summaryrefslogtreecommitdiff
path: root/accel/tcg
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2017-09-11 18:33:24 -0300
committerRichard Henderson <richard.henderson@linaro.org>2017-09-17 06:52:19 -0700
commitda1849c1eba50aa372f87c7945d7b230eb2b2fb2 (patch)
tree74ffe0d7ed6dd62d062a58b530414e7cb4410447 /accel/tcg
parentba026602a673677735428e64e621cdf95b5cd6d9 (diff)
downloadqemu-da1849c1eba50aa372f87c7945d7b230eb2b2fb2.tar.gz
accel/tcg: move softmmu_template.h to accel/tcg/
The header is only used by accel/tcg/cputlb.c so we can move it to the accel/tcg/ folder, too. Signed-off-by: Thomas Huth <thuth@redhat.com> [PMD: reword commit title to match series] Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20170911213328.9701-2-f4bug@amsat.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'accel/tcg')
-rw-r--r--accel/tcg/softmmu_template.h433
1 files changed, 433 insertions, 0 deletions
diff --git a/accel/tcg/softmmu_template.h b/accel/tcg/softmmu_template.h
new file mode 100644
index 0000000000..d7563292a5
--- /dev/null
+++ b/accel/tcg/softmmu_template.h
@@ -0,0 +1,433 @@
+/*
+ * Software MMU support
+ *
+ * Generate helpers used by TCG for qemu_ld/st ops and code load
+ * functions.
+ *
+ * Included from target op helpers and exec.c.
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#if DATA_SIZE == 8
+#define SUFFIX q
+#define LSUFFIX q
+#define SDATA_TYPE int64_t
+#define DATA_TYPE uint64_t
+#elif DATA_SIZE == 4
+#define SUFFIX l
+#define LSUFFIX l
+#define SDATA_TYPE int32_t
+#define DATA_TYPE uint32_t
+#elif DATA_SIZE == 2
+#define SUFFIX w
+#define LSUFFIX uw
+#define SDATA_TYPE int16_t
+#define DATA_TYPE uint16_t
+#elif DATA_SIZE == 1
+#define SUFFIX b
+#define LSUFFIX ub
+#define SDATA_TYPE int8_t
+#define DATA_TYPE uint8_t
+#else
+#error unsupported data size
+#endif
+
+
+/* For the benefit of TCG generated code, we want to avoid the complication
+ of ABI-specific return type promotion and always return a value extended
+ to the register size of the host. This is tcg_target_long, except in the
+ case of a 32-bit host and 64-bit data, and for that we always have
+ uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
+#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
+# define WORD_TYPE DATA_TYPE
+# define USUFFIX SUFFIX
+#else
+# define WORD_TYPE tcg_target_ulong
+# define USUFFIX glue(u, SUFFIX)
+# define SSUFFIX glue(s, SUFFIX)
+#endif
+
+#ifdef SOFTMMU_CODE_ACCESS
+#define READ_ACCESS_TYPE MMU_INST_FETCH
+#define ADDR_READ addr_code
+#else
+#define READ_ACCESS_TYPE MMU_DATA_LOAD
+#define ADDR_READ addr_read
+#endif
+
+#if DATA_SIZE == 8
+# define BSWAP(X) bswap64(X)
+#elif DATA_SIZE == 4
+# define BSWAP(X) bswap32(X)
+#elif DATA_SIZE == 2
+# define BSWAP(X) bswap16(X)
+#else
+# define BSWAP(X) (X)
+#endif
+
+#if DATA_SIZE == 1
+# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
+# define helper_be_ld_name helper_le_ld_name
+# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
+# define helper_be_lds_name helper_le_lds_name
+# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
+# define helper_be_st_name helper_le_st_name
+#else
+# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
+# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
+# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
+# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
+# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
+# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
+#endif
+
+#ifndef SOFTMMU_CODE_ACCESS
+static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
+ size_t mmu_idx, size_t index,
+ target_ulong addr,
+ uintptr_t retaddr)
+{
+ CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
+ return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, DATA_SIZE);
+}
+#endif
+
+WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ unsigned mmu_idx = get_mmuidx(oi);
+ int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ uintptr_t haddr;
+ DATA_TYPE res;
+
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
+ mmu_idx, retaddr);
+ }
+ tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (DATA_SIZE - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ /* ??? Note that the io helpers always read data in the target
+ byte ordering. We should push the LE/BE request down into io. */
+ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
+ res = TGT_LE(res);
+ return res;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (DATA_SIZE > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
+ >= TARGET_PAGE_SIZE)) {
+ target_ulong addr1, addr2;
+ DATA_TYPE res1, res2;
+ unsigned shift;
+ do_unaligned_access:
+ addr1 = addr & ~(DATA_SIZE - 1);
+ addr2 = addr1 + DATA_SIZE;
+ res1 = helper_le_ld_name(env, addr1, oi, retaddr);
+ res2 = helper_le_ld_name(env, addr2, oi, retaddr);
+ shift = (addr & (DATA_SIZE - 1)) * 8;
+
+ /* Little-endian combine. */
+ res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
+ return res;
+ }
+
+ haddr = addr + env->tlb_table[mmu_idx][index].addend;
+#if DATA_SIZE == 1
+ res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
+#else
+ res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
+#endif
+ return res;
+}
+
+#if DATA_SIZE > 1
+WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ unsigned mmu_idx = get_mmuidx(oi);
+ int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ uintptr_t haddr;
+ DATA_TYPE res;
+
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
+ mmu_idx, retaddr);
+ }
+ tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (DATA_SIZE - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ /* ??? Note that the io helpers always read data in the target
+ byte ordering. We should push the LE/BE request down into io. */
+ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
+ res = TGT_BE(res);
+ return res;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (DATA_SIZE > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
+ >= TARGET_PAGE_SIZE)) {
+ target_ulong addr1, addr2;
+ DATA_TYPE res1, res2;
+ unsigned shift;
+ do_unaligned_access:
+ addr1 = addr & ~(DATA_SIZE - 1);
+ addr2 = addr1 + DATA_SIZE;
+ res1 = helper_be_ld_name(env, addr1, oi, retaddr);
+ res2 = helper_be_ld_name(env, addr2, oi, retaddr);
+ shift = (addr & (DATA_SIZE - 1)) * 8;
+
+ /* Big-endian combine. */
+ res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
+ return res;
+ }
+
+ haddr = addr + env->tlb_table[mmu_idx][index].addend;
+ res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
+ return res;
+}
+#endif /* DATA_SIZE > 1 */
+
+#ifndef SOFTMMU_CODE_ACCESS
+
+/* Provide signed versions of the load routines as well. We can of course
+ avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
+#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
+WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
+}
+
+# if DATA_SIZE > 1
+WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
+}
+# endif
+#endif
+
+static inline void glue(io_write, SUFFIX)(CPUArchState *env,
+ size_t mmu_idx, size_t index,
+ DATA_TYPE val,
+ target_ulong addr,
+ uintptr_t retaddr)
+{
+ CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
+ return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, DATA_SIZE);
+}
+
+void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ unsigned mmu_idx = get_mmuidx(oi);
+ int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ uintptr_t haddr;
+
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
+ }
+ tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (DATA_SIZE - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ /* ??? Note that the io helpers always read data in the target
+ byte ordering. We should push the LE/BE request down into io. */
+ val = TGT_LE(val);
+ glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
+ return;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (DATA_SIZE > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
+ >= TARGET_PAGE_SIZE)) {
+ int i, index2;
+ target_ulong page2, tlb_addr2;
+ do_unaligned_access:
+ /* Ensure the second page is in the TLB. Note that the first page
+ is already guaranteed to be filled, and that the second page
+ cannot evict the first. */
+ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
+ index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
+ if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
+ && !VICTIM_TLB_HIT(addr_write, page2)) {
+ tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* XXX: not efficient, but simple. */
+ /* This loop must go in the forward direction to avoid issues
+ with self-modifying code in Windows 64-bit. */
+ for (i = 0; i < DATA_SIZE; ++i) {
+ /* Little-endian extract. */
+ uint8_t val8 = val >> (i * 8);
+ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
+ oi, retaddr);
+ }
+ return;
+ }
+
+ haddr = addr + env->tlb_table[mmu_idx][index].addend;
+#if DATA_SIZE == 1
+ glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
+#else
+ glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
+#endif
+}
+
+#if DATA_SIZE > 1
+void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ unsigned mmu_idx = get_mmuidx(oi);
+ int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ uintptr_t haddr;
+
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if ((addr & TARGET_PAGE_MASK)
+ != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
+ }
+ tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (DATA_SIZE - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ /* ??? Note that the io helpers always read data in the target
+ byte ordering. We should push the LE/BE request down into io. */
+ val = TGT_BE(val);
+ glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
+ return;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (DATA_SIZE > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
+ >= TARGET_PAGE_SIZE)) {
+ int i, index2;
+ target_ulong page2, tlb_addr2;
+ do_unaligned_access:
+ /* Ensure the second page is in the TLB. Note that the first page
+ is already guaranteed to be filled, and that the second page
+ cannot evict the first. */
+ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
+ index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
+ if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
+ && !VICTIM_TLB_HIT(addr_write, page2)) {
+ tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* XXX: not efficient, but simple */
+ /* This loop must go in the forward direction to avoid issues
+ with self-modifying code. */
+ for (i = 0; i < DATA_SIZE; ++i) {
+ /* Big-endian extract. */
+ uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
+ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
+ oi, retaddr);
+ }
+ return;
+ }
+
+ haddr = addr + env->tlb_table[mmu_idx][index].addend;
+ glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
+}
+#endif /* DATA_SIZE > 1 */
+#endif /* !defined(SOFTMMU_CODE_ACCESS) */
+
+#undef READ_ACCESS_TYPE
+#undef DATA_TYPE
+#undef SUFFIX
+#undef LSUFFIX
+#undef DATA_SIZE
+#undef ADDR_READ
+#undef WORD_TYPE
+#undef SDATA_TYPE
+#undef USUFFIX
+#undef SSUFFIX
+#undef BSWAP
+#undef helper_le_ld_name
+#undef helper_be_ld_name
+#undef helper_le_lds_name
+#undef helper_be_lds_name
+#undef helper_le_st_name
+#undef helper_be_st_name