summaryrefslogtreecommitdiff
path: root/cipher/rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'cipher/rsa.c')
-rw-r--r--cipher/rsa.c191
1 files changed, 191 insertions, 0 deletions
diff --git a/cipher/rsa.c b/cipher/rsa.c
new file mode 100644
index 00000000..ec761a95
--- /dev/null
+++ b/cipher/rsa.c
@@ -0,0 +1,191 @@
+/* rsa.c - RSA function
+ * Copyright (c) 1997 by Werner Koch (dd9jn)
+ *
+ * ATTENTION: This code should not be exported from the United States
+ * nor should it be used their without a license agreement with PKP.
+ * The RSA alorithm is protected by U.S. Patent #4,405,829 which
+ * expires on September 20, 2000!
+ *
+ * For a description of the algorithm, see:
+ * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
+ * ISBN 0-471-11709-9. Pages 466 ff.
+ *
+ * This file is part of G10.
+ *
+ * G10 is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * G10 is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "util.h"
+#include "mpi.h"
+#include "cipher.h"
+
+
+void
+rsa_free_public_key( RSA_public_key *pk )
+{
+ mpi_free( pk->n ); pk->n = NULL;
+ mpi_free( pk->e ); pk->e = NULL;
+}
+
+void
+rsa_free_secret_key( RSA_secret_key *sk )
+{
+ mpi_free( sk->e ); sk->e = NULL;
+ mpi_free( sk->n ); sk->n = NULL;
+ mpi_free( sk->p ); sk->p = NULL;
+ mpi_free( sk->q ); sk->q = NULL;
+ mpi_free( sk->d ); sk->d = NULL;
+ mpi_free( sk->u ); sk->u = NULL;
+}
+
+
+static void
+test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
+{
+ MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+ MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+ MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+
+ mpi_set_bytes( test, nbits, get_random_byte, 0 );
+
+ rsa_public( out1, test, pk );
+ rsa_secret( out2, out1, sk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: public, secret failed\n");
+ rsa_secret( out1, test, sk );
+ rsa_public( out2, out1, pk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: secret, public failed\n");
+ mpi_free( test );
+ mpi_free( out1 );
+ mpi_free( out2 );
+}
+
+/****************
+ * Generate a key pair with a key of size NBITS
+ * Returns: 2 structures filles with all needed values
+ */
+void
+rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
+{
+ MPI p, q; /* the two primes */
+ MPI d; /* the private key */
+ MPI u;
+ MPI t1, t2;
+ MPI n; /* the public key */
+ MPI e; /* the exponent */
+ MPI phi; /* helper: (p-a)(q-1) */
+
+ /* select two (very secret) primes */
+ p = generate_random_prime( nbits / 2 );
+ q = generate_random_prime( nbits / 2 );
+ if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q */
+ mpi_swap(p,q);
+ /* calculate phi = (p-1)(q-1) */
+ t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
+ mpi_sub_ui( t1, p, 1 );
+ mpi_sub_ui( t2, q, 1 );
+ mpi_mul( phi, t1, t2 );
+ /* multiply them to make the private key */
+ n = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+ mpi_mul( n, p, q );
+ /* find a public exponent */
+ e = mpi_alloc(1);
+ mpi_set_ui( e, 17); /* start with 17 */
+ while( !mpi_gcd(t1, e, phi) ) { /* (while gcd is not 1) */
+ if( DBG_CIPHER )
+ log_mpidump("trying e=", e);
+ mpi_add_ui( e, e, 2);
+ }
+ /* calculate the secret key d = e^1 mod phi */
+ d = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+ mpi_inv_mod(d, e, phi );
+ /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+ u = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
+ mpi_inv_mod(u, p, q );
+
+ if( DBG_CIPHER ) {
+ log_mpidump("p=", p );
+ log_mpidump("q=", q );
+ log_mpidump("phi=", phi );
+ log_mpidump("n=", n );
+ log_mpidump("e=", e );
+ log_mpidump("d=", d );
+ log_mpidump("u=", u );
+ }
+
+ mpi_free(t1);
+ mpi_free(t2);
+ mpi_free(phi);
+
+ pk->n = mpi_copy(n);
+ pk->e = mpi_copy(e);
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* now we can test our keys (this should never fail!) */
+ test_keys( pk, sk, nbits - 16 );
+}
+
+
+
+
+/****************
+ * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
+ *
+ * c = m^e mod n
+ *
+ * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
+ */
+void
+rsa_public(MPI output, MPI input, RSA_public_key *pkey )
+{
+ if( output == input ) { /* powm doesn't like output and input the same */
+ MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
+ mpi_powm( x, input, pkey->e, pkey->n );
+ mpi_set(output, x);
+ mpi_free(x);
+ }
+ else
+ mpi_powm( output, input, pkey->e, pkey->n );
+}
+
+/****************
+ * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
+ *
+ * m = c^d mod n
+ *
+ * Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
+ *
+ * FIXME: We should better use the Chinese Remainder Theorem
+ */
+void
+rsa_secret(MPI output, MPI input, RSA_secret_key *skey )
+{
+ mpi_powm( output, input, skey->d, skey->n );
+}
+
+
+