import robotrace.Vector; import static java.lang.Math.*; import robotrace.GlobalState; /** * Implementation of a camera with a position and orientation. */ class Camera { /** The position of the camera. */ public Vector eye = new Vector(3f, 6f, 5f); /** The point to which the camera is looking. */ public Vector center = Vector.O; /** The up vector. */ public Vector up = Vector.Z; /** Race track used. */ private final RaceTrack track; /** * A reference to the global game state from RobotRace. */ private final GlobalState gs; /** * Robots that are to be tracked by the camera. */ private final Robot[] robots; /** * True if the robot with the highest speed should be focused in Helicopter, * Motor and FP mode; false if the robot that made the longest distance * should be focused. */ boolean followTopSpeed = true; public Camera(GlobalState gs, RaceTrack track, Robot[] robots) { this.gs = gs; this.track = track; this.robots = robots; } /** * Updates the camera viewpoint and direction based on the * selected camera mode. */ public void update(int mode) { if (1 == mode) { // Helicopter mode setHelicopterMode(); } else if (2 == mode) { // Motor cycle mode setMotorCycleMode(); } else if (3 == mode) { // First person mode setFirstPersonMode(); } else if (4 == mode) { // Auto mode setAutoMode(); } else { // Default mode setDefaultMode(); } } /** * Computes {@code eye}, {@code center}, and {@code up}, based * on the camera's default mode. */ private void setDefaultMode() { /* z | * | vDist % * | % * Ez * |%________*________ y * Ex / % * * / s % * * x / - - - - - - - * * Ey * phi is angle between vDist and XY plane (Z direction) * theta is angle between X-axis and s (XY plane) * E = (Ex, Ey, Ez) * sin phi = Ez / vDist => Ez = vDist * sin phi * cos phi = s / vDist => s = vDist * cos phi * Ex = s * sin theta * Ey = s * cos theta */ float Ex, Ey, Ez, s; Ez = gs.vDist * (float) sin(gs.phi); s = gs.vDist * (float) cos(gs.phi); Ex = s * (float) sin(gs.theta); Ey = s * (float) cos(gs.theta); eye = new Vector(Ex, Ey, Ez); // WASD action: center point and eye point translate double Cx, Cy, Cz; // x and y are swapped because robot looks in y direction Cx = -gs.cnt.y(); Cy = gs.cnt.x(); Cz = gs.cnt.z(); center = new Vector(Cx, Cy, Cz); eye = eye.add(center); // just look straight forward up = Vector.Z; } /** * Computes {@code eye}, {@code center}, and {@code up}, based * on the helicopter mode. */ private void setHelicopterMode() { /** * In the Helicopter view, the camera (eye point) is located above the * robots. */ FocusPosition focus = smoothFocusTo(getFocusedRobot()); // center at the chosen robot. center = track.getPointForLane(focus.getTimePos(), focus.getLane()); /* look in the direction where the robots walks, namely the tangent Add the actual robot position to the tangent vector, and calculate the normal vector based on the resulting vector. This is the up vector. */ Vector robotPos = track.getPointForLane(focus.getTimePos(), focus.getLane()); Vector robotTangent = track.getTangent(focus.getTimePos()); Vector totalVector = robotTangent.add(robotPos); up = new Vector(-totalVector.y(), totalVector.x(), 0); // "above" is 10 meters. eye = center.add(new Vector(0, 0, 10f)); } /** * Computes {@code eye}, {@code center}, and {@code up}, based * on the motorcycle mode. */ private void setMotorCycleMode() { /** * In the Motor Cycle view, the camera is at the side of a track, * following the robots. */ FocusPosition focus = smoothFocusTo(getFocusedRobot()); // Center at the focused robot. center = track.getPointForLane(focus.getTimePos(), focus.getLane()); // We are looking at the robot from the side. up = Vector.Z; // look at a distance of 10 meters from the center of the first lane eye = track.getPointForLane(focus.getTimePos(), 10); // assume that the motor camera is one meter above the race track. eye = eye.add(new Vector(0, 0, 1f)); } /** * Computes {@code eye}, {@code center}, and {@code up}, based * on the first person mode. */ private void setFirstPersonMode() { /** * First person mode: look from the slowest robot forward. */ FocusPosition focus = smoothFocusTo(getSlowestRobot()); // trivial: looks from the robot POV. eye = track.getPointForLane(focus.getTimePos(), focus.getLane()); // robots are two meter, look from head. eye = eye.add(new Vector(0, 0, 2f)); // The question is similar to question 2b of the intermediate test // http://www.win.tue.nl/~vanwijk/2IV60/2IV60_test_exam_161213_answers.pdf // C(t) = E(t) + P'(t) (P'(t) is the tangent vector). Vector robotTangent = track.getTangent(focus.getTimePos()); // look at a point one meter in front of the robot // TODO: this gets badly messed up when perspective is modified center = eye.add(robotTangent); // trivial: look forward, so up vector points up. up = Vector.Z; } /** * Alternates between the available camera modes. */ private void setAutoMode() { double slowest_pos = robots[0].getTimePos(); double fastest_pos = robots[0].getTimePos(); for (Robot robot : robots) { slowest_pos = Math.min(slowest_pos, robot.getTimePos()); fastest_pos = Math.max(fastest_pos, robot.getTimePos()); } double distance = Robot.racepost2meter(fastest_pos - slowest_pos); // the helicopter view is more suitable if robots are more distant if (distance > 5) { setHelicopterMode(); } else { setMotorCycleMode(); } } /** * Returns the robot on which the camera is focused. */ private Robot getFocusedRobot() { Robot selected = robots[0]; for (Robot robot : robots) { // Many possibilities here, fastest, slowest, loser, winner... if (followTopSpeed) { if (selected.getSpeed() < robot.getSpeed()) { // select fastest robot, the one walking in the front selected = robot; } } else { if (selected.getTimePos() < robot.getTimePos()) { // select the fastest accelerating robot. selected = robot; } } } return selected; } /** * Returns the robots which has the lowest Global State Time position. */ private Robot getSlowestRobot() { Robot slowest = robots[0]; for (Robot robot : robots) { if (robot.getTimePos() < slowest.getTimePos()) { slowest = robot; } } return slowest; } /** * Time when the transition started; */ private long transition_start_ms; private Robot old_target, moving_to_target; /** * Time that a transition takes to move from one to another target in ms. */ private static final long TRANSITION_PERIOD = 500; /** * Determine the time position for the track position, using the specified * robot parameter as new focus target. If the new focus target is different * from the old one, then a smooth transition will be made between the old * and new one. */ private FocusPosition smoothFocusTo(Robot target) { // target: goal // moving target: new goal (after complete, set target to this) // old target: previous goal (set to moving target when done) // states: // 1. same target // 2. moving to new target (post-condition: moving != null) long now = System.currentTimeMillis(); if (moving_to_target == null) { // state 1 // transition 1 -> 2 if old != new if (target != old_target) { old_target = target; moving_to_target = target; transition_start_ms = now; } else { // transition 1 -> 1 if old == new // "no transition in progress" or "transition is still complete" } } else if (moving_to_target != null) { // state 2 // transition 2 -> 2 if the aimed target has changed if (moving_to_target != target) { // pretend that the camera moved from the current moving target old_target = moving_to_target; moving_to_target = target; System.err.println("target changed at " + transition_start_ms); // XXX: this does not work well if the transition has just // started and the target is changed to something far away. It // results in a non-fluent switch to the new target. transition_start_ms = now; } else { // transition 2 -> 2 if target is still the same // "transition progresses as time is increased" } // transition complete 2 -> 1: set new old target if (now - transition_start_ms >= TRANSITION_PERIOD) { old_target = target; moving_to_target = null; } } if (moving_to_target != null) { // in move state double n = (now - transition_start_ms) / (double) TRANSITION_PERIOD; // time is distributied from TC% target and the remaining old target double time = n * target.getTimePos(); time += (1 - n) * old_target.getTimePos(); double lane = n * target.getLane(); lane += (1 - n) * old_target.getLane(); return new FocusPosition(lane, time); } else { // not moving return new FocusPosition(target.getLane(), target.getTimePos()); } } /** * Represents the target on the track to focus the camera on. */ class FocusPosition { private final double lane; private final double time; FocusPosition(double lane, double time) { this.lane = lane; this.time = time; } double getTimePos() { return time; } double getLane() { return lane; } } }