Assignment 2: Natural Language Processing
2IDgo/2IDCo Q3, 2014-2015
March 13, 2015

1 A rudimentary spell checker

The purpose of this assignment is to design a basic spell checker
in Java. The program you are going to write (or rather complete),
must be able to correct misspelled words in the context of a sen-
tence, but should not alter correct words of course. Being correct in
the assignment means two things: the word belongs to the reference
vocabulary, and the word should fit semantically in the enclosing
sentence. To make things easier, we consider lower case text only,
without interpunction and a single space character as white space
between words.

As an example sentence, one may think of “i am loking for a new
car” which should be corrected to “i am looking for a new car”
and not to “i am locking for a new car”. Also the sentence “i am
booking for a new car” is not correct, although all its constituent
words are, and should be corrected to “i am looking for a new car”
again.

2 Materials

You are given the following: 1) a data set, 2) a start-up Netbeans
project and 3) a test file. The data set consists itself of 4 files, in-
cluding (i) the full corpus sample.ascii.txt from which the vo-
cabulary and the unigrams and bigrams are extracted, (ii) the vo-
cabulary samplevoc. txt, (iii) unigrams and bigrams with counts
in samplecnt.txt (which are contaminated), and finally (iv) a

file confusion_matrix.txt, that has counts how often particular
spelling errors are made. Regarding the latter, if, for instance, in

a dataset 200 times ‘a’” was mistakingly typed instead of ‘e’ the
file contains the line a | e 200. The Netbeans-project provides code
to read the files of the dataset and provides the methods that are
supposed to return the correct phrase or word, given a possibly
misspelled phrase. The test file test-sentences. txt contains some
example phrases that the program should work on for testing pur-
poses.

3 Requirements and assumptions

¢ The assignment is done in pairs and submitted through Peach.
Your submission consists of exactly 4 java files SpellChecker.java,
CorpusReader.java, ConfusionMatrixReader.java, and SpellCorrector. java.
Optionally you may want to use an improved version of the aux-
illiary files samplecnt.txt and samplevoc.txt, which then
should be submitted too.



ASSIGNMENT 2: NATURAL LANGUAGE PROCESSING

¢ The submitted code is assumed to be Java 8.

¢ All words that are input to your program are in lower case and
there is no interpunction or any other kind of character possible,
except for the single apostrophe (') like in "don’t" or "can’t".
Hence, the alphabet for the words consists of 27 characters.

¢ All misspelled words have a Damerau-Levenshtein distance of
at most 1, which means that each input word to your program
needs only be altered by at most 1 insertion, deletion, transposi-
tion or substitution.

¢ All words that should be in your output on a given test phrase
are in the vocabulary. A phrase can have between o, 1 or 2 mis-
spelled words, but misspelled words are never consecutive.
Keep into account that each word in a phrase is either correct
or wrong.

¢ The evaluation in Peach assumes that each of your output sen-

u

tences is preceded by the string “Answer:

® Peach will run two tests to see if your program outputs the right
format and can handle two simple sentences.

4 Grading

The assignment is to be graded on three criteria: the report (5 pnts),
the test results (3 pnts) while the remaining points (2 pnts) are
reserved for additional features of your solution when clearly de-
scribed in the report and supported by your implementation (e.g.
advanced smoothing, back-off, performance improvements, im-
provement of the bigrams counts, etc.).

For the report, it is important that the structure of the report is
clear. It should be clear from the report how the main problem of
the assignment is divided into smaller subproblems and how these
are solved. It should at least contain a description of how the main
problem is divided into subproblems, how these subproblems are
solved, why some choices were made, what kind of input the pro-
gram would not work on and why and a brief description on the
program workings. Please note that the report is the most impor-
tant part of your grade.

Following the general rules, your report does not exceed 8 pages,
excluding an optional small appendix. The evaluation of your code
will be obtained from running a number of sentences with mis-
spellings and real word errors (extending the sentences in the test
file test-sentences. txt provided).

5 Base code

A NetBeans project is provided for which a number of methods
needs to be completed. In the main method as given, a sentence

2



ASSIGNMENT 2: NATURAL LANGUAGE PROCESSING

can be given as an argument to the spellCorrector method of the
SpellCorrector sc directly. In the final version the sentence needs
to be read from standard input. The class CorpusReader provides
auxilliary functionality. Its smoothening method must be filled to
obtain decent spelling correction. The class ConfusionMatrixReader
doesn’t need to be changed. The overall structure in the class
SpellCorrector is there, but code is missing at most places.

1. In the file CorpusReader.java you need to adapt the smoothen-
ing method getSmoothedCount. The simplest, but not the best
solution, is to use add-one smoothening.

2. In the file SpellCorrector.java three methods need to be ex-
tended:

(a) The method correctPhrase deals with the correction at the
sentence level according to the noisy-channel model combined
with bigram information. For the channel probability you
may want to calibrate the weight of the prior, e.g. using a
construction like likelihood * Math.pow(prior,LAMBDA) x
SCALE_FACTOR.

(b) The method calculateChannel is meant to calculate the con-
ditional probability of a presumably incorrect word given a
correction. You need to decide whether a candidate sugges-
tion for an aledgedly incorrect word is a deletion, insertion,
substitution or a transposition, and what is the likelihood for
this to occur based on the values in the confusion matrix (for
which code is provided at the end of the method).

(c) The method getCandidateWords is intended, in view of the

assumptions, to collect all words from the vocabulary that
have edit-distance 1 to a word from the given sentence.

3. You may want to tune the constants NO_ERROR and LAMBDA
to improve the reach of your program.

6 Closing remark

Submitted files will be checked immediately for eligibility which
may cause delay in the feedback and may lead to possible conges-
tion close to the submission deadline. Therefore, it is advised to
hand in your submission in time.



	1 A rudimentary spell checker
	2 Materials
	3 Requirements and assumptions
	4 Grading
	5 Base code
	6 Closing remark

