summaryrefslogtreecommitdiff
path: root/target/m68k/op_helper.c
blob: 63089511cbbcafd3d7e93560ce4dcfee9321099d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/*
 *  M68K helper routines
 *
 *  Copyright (c) 2007 CodeSourcery
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/semihost.h"

#if defined(CONFIG_USER_ONLY)

void m68k_cpu_do_interrupt(CPUState *cs)
{
    cs->exception_index = -1;
}

static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
}

#else

/* Try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
{
    int ret;

    ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
    if (unlikely(ret)) {
        if (retaddr) {
            /* now we have a real cpu fault */
            cpu_restore_state(cs, retaddr);
        }
        cpu_loop_exit(cs);
    }
}

static void do_rte(CPUM68KState *env)
{
    uint32_t sp;
    uint32_t fmt;

    sp = env->aregs[7];
    fmt = cpu_ldl_kernel(env, sp);
    env->pc = cpu_ldl_kernel(env, sp + 4);
    sp |= (fmt >> 28) & 3;
    env->aregs[7] = sp + 8;

    helper_set_sr(env, fmt);
}

static void do_interrupt_all(CPUM68KState *env, int is_hw)
{
    CPUState *cs = CPU(m68k_env_get_cpu(env));
    uint32_t sp;
    uint32_t fmt;
    uint32_t retaddr;
    uint32_t vector;

    fmt = 0;
    retaddr = env->pc;

    if (!is_hw) {
        switch (cs->exception_index) {
        case EXCP_RTE:
            /* Return from an exception.  */
            do_rte(env);
            return;
        case EXCP_HALT_INSN:
            if (semihosting_enabled()
                    && (env->sr & SR_S) != 0
                    && (env->pc & 3) == 0
                    && cpu_lduw_code(env, env->pc - 4) == 0x4e71
                    && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
                env->pc += 4;
                do_m68k_semihosting(env, env->dregs[0]);
                return;
            }
            cs->halted = 1;
            cs->exception_index = EXCP_HLT;
            cpu_loop_exit(cs);
            return;
        }
        if (cs->exception_index >= EXCP_TRAP0
            && cs->exception_index <= EXCP_TRAP15) {
            /* Move the PC after the trap instruction.  */
            retaddr += 2;
        }
    }

    vector = cs->exception_index << 2;

    fmt |= 0x40000000;
    fmt |= vector << 16;
    fmt |= env->sr;
    fmt |= cpu_m68k_get_ccr(env);

    env->sr |= SR_S;
    if (is_hw) {
        env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
        env->sr &= ~SR_M;
    }
    m68k_switch_sp(env);
    sp = env->aregs[7];
    fmt |= (sp & 3) << 28;

    /* ??? This could cause MMU faults.  */
    sp &= ~3;
    sp -= 4;
    cpu_stl_kernel(env, sp, retaddr);
    sp -= 4;
    cpu_stl_kernel(env, sp, fmt);
    env->aregs[7] = sp;
    /* Jump to vector.  */
    env->pc = cpu_ldl_kernel(env, env->vbr + vector);
}

void m68k_cpu_do_interrupt(CPUState *cs)
{
    M68kCPU *cpu = M68K_CPU(cs);
    CPUM68KState *env = &cpu->env;

    do_interrupt_all(env, 0);
}

static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
    do_interrupt_all(env, 1);
}
#endif

bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    M68kCPU *cpu = M68K_CPU(cs);
    CPUM68KState *env = &cpu->env;

    if (interrupt_request & CPU_INTERRUPT_HARD
        && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
        /* Real hardware gets the interrupt vector via an IACK cycle
           at this point.  Current emulated hardware doesn't rely on
           this, so we provide/save the vector when the interrupt is
           first signalled.  */
        cs->exception_index = env->pending_vector;
        do_interrupt_m68k_hardirq(env);
        return true;
    }
    return false;
}

static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
{
    CPUState *cs = CPU(m68k_env_get_cpu(env));

    cs->exception_index = tt;
    cpu_loop_exit_restore(cs, raddr);
}

static void raise_exception(CPUM68KState *env, int tt)
{
    raise_exception_ra(env, tt, 0);
}

void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
{
    raise_exception(env, tt);
}

void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
{
    uint32_t num = env->dregs[destr];
    uint32_t quot, rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0; /* always cleared, even if overflow */
    if (quot > 0xffff) {
        env->cc_v = -1;
        /* real 68040 keeps N and unset Z on overflow,
         * whereas documentation says "undefined"
         */
        env->cc_z = 1;
        return;
    }
    env->dregs[destr] = deposit32(quot, 16, 16, rem);
    env->cc_z = (int16_t)quot;
    env->cc_n = (int16_t)quot;
    env->cc_v = 0;
}

void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
{
    int32_t num = env->dregs[destr];
    uint32_t quot, rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0; /* always cleared, even if overflow */
    if (quot != (int16_t)quot) {
        env->cc_v = -1;
        /* nothing else is modified */
        /* real 68040 keeps N and unset Z on overflow,
         * whereas documentation says "undefined"
         */
        env->cc_z = 1;
        return;
    }
    env->dregs[destr] = deposit32(quot, 16, 16, rem);
    env->cc_z = (int16_t)quot;
    env->cc_n = (int16_t)quot;
    env->cc_v = 0;
}

void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
    uint32_t num = env->dregs[numr];
    uint32_t quot, rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0;
    env->cc_z = quot;
    env->cc_n = quot;
    env->cc_v = 0;

    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
        if (numr == regr) {
            env->dregs[numr] = quot;
        } else {
            env->dregs[regr] = rem;
        }
    } else {
        env->dregs[regr] = rem;
        env->dregs[numr] = quot;
    }
}

void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
{
    int32_t num = env->dregs[numr];
    int32_t quot, rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0;
    env->cc_z = quot;
    env->cc_n = quot;
    env->cc_v = 0;

    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
        if (numr == regr) {
            env->dregs[numr] = quot;
        } else {
            env->dregs[regr] = rem;
        }
    } else {
        env->dregs[regr] = rem;
        env->dregs[numr] = quot;
    }
}

void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
    uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
    uint64_t quot;
    uint32_t rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0; /* always cleared, even if overflow */
    if (quot > 0xffffffffULL) {
        env->cc_v = -1;
        /* real 68040 keeps N and unset Z on overflow,
         * whereas documentation says "undefined"
         */
        env->cc_z = 1;
        return;
    }
    env->cc_z = quot;
    env->cc_n = quot;
    env->cc_v = 0;

    /*
     * If Dq and Dr are the same, the quotient is returned.
     * therefore we set Dq last.
     */

    env->dregs[regr] = rem;
    env->dregs[numr] = quot;
}

void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
{
    int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
    int64_t quot;
    int32_t rem;

    if (den == 0) {
        raise_exception_ra(env, EXCP_DIV0, GETPC());
    }
    quot = num / den;
    rem = num % den;

    env->cc_c = 0; /* always cleared, even if overflow */
    if (quot != (int32_t)quot) {
        env->cc_v = -1;
        /* real 68040 keeps N and unset Z on overflow,
         * whereas documentation says "undefined"
         */
        env->cc_z = 1;
        return;
    }
    env->cc_z = quot;
    env->cc_n = quot;
    env->cc_v = 0;

    /*
     * If Dq and Dr are the same, the quotient is returned.
     * therefore we set Dq last.
     */

    env->dregs[regr] = rem;
    env->dregs[numr] = quot;
}

/* We're executing in a serial context -- no need to be atomic.  */
void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
    uint32_t Dc1 = extract32(regs, 9, 3);
    uint32_t Dc2 = extract32(regs, 6, 3);
    uint32_t Du1 = extract32(regs, 3, 3);
    uint32_t Du2 = extract32(regs, 0, 3);
    int16_t c1 = env->dregs[Dc1];
    int16_t c2 = env->dregs[Dc2];
    int16_t u1 = env->dregs[Du1];
    int16_t u2 = env->dregs[Du2];
    int16_t l1, l2;
    uintptr_t ra = GETPC();

    l1 = cpu_lduw_data_ra(env, a1, ra);
    l2 = cpu_lduw_data_ra(env, a2, ra);
    if (l1 == c1 && l2 == c2) {
        cpu_stw_data_ra(env, a1, u1, ra);
        cpu_stw_data_ra(env, a2, u2, ra);
    }

    if (c1 != l1) {
        env->cc_n = l1;
        env->cc_v = c1;
    } else {
        env->cc_n = l2;
        env->cc_v = c2;
    }
    env->cc_op = CC_OP_CMPW;
    env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
    env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
}

static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
                     bool parallel)
{
    uint32_t Dc1 = extract32(regs, 9, 3);
    uint32_t Dc2 = extract32(regs, 6, 3);
    uint32_t Du1 = extract32(regs, 3, 3);
    uint32_t Du2 = extract32(regs, 0, 3);
    uint32_t c1 = env->dregs[Dc1];
    uint32_t c2 = env->dregs[Dc2];
    uint32_t u1 = env->dregs[Du1];
    uint32_t u2 = env->dregs[Du2];
    uint32_t l1, l2;
    uintptr_t ra = GETPC();
#if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
    int mmu_idx = cpu_mmu_index(env, 0);
    TCGMemOpIdx oi;
#endif

    if (parallel) {
        /* We're executing in a parallel context -- must be atomic.  */
#ifdef CONFIG_ATOMIC64
        uint64_t c, u, l;
        if ((a1 & 7) == 0 && a2 == a1 + 4) {
            c = deposit64(c2, 32, 32, c1);
            u = deposit64(u2, 32, 32, u1);
#ifdef CONFIG_USER_ONLY
            l = helper_atomic_cmpxchgq_be(env, a1, c, u);
#else
            oi = make_memop_idx(MO_BEQ, mmu_idx);
            l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
#endif
            l1 = l >> 32;
            l2 = l;
        } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
            c = deposit64(c1, 32, 32, c2);
            u = deposit64(u1, 32, 32, u2);
#ifdef CONFIG_USER_ONLY
            l = helper_atomic_cmpxchgq_be(env, a2, c, u);
#else
            oi = make_memop_idx(MO_BEQ, mmu_idx);
            l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
#endif
            l2 = l >> 32;
            l1 = l;
        } else
#endif
        {
            /* Tell the main loop we need to serialize this insn.  */
            cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
        }
    } else {
        /* We're executing in a serial context -- no need to be atomic.  */
        l1 = cpu_ldl_data_ra(env, a1, ra);
        l2 = cpu_ldl_data_ra(env, a2, ra);
        if (l1 == c1 && l2 == c2) {
            cpu_stl_data_ra(env, a1, u1, ra);
            cpu_stl_data_ra(env, a2, u2, ra);
        }
    }

    if (c1 != l1) {
        env->cc_n = l1;
        env->cc_v = c1;
    } else {
        env->cc_n = l2;
        env->cc_v = c2;
    }
    env->cc_op = CC_OP_CMPL;
    env->dregs[Dc1] = l1;
    env->dregs[Dc2] = l2;
}

void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
    do_cas2l(env, regs, a1, a2, false);
}

void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
                            uint32_t a2)
{
    do_cas2l(env, regs, a1, a2, true);
}

struct bf_data {
    uint32_t addr;
    uint32_t bofs;
    uint32_t blen;
    uint32_t len;
};

static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
{
    int bofs, blen;

    /* Bound length; map 0 to 32.  */
    len = ((len - 1) & 31) + 1;

    /* Note that ofs is signed.  */
    addr += ofs / 8;
    bofs = ofs % 8;
    if (bofs < 0) {
        bofs += 8;
        addr -= 1;
    }

    /* Compute the number of bytes required (minus one) to
       satisfy the bitfield.  */
    blen = (bofs + len - 1) / 8;

    /* Canonicalize the bit offset for data loaded into a 64-bit big-endian
       word.  For the cases where BLEN is not a power of 2, adjust ADDR so
       that we can use the next power of two sized load without crossing a
       page boundary, unless the field itself crosses the boundary.  */
    switch (blen) {
    case 0:
        bofs += 56;
        break;
    case 1:
        bofs += 48;
        break;
    case 2:
        if (addr & 1) {
            bofs += 8;
            addr -= 1;
        }
        /* fallthru */
    case 3:
        bofs += 32;
        break;
    case 4:
        if (addr & 3) {
            bofs += 8 * (addr & 3);
            addr &= -4;
        }
        break;
    default:
        g_assert_not_reached();
    }

    return (struct bf_data){
        .addr = addr,
        .bofs = bofs,
        .blen = blen,
        .len = len,
    };
}

static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
                        uintptr_t ra)
{
    switch (blen) {
    case 0:
        return cpu_ldub_data_ra(env, addr, ra);
    case 1:
        return cpu_lduw_data_ra(env, addr, ra);
    case 2:
    case 3:
        return cpu_ldl_data_ra(env, addr, ra);
    case 4:
        return cpu_ldq_data_ra(env, addr, ra);
    default:
        g_assert_not_reached();
    }
}

static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
                     uint64_t data, uintptr_t ra)
{
    switch (blen) {
    case 0:
        cpu_stb_data_ra(env, addr, data, ra);
        break;
    case 1:
        cpu_stw_data_ra(env, addr, data, ra);
        break;
    case 2:
    case 3:
        cpu_stl_data_ra(env, addr, data, ra);
        break;
    case 4:
        cpu_stq_data_ra(env, addr, data, ra);
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
                            int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);

    return (int64_t)(data << d.bofs) >> (64 - d.len);
}

uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
                            int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);

    /* Put CC_N at the top of the high word; put the zero-extended value
       at the bottom of the low word.  */
    data <<= d.bofs;
    data >>= 64 - d.len;
    data |= data << (64 - d.len);

    return data;
}

uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
                           int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;

    data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);

    bf_store(env, d.addr, d.blen, data, ra);

    /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
    return val << (32 - d.len);
}

uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
                           int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;

    bf_store(env, d.addr, d.blen, data ^ mask, ra);

    return ((data & mask) << d.bofs) >> 32;
}

uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
                           int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;

    bf_store(env, d.addr, d.blen, data & ~mask, ra);

    return ((data & mask) << d.bofs) >> 32;
}

uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
                           int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;

    bf_store(env, d.addr, d.blen, data | mask, ra);

    return ((data & mask) << d.bofs) >> 32;
}

uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
{
    return (n ? clz32(n) : len) + ofs;
}

uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
                           int32_t ofs, uint32_t len)
{
    uintptr_t ra = GETPC();
    struct bf_data d = bf_prep(addr, ofs, len);
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
    uint64_t n = (data & mask) << d.bofs;
    uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);

    /* Return FFO in the low word and N in the high word.
       Note that because of MASK and the shift, the low word
       is already zero.  */
    return n | ffo;
}