summaryrefslogtreecommitdiff
path: root/linux-user/hppa/cpu_loop.c
blob: 0301c766c6f14eb1469930117ea09633a8a494bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 *  qemu user cpu loop
 *
 *  Copyright (c) 2003-2008 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu.h"
#include "cpu_loop-common.h"

static abi_ulong hppa_lws(CPUHPPAState *env)
{
    uint32_t which = env->gr[20];
    abi_ulong addr = env->gr[26];
    abi_ulong old = env->gr[25];
    abi_ulong new = env->gr[24];
    abi_ulong size, ret;

    switch (which) {
    default:
        return -TARGET_ENOSYS;

    case 0: /* elf32 atomic 32bit cmpxchg */
        if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) {
            return -TARGET_EFAULT;
        }
        old = tswap32(old);
        new = tswap32(new);
        ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
        ret = tswap32(ret);
        break;

    case 2: /* elf32 atomic "new" cmpxchg */
        size = env->gr[23];
        if (size >= 4) {
            return -TARGET_ENOSYS;
        }
        if (((addr | old | new) & ((1 << size) - 1))
            || !access_ok(VERIFY_WRITE, addr, 1 << size)
            || !access_ok(VERIFY_READ, old, 1 << size)
            || !access_ok(VERIFY_READ, new, 1 << size)) {
            return -TARGET_EFAULT;
        }
        /* Note that below we use host-endian loads so that the cmpxchg
           can be host-endian as well.  */
        switch (size) {
        case 0:
            old = *(uint8_t *)g2h(old);
            new = *(uint8_t *)g2h(new);
            ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new);
            ret = ret != old;
            break;
        case 1:
            old = *(uint16_t *)g2h(old);
            new = *(uint16_t *)g2h(new);
            ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new);
            ret = ret != old;
            break;
        case 2:
            old = *(uint32_t *)g2h(old);
            new = *(uint32_t *)g2h(new);
            ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
            ret = ret != old;
            break;
        case 3:
            {
                uint64_t o64, n64, r64;
                o64 = *(uint64_t *)g2h(old);
                n64 = *(uint64_t *)g2h(new);
#ifdef CONFIG_ATOMIC64
                r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64);
                ret = r64 != o64;
#else
                start_exclusive();
                r64 = *(uint64_t *)g2h(addr);
                ret = 1;
                if (r64 == o64) {
                    *(uint64_t *)g2h(addr) = n64;
                    ret = 0;
                }
                end_exclusive();
#endif
            }
            break;
        }
        break;
    }

    env->gr[28] = ret;
    return 0;
}

void cpu_loop(CPUHPPAState *env)
{
    CPUState *cs = CPU(hppa_env_get_cpu(env));
    target_siginfo_t info;
    abi_ulong ret;
    int trapnr;

    while (1) {
        cpu_exec_start(cs);
        trapnr = cpu_exec(cs);
        cpu_exec_end(cs);
        process_queued_cpu_work(cs);

        switch (trapnr) {
        case EXCP_SYSCALL:
            ret = do_syscall(env, env->gr[20],
                             env->gr[26], env->gr[25],
                             env->gr[24], env->gr[23],
                             env->gr[22], env->gr[21], 0, 0);
            switch (ret) {
            default:
                env->gr[28] = ret;
                /* We arrived here by faking the gateway page.  Return.  */
                env->iaoq_f = env->gr[31];
                env->iaoq_b = env->gr[31] + 4;
                break;
            case -TARGET_ERESTARTSYS:
            case -TARGET_QEMU_ESIGRETURN:
                break;
            }
            break;
        case EXCP_SYSCALL_LWS:
            env->gr[21] = hppa_lws(env);
            /* We arrived here by faking the gateway page.  Return.  */
            env->iaoq_f = env->gr[31];
            env->iaoq_b = env->gr[31] + 4;
            break;
        case EXCP_ITLB_MISS:
        case EXCP_DTLB_MISS:
        case EXCP_NA_ITLB_MISS:
        case EXCP_NA_DTLB_MISS:
        case EXCP_IMP:
        case EXCP_DMP:
        case EXCP_DMB:
        case EXCP_PAGE_REF:
        case EXCP_DMAR:
        case EXCP_DMPI:
            info.si_signo = TARGET_SIGSEGV;
            info.si_errno = 0;
            info.si_code = TARGET_SEGV_ACCERR;
            info._sifields._sigfault._addr = env->cr[CR_IOR];
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_UNALIGN:
            info.si_signo = TARGET_SIGBUS;
            info.si_errno = 0;
            info.si_code = 0;
            info._sifields._sigfault._addr = env->cr[CR_IOR];
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_ILL:
        case EXCP_PRIV_OPR:
        case EXCP_PRIV_REG:
            info.si_signo = TARGET_SIGILL;
            info.si_errno = 0;
            info.si_code = TARGET_ILL_ILLOPN;
            info._sifields._sigfault._addr = env->iaoq_f;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_OVERFLOW:
        case EXCP_COND:
        case EXCP_ASSIST:
            info.si_signo = TARGET_SIGFPE;
            info.si_errno = 0;
            info.si_code = 0;
            info._sifields._sigfault._addr = env->iaoq_f;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_DEBUG:
            trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
            if (trapnr) {
                info.si_signo = trapnr;
                info.si_errno = 0;
                info.si_code = TARGET_TRAP_BRKPT;
                queue_signal(env, trapnr, QEMU_SI_FAULT, &info);
            }
            break;
        case EXCP_INTERRUPT:
            /* just indicate that signals should be handled asap */
            break;
        default:
            g_assert_not_reached();
        }
        process_pending_signals(env);
    }
}

void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
    int i;
    for (i = 1; i < 32; i++) {
        env->gr[i] = regs->gr[i];
    }
    env->iaoq_f = regs->iaoq[0];
    env->iaoq_b = regs->iaoq[1];
}