summaryrefslogtreecommitdiff
path: root/cipher/rsa.c
blob: e5ad116c9102436b5ebfcd312a77e2adfe15443a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/* rsa.c  -  RSA function
 *	Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
 *	Copyright (C) 2000, 2001 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

/* This code uses an algorithm protected by U.S. Patent #4,405,829
   which expires on September 20, 2000.  The patent holder placed that
   patent into the public domain on Sep 6th, 2000.
*/

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
#include "rsa.h"


typedef struct {
    MPI n;	    /* modulus */
    MPI e;	    /* exponent */
} RSA_public_key;


typedef struct {
    MPI n;	    /* public modulus */
    MPI e;	    /* public exponent */
    MPI d;	    /* exponent */
    MPI p;	    /* prime  p. */
    MPI q;	    /* prime  q. */
    MPI u;	    /* inverse of p mod q. */
} RSA_secret_key;


static void test_keys( RSA_secret_key *sk, unsigned nbits );
static void generate( RSA_secret_key *sk, unsigned nbits );
static int  check_secret_key( RSA_secret_key *sk );
static void public(MPI output, MPI input, RSA_public_key *skey );
static void secret(MPI output, MPI input, RSA_secret_key *skey );


static void
test_keys( RSA_secret_key *sk, unsigned nbits )
{
    RSA_public_key pk;
    MPI test = gcry_mpi_new ( nbits );
    MPI out1 = gcry_mpi_new ( nbits );
    MPI out2 = gcry_mpi_new ( nbits );

    pk.n = sk->n;
    pk.e = sk->e;
    gcry_mpi_randomize( test, nbits, GCRY_WEAK_RANDOM );

    public( out1, test, &pk );
    secret( out2, out1, sk );
    if( mpi_cmp( test, out2 ) )
	log_fatal("RSA operation: public, secret failed\n");
    secret( out1, test, sk );
    public( out2, out1, &pk );
    if( mpi_cmp( test, out2 ) )
	log_fatal("RSA operation: secret, public failed\n");
    gcry_mpi_release ( test );
    gcry_mpi_release ( out1 );
    gcry_mpi_release ( out2 );
}

/****************
 * Generate a key pair with a key of size NBITS
 * Returns: 2 structures filles with all needed values
 */
static void
generate( RSA_secret_key *sk, unsigned nbits )
{
    MPI p, q; /* the two primes */
    MPI d;    /* the private key */
    MPI u;
    MPI t1, t2;
    MPI n;    /* the public key */
    MPI e;    /* the exponent */
    MPI phi;  /* helper: (p-a)(q-1) */
    MPI g;
    MPI f;

    /* select two (very secret) primes */
    p = _gcry_generate_secret_prime( nbits / 2 );
    q = _gcry_generate_secret_prime( nbits / 2 );
    if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
	mpi_swap(p,q);
    /* calculate Euler totient: phi = (p-1)(q-1) */
    t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
    t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
    phi = gcry_mpi_snew ( nbits );
    g	= gcry_mpi_snew ( nbits );
    f	= gcry_mpi_snew ( nbits );
    mpi_sub_ui( t1, p, 1 );
    mpi_sub_ui( t2, q, 1 );
    mpi_mul( phi, t1, t2 );
    gcry_mpi_gcd(g, t1, t2);
    mpi_fdiv_q(f, phi, g);
    /* multiply them to make the private key */
    n = gcry_mpi_new ( nbits );
    mpi_mul( n, p, q );
    /* find a public exponent  */
    e = gcry_mpi_new ( 6 );
    mpi_set_ui( e, 17); /* start with 17 */
    while( !gcry_mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
	mpi_add_ui( e, e, 2);
    /* calculate the secret key d = e^1 mod phi */
    d = gcry_mpi_snew ( nbits );
    mpi_invm(d, e, f );
    /* calculate the inverse of p and q (used for chinese remainder theorem)*/
    u = gcry_mpi_snew ( nbits );
    mpi_invm(u, p, q );

    if( DBG_CIPHER ) {
	log_mpidump("  p= ", p );
	log_mpidump("  q= ", q );
	log_mpidump("phi= ", phi );
	log_mpidump("  g= ", g );
	log_mpidump("  f= ", f );
	log_mpidump("  n= ", n );
	log_mpidump("  e= ", e );
	log_mpidump("  d= ", d );
	log_mpidump("  u= ", u );
    }

    gcry_mpi_release (t1);
    gcry_mpi_release (t2);
    gcry_mpi_release (phi);
    gcry_mpi_release (f);
    gcry_mpi_release (g);

    sk->n = n;
    sk->e = e;
    sk->p = p;
    sk->q = q;
    sk->d = d;
    sk->u = u;

    /* now we can test our keys (this should never fail!) */
    test_keys( sk, nbits - 64 );
}


/****************
 * Test wether the secret key is valid.
 * Returns: true if this is a valid key.
 */
static int
check_secret_key( RSA_secret_key *sk )
{
    int rc;
    MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );

    mpi_mul(temp, sk->p, sk->q );
    rc = mpi_cmp( temp, sk->n );
    mpi_free(temp);
    return !rc;
}



/****************
 * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
 *
 *	c = m^e mod n
 *
 * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
 */
static void
public(MPI output, MPI input, RSA_public_key *pkey )
{
    if( output == input ) { /* powm doesn't like output and input the same */
	MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
	mpi_powm( x, input, pkey->e, pkey->n );
	mpi_set(output, x);
	mpi_free(x);
    }
    else
	mpi_powm( output, input, pkey->e, pkey->n );
}

#if 0
static void
stronger_key_check ( RSA_secret_key *skey )
{
    MPI t = mpi_alloc_secure ( 0 );
    MPI t1 = mpi_alloc_secure ( 0 );
    MPI t2 = mpi_alloc_secure ( 0 );
    MPI phi = mpi_alloc_secure ( 0 );

    /* check that n == p * q */
    mpi_mul( t, skey->p, skey->q);
    if (mpi_cmp( t, skey->n) )
        log_info ( "RSA Oops: n != p * q\n" );

    /* check that p is less than q */
    if( mpi_cmp( skey->p, skey->q ) > 0 )
	log_info ("RSA Oops: p >= q\n");


    /* check that e divides neither p-1 nor q-1 */
    mpi_sub_ui(t, skey->p, 1 );
    mpi_fdiv_r(t, t, skey->e );
    if ( !mpi_cmp_ui( t, 0) )
        log_info ( "RSA Oops: e divides p-1\n" );
    mpi_sub_ui(t, skey->q, 1 );
    mpi_fdiv_r(t, t, skey->e );
    if ( !mpi_cmp_ui( t, 0) )
        log_info ( "RSA Oops: e divides q-1\n" );

    /* check that d is correct */
    mpi_sub_ui( t1, skey->p, 1 );
    mpi_sub_ui( t2, skey->q, 1 );
    mpi_mul( phi, t1, t2 );
    mpi_gcd(t, t1, t2);
    mpi_fdiv_q(t, phi, t);
    mpi_invm(t, skey->e, t );
    if ( mpi_cmp(t, skey->d ) )
        log_info ( "RSA Oops: d is wrong\n");

    /* check for crrectness of u */
    mpi_invm(t, skey->p, skey->q );
    if ( mpi_cmp(t, skey->u ) )
        log_info ( "RSA Oops: u is wrong\n");
   
    log_info ( "RSA secret key check finished\n");

    mpi_free (t);
    mpi_free (t1);
    mpi_free (t2);
    mpi_free (phi);
}
#endif



/****************
 * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
 *
 *	m = c^d mod n
 *
 * Or faster:
 *
 *      m1 = c ^ (d mod (p-1)) mod p 
 *      m2 = c ^ (d mod (q-1)) mod q 
 *      h = u * (m2 - m1) mod q 
 *      m = m1 + h * p
 *
 * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
 */
static void
secret(MPI output, MPI input, RSA_secret_key *skey )
{
  #if 0
    mpi_powm( output, input, skey->d, skey->n );
  #else
    MPI m1   = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
    MPI m2   = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
    MPI h    = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );

    /* m1 = c ^ (d mod (p-1)) mod p */
    mpi_sub_ui( h, skey->p, 1  );
    mpi_fdiv_r( h, skey->d, h );   
    mpi_powm( m1, input, h, skey->p );
    /* m2 = c ^ (d mod (q-1)) mod q */
    mpi_sub_ui( h, skey->q, 1  );
    mpi_fdiv_r( h, skey->d, h );
    mpi_powm( m2, input, h, skey->q );
    /* h = u * ( m2 - m1 ) mod q */
    mpi_sub( h, m2, m1 );
    if ( mpi_is_neg( h ) ) 
        mpi_add ( h, h, skey->q );
    mpi_mulm( h, skey->u, h, skey->q ); 
    /* m = m2 + h * p */
    mpi_mul ( h, h, skey->p );
    mpi_add ( output, m1, h );
    /* ready */
    
    mpi_free ( h );
    mpi_free ( m1 );
    mpi_free ( m2 );
  #endif
}



/*********************************************
 **************  interface  ******************
 *********************************************/

int
_gcry_rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{
    RSA_secret_key sk;

    if( !is_RSA(algo) )
	return GCRYERR_INV_PK_ALGO;

    generate( &sk, nbits );
    skey[0] = sk.n;
    skey[1] = sk.e;
    skey[2] = sk.d;
    skey[3] = sk.p;
    skey[4] = sk.q;
    skey[5] = sk.u;
    /* make an empty list of factors */
    *retfactors = gcry_xcalloc( 1, sizeof **retfactors );
    return 0;
}


int
_gcry_rsa_check_secret_key( int algo, MPI *skey )
{
    RSA_secret_key sk;

    if( !is_RSA(algo) )
	return GCRYERR_INV_PK_ALGO;

    sk.n = skey[0];
    sk.e = skey[1];
    sk.d = skey[2];
    sk.p = skey[3];
    sk.q = skey[4];
    sk.u = skey[5];
    if( !check_secret_key( &sk ) )
	return GCRYERR_INV_PK_ALGO;

    return 0;
}



int
_gcry_rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{
    RSA_public_key pk;

    if( algo != 1 && algo != 2 )
	return GCRYERR_INV_PK_ALGO;

    pk.n = pkey[0];
    pk.e = pkey[1];
    resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.n ) );
    public( resarr[0], data, &pk );
    return 0;
}

int
_gcry_rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{
    RSA_secret_key sk;

    if( algo != 1 && algo != 2 )
	return GCRYERR_INV_PK_ALGO;

    sk.n = skey[0];
    sk.e = skey[1];
    sk.d = skey[2];
    sk.p = skey[3];
    sk.q = skey[4];
    sk.u = skey[5];
    *result = mpi_alloc_secure( mpi_get_nlimbs( sk.n ) );
    secret( *result, data[0], &sk );
    return 0;
}

int
_gcry_rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
{
    RSA_secret_key sk;

    if( algo != 1 && algo != 3 )
	return GCRYERR_INV_PK_ALGO;

    sk.n = skey[0];
    sk.e = skey[1];
    sk.d = skey[2];
    sk.p = skey[3];
    sk.q = skey[4];
    sk.u = skey[5];
    resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.n ) );
    secret( resarr[0], data, &sk );

    return 0;
}

int
_gcry_rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
	   int (*cmp)(void *opaque, MPI tmp), void *opaquev )
{
    RSA_public_key pk;
    MPI result;
    int rc;

    if( algo != 1 && algo != 3 )
	return GCRYERR_INV_PK_ALGO;
    pk.n = pkey[0];
    pk.e = pkey[1];
    result = gcry_mpi_new ( 160 );
    public( result, data[0], &pk );
    /*rc = (*cmp)( opaquev, result );*/
    rc = mpi_cmp( result, hash )? GCRYERR_BAD_SIGNATURE:0;
    gcry_mpi_release (result);

    return rc;
}


unsigned int
_gcry_rsa_get_nbits( int algo, MPI *pkey )
{
    if( !is_RSA(algo) )
	return 0;
    return mpi_get_nbits( pkey[0] );
}


/****************
 * Return some information about the algorithm.  We need algo here to
 * distinguish different flavors of the algorithm.
 * Returns: A pointer to string describing the algorithm or NULL if
 *	    the ALGO is invalid.
 * Usage: Bit 0 set : allows signing
 *	      1 set : allows encryption
 */
const char *
_gcry_rsa_get_info( int algo,
	      int *npkey, int *nskey, int *nenc, int *nsig, int *usage )
{
    *npkey = 2;
    *nskey = 6;
    *nenc = 1;
    *nsig = 1;

    switch( algo ) {
      case 1: *usage = GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR; return "RSA";
      case 2: *usage = GCRY_PK_USAGE_ENCR; return "RSA-E";
      case 3: *usage = GCRY_PK_USAGE_SIGN; return "RSA-S";
      default:*usage = 0; return NULL;
    }
}