
Spell checker

2ID90 Artificial Intelligence
Team 08

Wilco Brouwer (0816718)
Peter Wu (0783206)

April 2, 2015

1 Introduction

In this report we will describe our solution to the second assignment, which
consists of designing a spell checker algorithm and its implementation in Java.
The algorithm is provided with a sentence which contains zero to two misspelled
words with an Damerau-Levenshtein edit distance of 1. In addition, misspelled
words are not consecutive.

The expected output is a sentence where these errors have been corrected.

2 Approach

To remove spelling errors from a text, one has to generate possible corrections
and evaluate them. Spelling suggestions are done on a word-by-word basis.

To obtain a list of possible words, candidate words will generated with a
Damerau-Levenshtein distance of 1 to the original word. While doing this, a
noisy channel probability can also be obtained which is needed later for word
evaluation.

For each of word from the sentence, the word will be evaluated against the
context of the word. This includes the previous and next words for n-grams.
Since we only have the guarantee that the words next to the misspelled one are
correct, tri-grams cannot reach out for the following two words before or after
the current word.

Finally the most likely word may be chosen. If this is different from the
original word, then the search may continue to find a possible second and third
misspelled word.

2.1 Overview

The program is given a single sentence which is split in words. The indices of
words that are surely correct are remembered (readonly words in the listing
below). Once a rating is found which is higher than the initial one, then the
word is replaced.

When a word was modified, the hunt for more faulty words continue until all
of them (less than three) are found. Otherwise, it is assumed that the sentence
has no more spelling errors.

1



Pseudo-code:

1 words = input.split(’ ’)
2

3 # Initially a spelling suggestion can be proposed for all words.
4 readonly_words = [False] * len(words)
5

6 # Attempt to find wrongly spelled words.
7 for attempt in range(0, 3):
8

9 for word_index, word in enumerate(words):
10 # Skip words if these were modified before or if they were
11 # consecutive to a previous word.
12 if readonly_words[word_index]:
13 continue
14

15 # Finds the likelihood of the current word, it is described later
16 rating_old = getLikelihood(word)
17

18 # Generates a list of candidate words, it is described later.
19 candidates = getCandidateWords(word):
20

21 # Initially there is no best word.
22 bestCandidate = None
23

24 # Iterates through the candidates until one is found that is more
25 # likely than the current word.
26 for candidate in candidates:
27 # Calculates the likelihood for the candidate word. If it is
28 # better than the current word, then it is chosen.
29 rating = getLikelihood(candidate)
30 if rating > rating_old:
31 bestCandidate = candidate
32

33 if bestCandidate is not None:
34 word[word_index = bestCandidate
35 # Ensure that these words are not changed again in later
36 # iterations. (Bounds checks are omitted for brevity.)
37 readonly_words[word_index-1..word_index+1] = 0
38 else:
39 # no more suggestions, abort
40 break
41

42 # words now contains the sentence with misspelled words corrected

2.2 Generation of candidate words

A naive approach to generate candidate words in the getCandidateWords()
function is to generate all possible combinations of the alphabet, and then take
the intersection with the dictionary. This does not scale and uses O(27n) mem-
ory and time.

Instead we chose for a smarter approach. As we know that the misspelled
word have a Damerau-Levenshtein distance of 1, candidates are generated by
cycling through each letter and applying an insertion, deletion, substitution or
transposition.

While doing these operations, the Noisy Channel Probability can also be
obtained since we have a confusion matrix and know kind of operation was
executed.

2



Pseudo-code (bounds checks are omitted, assume that such operations do
not generate words. The actual Java implementation has decomposed methods
for each of the operations):

1 def getCandidateWords(word):
2 # Walk through the letters of a word. Words that are not in a
3 # vocabulary will be dropped. While generating words, a Noisy Channel
4 # Probability will also be calculated and attached to the word.
5 for i in word[0..n]:
6 # Insertion of a new character at position i.
7 for character in ALPHABET:
8 yield word[0..i] character word[i..n]
9

10 # Deletion of a following character.
11 yield word[0..i] word[i+1..n]
12

13 # Substitution of the current character.
14 for character in ALPHABET:
15 yield word[0..i] character word[i+1..n]
16

17 # Transposition of the previous and current characters.
18 for character in ALPHABET:
19 yield word[0..i-1] word[i+1] word[i] word[i+2..n]

2.3 Evaluation of words

The most important part of the algorithm is actually rating a word. For this, we
will combine the channel model probability with the language model probability.
The channel model probability P (x|w) is obtained via getCandidateWords()
while the language model probability P (w) depends on the frequency of prior
words from a corpus.

The evaluation of words basically calculates P (x|w) ∗ P (w). P (w) is calcu-
lated using correctionCount

errorsCount where correctionCount is the number of occurrences
of the correction x given an error, and errorsCount is the number of those
errors.

Intuitively bigrams (or trigrams) are more precise than unigrams because
these are more specific and use more details from the context. However, there
are also less bigrams and even less trigrams to get information about. This
could cause a skew in the results, so while it should be weighted more than
unigrams, this parameter should not get too high.

3 Results and Explanation

4 Additional Resources

5 Statement of the Contributions

Peter wrote most of the Spell Checker implementationg and report.

3



6 Manual

7 References

4


