs1, frs2, &env->fp_status); } target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1) { return float64_to_int32(frs1, &env->fp_status); } target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1) { return (int32_t)float64_to_uint32(frs1, &env->fp_status); } #if defined(TARGET_RISCV64) uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1) { return float64_to_int64(frs1, &env->fp_status); } uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1) { return float64_to_uint64(frs1, &env->fp_status); } #endif uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1) { return int32_to_float64((int32_t)rs1, &env->fp_status); } uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1) { return uint32_to_float64((uint32_t)rs1, &env->fp_status); } #if defined(TARGET_RISCV64) uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1) { return int64_to_float64(rs1, &env->fp_status); } uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1) { return uint64_to_float64(rs1, &env->fp_status); } #endif target_ulong helper_fclass_d(uint64_t frs1) { float64 f = frs1; bool sign = float64_is_neg(f); if (float64_is_infinity(f)) { return sign ? 1 << 0 : 1 << 7; } else if (float64_is_zero(f)) { return sign ? 1 << 3 : 1 << 4; } else if (float64_is_zero_or_denormal(f)) { return sign ? 1 << 2 : 1 << 5; } else if (float64_is_any_nan(f)) { float_status s = { }; /* for snan_bit_is_one */ return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; } else { return sign ? 1 << 1 : 1 << 6; } }