summaryrefslogtreecommitdiff
path: root/epan/dissectors/packet-cipmotion.c
diff options
context:
space:
mode:
authorBill Meier <wmeier@newsguy.com>2011-10-13 00:00:52 +0000
committerBill Meier <wmeier@newsguy.com>2011-10-13 00:00:52 +0000
commita2e8e1cdcd8e353ca7159344afc0b2a0c0d8a5e8 (patch)
tree73706ff230463c63628db048550b5799bc177d2c /epan/dissectors/packet-cipmotion.c
parent5b34fd161d38b7d28a44943360ab92b98ab9e460 (diff)
downloadwireshark-a2e8e1cdcd8e353ca7159344afc0b2a0c0d8a5e8.tar.gz
From Benjamin Stocks (with some work by Michael Mann): "CIP Motion" dissector;
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=5929 From me: packet-cipmotion.c: FT_BOOLEAN fields with bitmasks need a bit-fieldwidth in the hf[] entry 'display' field; Define attribute_size as guint32 since it has to store guint8*guint16; Use ENC_NA as encoding arg in proto_tree_add_item() for FT_BYTES field types; Remove trailing whitespace from lines; Other minor cleanup and reformatting. packet-enip.c: Use ENC_NA as encoding arg in proto_tree_add_item() for FT_BYTES field types; svn path=/trunk/; revision=39396
Diffstat (limited to 'epan/dissectors/packet-cipmotion.c')
-rw-r--r--epan/dissectors/packet-cipmotion.c2216
1 files changed, 2216 insertions, 0 deletions
diff --git a/epan/dissectors/packet-cipmotion.c b/epan/dissectors/packet-cipmotion.c
new file mode 100644
index 0000000000..69150d0a54
--- /dev/null
+++ b/epan/dissectors/packet-cipmotion.c
@@ -0,0 +1,2216 @@
+/* packet-cipmotion.c
+ * Routines for CIP (Common Industrial Protocol) Motion dissection
+ * CIP Motion Home: www.odva.org
+ *
+ * Copyright 2006-2007
+ * Benjamin M. Stocks <bmstocks@ra.rockwell.com>
+ *
+ * $Id$
+ *
+ * Wireshark - Network traffic analyzer
+ * By Gerald Combs <gerald@wireshark.org>
+ * Copyright 1998 Gerald Combs
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#ifdef HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include <epan/packet.h>
+#include <epan/emem.h>
+#include <epan/expert.h>
+#include "packet-cip.h"
+
+/* The entry point to the actual disection is: dissect_cipmotion */
+
+/* Protocol handle for CIP Motion */
+static int proto_cipmotion = -1;
+
+/* Header field identifiers, these are registered in the
+ * proto_register_cipmotion function along with the bites/bytes
+ * they represent */
+static int hf_cip_format = -1;
+static int hf_cip_revision = -1;
+static int hf_cip_class1_seqnum = -1;
+static int hf_cip_updateid = -1;
+static int hf_cip_instance_cnt = -1;
+static int hf_cip_last_update = -1;
+static int hf_cip_node_status = -1;
+static int hf_cip_node_control = -1;
+static int hf_cip_node_control_remote = -1;
+static int hf_cip_node_control_sync = -1;
+static int hf_cip_node_data_valid = -1;
+static int hf_cip_node_fault_reset = -1;
+static int hf_cip_node_device_faulted = -1;
+static int hf_cip_time_data_set = -1;
+static int hf_cip_time_data_update = -1;
+static int hf_cip_time_data_stamp = -1;
+static int hf_cip_time_data_offset = -1;
+static int hf_cip_time_data_diag = -1;
+static int hf_cip_time_data_time_diag = -1;
+static int hf_cip_cont_time_stamp = -1;
+static int hf_cip_cont_time_offset = -1;
+static int hf_cip_devc_time_stamp = -1;
+static int hf_cip_devc_time_offset = -1;
+static int hf_cip_lost_update = -1;
+static int hf_cip_late_update = -1;
+static int hf_cip_data_rx_time_stamp = -1;
+static int hf_cip_data_tx_time_stamp = -1;
+static int hf_cip_node_fltalarms = -1;
+static int hf_cip_motor_cntrl = -1;
+static int hf_cip_fdbk_config = -1;
+static int hf_cip_axis_control = -1;
+static int hf_cip_control_status = -1;
+static int hf_cip_axis_response = -1;
+static int hf_cip_axis_resp_stat = -1;
+static int hf_cip_cmd_data_pos_cmd = -1;
+static int hf_cip_cmd_data_vel_cmd = -1;
+static int hf_cip_cmd_data_acc_cmd = -1;
+static int hf_cip_cmd_data_trq_cmd = -1;
+static int hf_cip_cmd_data_pos_trim_cmd = -1;
+static int hf_cip_cmd_data_vel_trim_cmd = -1;
+static int hf_cip_cmd_data_acc_trim_cmd = -1;
+static int hf_cip_cmd_data_trq_trim_cmd = -1;
+static int hf_cip_act_data_pos = -1;
+static int hf_cip_act_data_vel = -1;
+static int hf_cip_act_data_acc = -1;
+static int hf_cip_act_data_trq = -1;
+static int hf_cip_act_data_crnt = -1;
+static int hf_cip_act_data_vltg = -1;
+static int hf_cip_act_data_fqcy = -1;
+static int hf_cip_sts_flt = -1;
+static int hf_cip_sts_alrm = -1;
+static int hf_cip_sts_sts = -1;
+static int hf_cip_sts_iosts = -1;
+static int hf_cip_sts_safety = -1;
+static int hf_cip_intrp = -1;
+static int hf_cip_position_data_type = -1;
+static int hf_cip_axis_state = -1;
+static int hf_cip_evnt_ctrl_reg1_pos = -1;
+static int hf_cip_evnt_ctrl_reg1_neg = -1;
+static int hf_cip_evnt_ctrl_reg2_pos = -1;
+static int hf_cip_evnt_ctrl_reg2_neg = -1;
+static int hf_cip_evnt_ctrl_reg1_posrearm = -1;
+static int hf_cip_evnt_ctrl_reg1_negrearm = -1;
+static int hf_cip_evnt_ctrl_reg2_posrearm = -1;
+static int hf_cip_evnt_ctrl_reg2_negrearm = -1;
+static int hf_cip_evnt_ctrl_marker_pos = -1;
+static int hf_cip_evnt_ctrl_marker_neg = -1;
+static int hf_cip_evnt_ctrl_home_pos = -1;
+static int hf_cip_evnt_ctrl_home_neg = -1;
+static int hf_cip_evnt_ctrl_home_pp = -1;
+static int hf_cip_evnt_ctrl_home_pm = -1;
+static int hf_cip_evnt_ctrl_home_mp = -1;
+static int hf_cip_evnt_ctrl_home_mm = -1;
+static int hf_cip_evnt_ctrl_acks = -1;
+static int hf_cip_evnt_extend_format = -1;
+static int hf_cip_evnt_sts_reg1_pos = -1;
+static int hf_cip_evnt_sts_reg1_neg = -1;
+static int hf_cip_evnt_sts_reg2_pos = -1;
+static int hf_cip_evnt_sts_reg2_neg = -1;
+static int hf_cip_evnt_sts_reg1_posrearm = -1;
+static int hf_cip_evnt_sts_reg1_negrearm = -1;
+static int hf_cip_evnt_sts_reg2_posrearm = -1;
+static int hf_cip_evnt_sts_reg2_negrearm = -1;
+static int hf_cip_evnt_sts_marker_pos = -1;
+static int hf_cip_evnt_sts_marker_neg = -1;
+static int hf_cip_evnt_sts_home_pos = -1;
+static int hf_cip_evnt_sts_home_neg = -1;
+static int hf_cip_evnt_sts_home_pp = -1;
+static int hf_cip_evnt_sts_home_pm = -1;
+static int hf_cip_evnt_sts_home_mp = -1;
+static int hf_cip_evnt_sts_home_mm = -1;
+static int hf_cip_evnt_sts_nfs = -1;
+static int hf_cip_evnt_sts_stat = -1;
+static int hf_cip_evnt_type = -1;
+static int hf_cip_svc_code = -1;
+static int hf_cip_svc_sts = -1;
+static int hf_cip_svc_set_axis_attr_sts = -1;
+static int hf_cip_svc_get_axis_attr_sts = -1;
+static int hf_cip_svc_transction = -1;
+static int hf_cip_svc_ext_status = -1;
+static int hf_cip_svc_data = -1;
+static int hf_cip_ptp_grandmaster = -1;
+static int hf_cip_axis_alarm = -1;
+static int hf_cip_axis_fault = -1;
+static int hf_cip_axis_sts_local_ctrl = -1;
+static int hf_cip_axis_sts_alarm = -1;
+static int hf_cip_axis_sts_dc_bus = -1;
+static int hf_cip_axis_sts_pwr_struct = -1;
+static int hf_cip_axis_sts_tracking = -1;
+static int hf_cip_axis_sts_pos_lock = -1;
+static int hf_cip_axis_sts_vel_lock = -1;
+static int hf_cip_axis_sts_vel_standstill = -1;
+static int hf_cip_axis_sts_vel_threshold = -1;
+static int hf_cip_axis_sts_vel_limit = -1;
+static int hf_cip_axis_sts_acc_limit = -1;
+static int hf_cip_axis_sts_dec_limit = -1;
+static int hf_cip_axis_sts_torque_threshold = -1;
+static int hf_cip_axis_sts_torque_limit = -1;
+static int hf_cip_axis_sts_cur_limit = -1;
+static int hf_cip_axis_sts_therm_limit = -1;
+static int hf_cip_axis_sts_feedback_integ = -1;
+static int hf_cip_axis_sts_shutdown = -1;
+static int hf_cip_axis_sts_in_process = -1;
+static int hf_cip_cyclic_wrt_data = -1;
+static int hf_cip_cyclic_rd_data = -1;
+static int hf_cip_cyclic_write_blk = -1;
+static int hf_cip_cyclic_read_blk = -1;
+static int hf_cip_cyclic_write_sts = -1;
+static int hf_cip_cyclic_read_sts = -1;
+static int hf_cip_attribute_data = -1;
+static int hf_cip_event_checking = -1;
+static int hf_cip_event_ack = -1;
+static int hf_cip_event_status = -1;
+static int hf_cip_event_id = -1;
+static int hf_cip_event_pos = -1;
+static int hf_cip_event_ts = -1;
+static int hf_cip_pos_cmd = -1;
+static int hf_cip_pos_cmd_int = -1;
+static int hf_cip_vel_cmd = -1;
+static int hf_cip_accel_cmd = -1;
+static int hf_cip_trq_cmd = -1;
+static int hf_cip_pos_trim = -1;
+static int hf_cip_vel_trim = -1;
+static int hf_cip_accel_trim = -1;
+static int hf_cip_trq_trim = -1;
+static int hf_cip_act_pos = -1;
+static int hf_cip_act_vel = -1;
+static int hf_cip_act_accel = -1;
+static int hf_cip_act_trq = -1;
+static int hf_cip_act_crnt = -1;
+static int hf_cip_act_volts = -1;
+static int hf_cip_act_freq = -1;
+static int hf_cip_fault_type = -1;
+static int hf_cip_fault_sub_code = -1;
+static int hf_cip_fault_action = -1;
+static int hf_cip_fault_time_stamp = -1;
+static int hf_cip_alarm_type = -1;
+static int hf_cip_alarm_sub_code = -1;
+static int hf_cip_alarm_state = -1;
+static int hf_cip_alarm_time_stamp = -1;
+static int hf_cip_axis_status = -1;
+static int hf_cip_axis_status_mfg = -1;
+static int hf_cip_axis_io_status = -1;
+static int hf_cip_axis_io_status_mfg = -1;
+static int hf_cip_safety_status = -1;
+static int hf_cip_cmd_data_set = -1;
+static int hf_cip_act_data_set = -1;
+static int hf_cip_sts_data_set = -1;
+static int hf_cip_group_sync = -1;
+static int hf_cip_command_control = -1;
+
+static int hf_get_axis_attr_list_attribute_cnt = -1;
+static int hf_get_axis_attr_list_attribute_id = -1;
+static int hf_get_axis_attr_list_dimension = -1;
+static int hf_get_axis_attr_list_element_size = -1;
+static int hf_get_axis_attr_list_start_index = -1;
+static int hf_get_axis_attr_list_data_elements = -1;
+static int hf_set_axis_attr_list_attribute_cnt = -1;
+static int hf_set_axis_attr_list_attribute_id = -1;
+static int hf_set_axis_attr_list_dimension = -1;
+static int hf_set_axis_attr_list_element_size = -1;
+static int hf_set_axis_attr_list_start_index = -1;
+static int hf_set_axis_attr_list_data_elements = -1;
+static int hf_var_devce_instance = -1;
+static int hf_var_devce_instance_block_size = -1;
+static int hf_var_devce_cyclic_block_size = -1;
+static int hf_var_devce_cyclic_data_block_size = -1;
+static int hf_var_devce_cyclic_rw_block_size = -1;
+static int hf_var_devce_event_block_size = -1;
+static int hf_var_devce_service_block_size = -1;
+
+/* Subtree pointers for the dissection */
+static gint ett_cipmotion = -1;
+static gint ett_cont_dev_header = -1;
+static gint ett_node_control = -1;
+static gint ett_node_status = -1;
+static gint ett_time_data_set = -1;
+static gint ett_inst_data_header = -1;
+static gint ett_cyclic_data_block = -1;
+static gint ett_control_mode = -1;
+static gint ett_feedback_config = -1;
+static gint ett_command_data_set = -1;
+static gint ett_actual_data_set = -1;
+static gint ett_status_data_set = -1;
+static gint ett_interp_control = -1;
+static gint ett_cyclic_rd_wt = -1;
+static gint ett_event = -1;
+static gint ett_event_check_ctrl = -1;
+static gint ett_event_check_sts = -1;
+static gint ett_service = -1;
+static gint ett_get_axis_attribute = -1;
+static gint ett_set_axis_attribute = -1;
+static gint ett_get_axis_attr_list = -1;
+static gint ett_set_axis_attr_list = -1;
+static gint ett_group_sync = -1;
+static gint ett_axis_status_set = -1;
+static gint ett_command_control = -1;
+
+/* These are the BITMASKS for the Time Data Set header field */
+#define TIME_DATA_SET_TIME_STAMP 0x1
+#define TIME_DATA_SET_TIME_OFFSET 0x2
+#define TIME_DATA_SET_UPDATE_DIAGNOSTICS 0x4
+#define TIME_DATA_SET_TIME_DIAGNOSTICS 0x8
+
+/* These are the BITMASKS for the Command Data Set cyclic field */
+#define COMMAND_DATA_SET_POSITION 0x01
+#define COMMAND_DATA_SET_VELOCITY 0x02
+#define COMMAND_DATA_SET_ACCELERATION 0x04
+#define COMMAND_DATA_SET_TORQUE 0x08
+#define COMMAND_DATA_SET_POSITION_TRIM 0x10
+#define COMMAND_DATA_SET_VELOCITY_TRIM 0x20
+#define COMMAND_DATA_SET_ACCELERATION_TRIM 0x40
+#define COMMAND_DATA_SET_TORQUE_TRIM 0x80
+
+/* These are the BITMASKS for the Actual Data Set cyclic field */
+#define ACTUAL_DATA_SET_POSITION 0x01
+#define ACTUAL_DATA_SET_VELOCITY 0x02
+#define ACTUAL_DATA_SET_ACCELERATION 0x04
+#define ACTUAL_DATA_SET_TORQUE 0x08
+#define ACTUAL_DATA_SET_CURRENT 0x10
+#define ACTUAL_DATA_SET_VOLTAGE 0x20
+#define ACTUAL_DATA_SET_FREQUENCY 0x40
+
+/* These are the BITMASKS for the Status Data Set cyclic field */
+#define STATUS_DATA_SET_AXIS_FAULT 0x01
+#define STATUS_DATA_SET_AXIS_ALARM 0x02
+#define STATUS_DATA_SET_AXIS_STATUS 0x04
+#define STATUS_DATA_SET_AXIS_IO_STATUS 0x08
+#define STATUS_DATA_SET_AXIS_SAFETY 0x80
+
+/* These are the BITMASKS for the Command Control cyclic field */
+#define COMMAND_CONTROL_TARGET_UPDATE 0x03
+#define COMMAND_CONTROL_POSITION_DATA_TYPE 0x0C
+
+/* These are the VALUES of the connection format header field of the
+ * CIP Motion protocol */
+#define FORMAT_FIXED_CONTROL_TO_DEVICE 2
+#define FORMAT_FIXED_DEVICE_TO_CONTROL 3
+#define FORMAT_VAR_CONTROL_TO_DEVICE 6
+#define FORMAT_VAR_DEVICE_TO_CONTROL 7
+
+/* Translate function to string - connection format values */
+static const value_string cip_con_format_vals[] = {
+ { FORMAT_FIXED_CONTROL_TO_DEVICE, "Fixed Controller-to-Device" },
+ { FORMAT_FIXED_DEVICE_TO_CONTROL, "Fixed Device-to-Controller" },
+ { FORMAT_VAR_CONTROL_TO_DEVICE, "Variable Controller-to-Device" },
+ { FORMAT_VAR_DEVICE_TO_CONTROL, "Variable Device-to-Controller" },
+ { 0, NULL }
+};
+
+/* Translate function to string - motor control mode values */
+static const value_string cip_motor_control_vals[] = {
+ { 0, "No Control" },
+ { 1, "Position Control" },
+ { 2, "Velocity Control" },
+ { 3, "Acceleration Control" },
+ { 4, "Torque Control" },
+ { 5, "Current Control" },
+ { 0, NULL }
+};
+
+/* Translate function to string - feedback config values */
+static const value_string cip_fdbk_config_vals[] = {
+ { 0, "No Feedback" },
+ { 1, "Master Feedback" },
+ { 2, "Motor Feedback" },
+ { 3, "Load Feedback" },
+ { 4, "Dual Feedback" },
+ { 0, NULL }
+};
+
+/* Translate function to string - axis control values */
+static const value_string cip_axis_control_vals[] =
+{
+ { 0, "No Request" },
+ { 1, "Enable Request" },
+ { 2, "Disble Request" },
+ { 3, "Shutdown Request" },
+ { 4, "Shutdown Reset Request" },
+ { 5, "Abort Request" },
+ { 6, "Fault Reset Request" },
+ { 7, "Stop Process" },
+ { 8, "Change Actual Pos" },
+ { 9, "Change Command Pos Ref" },
+ { 127, "Cancel Request" },
+ { 0, NULL }
+};
+
+/* Translate function to string - control status values */
+static const value_string cip_control_status_vals[] =
+{
+ { 1, "Configuration Complete" },
+ { 0, NULL }
+};
+
+/* Translate function to string - group sync Status */
+static const value_string cip_sync_status_vals[] =
+{
+ { 0, "Synchronized" },
+ { 1, "Not Synchronized" },
+ { 2, "Wrong Grandmaster" },
+ { 0, NULL }
+};
+
+/* Translate function to string - command target update */
+static const value_string cip_interpolation_vals[] = {
+ { 0, "Immediate" },
+ { 1, "Extrapolate (+1)" },
+ { 2, "Interpolate (+2)" },
+ { 0, NULL }
+};
+
+/* These are the VALUES for the Command Position Data Type */
+#define POSITION_DATA_LREAL 0x00
+#define POSITION_DATA_DINT 0x01
+
+/* Translate function to string - position data type */
+static const value_string cip_pos_data_type_vals[] = {
+ { POSITION_DATA_LREAL, "LREAL (64-bit Float)" },
+ { POSITION_DATA_DINT, "DINT (32-bit Integer)" },
+ { 0, NULL }
+};
+
+/* Translate function to string - axis response values */
+static const value_string cip_axis_response_vals[] = {
+ { 0, "No Acknowlede" },
+ { 1, "Enable Acknowledge" },
+ { 2, "Disable Acknowledge" },
+ { 3, "Shutdown Acknowledge" },
+ { 4, "Shutdown Reset Acknowledge" },
+ { 5, "Abort Acknowledge" },
+ { 6, "Fault Reset Acknowledge" },
+ { 0, NULL }
+};
+
+/* Translate function to string - axis state values */
+static const value_string cip_axis_state_vals[] = {
+ { 0, "Initializing" },
+ { 1, "Pre-charging" },
+ { 2, "Stopped" },
+ { 3, "Starting" },
+ { 4, "Running" },
+ { 5, "Testing" },
+ { 6, "Stopping" },
+ { 7, "Aborting" },
+ { 8, "Major Faulted" },
+ { 9, "Start Inhibited" },
+ { 10, "Shutdown" },
+ { 0, NULL }
+};
+
+/* Translate function to string - event type values */
+static const value_string cip_event_type_vals[] = {
+ { 0, "Registration 1 Positive Edge" },
+ { 1, "Registration 1 Negative Edge" },
+ { 2, "Registration 2 Positive Edge" },
+ { 3, "Registration 2 Negative Edge" },
+ { 4, "Marker Positive Edge" },
+ { 5, "Marker Negative Edge" },
+ { 6, "Home Switch Positive Edge" },
+ { 7, "Home Switch Negative Edge" },
+ { 8, "Home Switch Marker ++" },
+ { 9, "Home Switch Marker +-" },
+ { 10, "Home Switch Marker -+" },
+ { 11, "Home Switch Marker --" },
+ { 0, NULL }
+};
+
+#define SC_GET_AXIS_ATTRIBUTE_LIST 0x4B
+#define SC_SET_AXIS_ATTRIBUTE_LIST 0x4C
+#define SC_SET_CYCLIC_WRITE_LIST 0x4D
+#define SC_SET_CYCLIC_READ_LIST 0x4E
+#define SC_RUN_MOTOR_TEST 0x4F
+#define SC_GET_MOTOR_TEST_DATA 0x50
+#define SC_RUN_INERTIA_TEST 0x51
+#define SC_GET_INERTIA_TEST_DATA 0x52
+#define SC_RUN_HOOKUP_TEST 0x53
+#define SC_GET_HOOKUP_TEST_DATA 0x53
+
+/* Translate function to string - CIP Service codes */
+static const value_string cip_sc_vals[] = {
+ GENERIC_SC_LIST
+ { SC_GET_AXIS_ATTRIBUTE_LIST, "Get Axis Attribute List" },
+ { SC_SET_AXIS_ATTRIBUTE_LIST, "Set Axis Attribute List" },
+ { SC_SET_CYCLIC_WRITE_LIST, "Set Cyclic Write List" },
+ { SC_SET_CYCLIC_READ_LIST, "Set Cyclic Read List" },
+ { SC_RUN_MOTOR_TEST, "Run Motor Test" },
+ { SC_GET_MOTOR_TEST_DATA, "Get Motor Test Data" },
+ { SC_RUN_INERTIA_TEST, "Run Inertia Test" },
+ { SC_GET_INERTIA_TEST_DATA, "Get Intertia Test Data" },
+ { SC_RUN_HOOKUP_TEST, "Run Hookup Test" },
+ { SC_GET_HOOKUP_TEST_DATA, "Get Hookup Test Data" },
+ { 0, NULL }
+};
+
+/*
+ * Function name: dissect_cmd_data_set
+ *
+ * Purpose: Dissect the command data set field of the cyclic data block header and if any
+ * of the command value bits are set to retrieve and display those command values
+ *
+ * Returns: The number of bytes in the cyclic data used
+ */
+static guint32
+dissect_cmd_data_set(guint32 cmd_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset, gboolean lreal_pos)
+{
+ guint32 bytes_used = 0;
+
+ /* The order of these if statements is VERY important, this is the order the values will
+ * appear in the cyclic data */
+ if ( (cmd_data_set & COMMAND_DATA_SET_POSITION) == COMMAND_DATA_SET_POSITION )
+ {
+ /* Based on the Command Position Data Type value embedded in the Command Control
+ * header field the position is either 64-bit floating or 32-bit integer */
+ if (lreal_pos)
+ {
+ /* Display the command data set position command value */
+ proto_tree_add_item(tree, hf_cip_pos_cmd, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN );
+ bytes_used += 8;
+ }
+ else
+ {
+ /* Display the command data set position command value */
+ proto_tree_add_item(tree, hf_cip_pos_cmd_int, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY) == COMMAND_DATA_SET_VELOCITY )
+ {
+ /* Display the command data set velocity command value */
+ proto_tree_add_item(tree, hf_cip_vel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION) == COMMAND_DATA_SET_ACCELERATION )
+ {
+ /* Display the command data set acceleration command value */
+ proto_tree_add_item(tree, hf_cip_accel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE) == COMMAND_DATA_SET_TORQUE )
+ {
+ /* Display the command data set torque command value */
+ proto_tree_add_item(tree, hf_cip_trq_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_POSITION_TRIM) == COMMAND_DATA_SET_POSITION_TRIM )
+ {
+ /* Display the command data set position trim value */
+ proto_tree_add_item(tree, hf_cip_pos_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY_TRIM) == COMMAND_DATA_SET_VELOCITY_TRIM )
+ {
+ /* Display the command data set velocity trim value */
+ proto_tree_add_item(tree, hf_cip_vel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION_TRIM) == COMMAND_DATA_SET_ACCELERATION_TRIM )
+ {
+ /* Display the command data set acceleration trim value */
+ proto_tree_add_item(tree, hf_cip_accel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE_TRIM) == COMMAND_DATA_SET_TORQUE_TRIM )
+ {
+ /* Display the command data set torque trim value */
+ proto_tree_add_item(tree, hf_cip_trq_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ return bytes_used;
+}
+
+
+/*
+ * Function name: dissect_act_data_set
+ *
+ * Purpose: Dissect the actual data set field of the cyclic data block header and if any
+ * of the actual value bits are set to retrieve and display those feedback values
+ *
+ * Returns: The number of bytes in the cyclic data used
+ */
+static guint32
+dissect_act_data_set(guint32 act_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset)
+{
+ guint32 bytes_used = 0;
+
+ /* The order of these if statements is VERY important, this is the order the values will
+ * appear in the cyclic data */
+ if ( (act_data_set & ACTUAL_DATA_SET_POSITION) == ACTUAL_DATA_SET_POSITION )
+ {
+ /* Display the actual data set position feedback value */
+ proto_tree_add_item(tree, hf_cip_act_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (act_data_set & ACTUAL_DATA_SET_VELOCITY) == ACTUAL_DATA_SET_VELOCITY )
+ {
+ /* Display the actual data set velocity feedback value */
+ proto_tree_add_item(tree, hf_cip_act_vel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (act_data_set & ACTUAL_DATA_SET_ACCELERATION) == ACTUAL_DATA_SET_ACCELERATION )
+ {
+ /* Display the actual data set acceleration feedback value */
+ proto_tree_add_item(tree, hf_cip_act_accel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (act_data_set & ACTUAL_DATA_SET_TORQUE) == ACTUAL_DATA_SET_TORQUE )
+ {
+ /* Display the actual data set torque feedback value */
+ proto_tree_add_item(tree, hf_cip_act_trq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+ if ( (act_data_set & ACTUAL_DATA_SET_CURRENT) == ACTUAL_DATA_SET_CURRENT )
+ {
+ /* Display the actual data set current feedback value */
+ proto_tree_add_item(tree, hf_cip_act_crnt, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (act_data_set & ACTUAL_DATA_SET_VOLTAGE) == ACTUAL_DATA_SET_VOLTAGE )
+ {
+ /* Display the actual data set voltage feedback value */
+ proto_tree_add_item(tree, hf_cip_act_volts, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ if ( (act_data_set & ACTUAL_DATA_SET_FREQUENCY) == ACTUAL_DATA_SET_FREQUENCY )
+ {
+ /* Display the actual data set frequency feedback value */
+ proto_tree_add_item(tree, hf_cip_act_freq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+ }
+
+ return bytes_used;
+}
+
+/*
+ * Function name: dissect_status_data_set
+ *
+ * Purpose: Dissect the status data set field of the cyclic data block header and if any
+ * of the status value bits are set to retrieve and display those status values
+ *
+ * Returns: The number of bytes in the cyclic data used
+ */
+static guint32
+dissect_status_data_set(guint32 status_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset)
+{
+ guint32 bytes_used = 0;
+ proto_item *temp_proto_item;
+ proto_tree *temp_proto_tree;
+
+ /* The order of these if statements is VERY important, this is the order the values will
+ * appear in the cyclic data */
+ if ( (status_data_set & STATUS_DATA_SET_AXIS_FAULT) == STATUS_DATA_SET_AXIS_FAULT )
+ {
+ /* Display the various fault codes from the device */
+ proto_tree_add_item(tree, hf_cip_fault_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_axis_fault, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_fault_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_fault_action, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_fault_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
+ bytes_used += 8;
+ }
+
+ if ( (status_data_set & STATUS_DATA_SET_AXIS_ALARM) == STATUS_DATA_SET_AXIS_ALARM )
+ {
+ /* Display the various alarm codes from the device */
+ proto_tree_add_item(tree, hf_cip_alarm_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_axis_alarm, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_alarm_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_alarm_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ proto_tree_add_item(tree, hf_cip_alarm_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
+ bytes_used += 8;
+ }
+
+ if ( (status_data_set & STATUS_DATA_SET_AXIS_STATUS) == STATUS_DATA_SET_AXIS_STATUS )
+ {
+ /* Display the various axis state values from the device */
+ temp_proto_item = proto_tree_add_item(tree, hf_cip_axis_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree( temp_proto_item, ett_axis_status_set );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_local_ctrl, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_alarm, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dc_bus, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pwr_struct, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_tracking, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pos_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_standstill, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_acc_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dec_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_cur_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_therm_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_feedback_integ, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_shutdown, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_in_process, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
+ bytes_used += 4;
+
+ proto_tree_add_item(tree, hf_cip_axis_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ bytes_used += 4;
+ }
+
+ if ( (status_data_set & STATUS_DATA_SET_AXIS_IO_STATUS) == STATUS_DATA_SET_AXIS_IO_STATUS )
+ {
+ proto_tree_add_item(tree, hf_cip_axis_io_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ bytes_used += 4;
+
+ proto_tree_add_item(tree, hf_cip_axis_io_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ bytes_used += 4;
+ }
+
+ if ( (status_data_set & STATUS_DATA_SET_AXIS_SAFETY) == STATUS_DATA_SET_AXIS_SAFETY )
+ {
+ proto_tree_add_item(tree, hf_cip_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ bytes_used += 4;
+ }
+
+ return bytes_used;
+}
+
+/*
+ * Function name: dissect_cntr_cyclic
+ *
+ * Purpose: Dissect the cyclic data block of a controller to device format message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_cntr_cyclic(guint32 con_format, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance)
+{
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+ guint32 temp_data;
+ gboolean lreal_pos;
+ guint32 bytes_used = 0;
+
+ /* Create the tree for the entire instance data header */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Cyclic Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_cyclic_data_block);
+
+ /* Add the control mode header field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the feedback config header field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the axis control field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_axis_control, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the control status to the tree */
+ proto_tree_add_item(header_tree, hf_cip_control_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the command control header field from the packet into memory and determine if the dissector
+ * should be using an LREAL or DINT for position */
+ temp_data = tvb_get_guint8(tvb, offset + 7);
+ lreal_pos = ( (temp_data & COMMAND_CONTROL_POSITION_DATA_TYPE) == POSITION_DATA_LREAL );
+
+ /* Read the command data set header field from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 4);
+
+ /* Create the tree for the command data set header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_cmd_data_set, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_data_set);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the command data values from the cyclic data payload within the command data set tree, the
+ * cyclic data starts immediately after the interpolation control field in the controller to device
+ * direction */
+ bytes_used += dissect_cmd_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used, lreal_pos);
+
+ /* Create the tree for the actual data set header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+
+ /* Create the tree for the status data set header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+
+ /* Create the tree for the command control header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_command_control, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_control);
+
+ /* Display the interpolation control and position format fields */
+ proto_tree_add_item(temp_proto_tree, hf_cip_intrp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_position_data_type, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+
+ /* Return the offset to the next byte in the message */
+ return offset + 8 + bytes_used;
+}
+
+/*
+ * Function name: dissect_devce_cyclic
+ *
+ * Purpose: Dissect the cyclic data block of a device to controller format message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_devce_cyclic(guint32 con_format, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance)
+{
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+ guint32 temp_data;
+ guint32 bytes_used = 0;
+
+ /* Create the tree for the entire instance data header */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Cyclic Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_cyclic_data_block);
+
+ /* Add the control mode header field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the feedback config header field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the axis response field to the tree */
+ proto_tree_add_item(header_tree, hf_cip_axis_response, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the axis response status to the tree */
+ proto_tree_add_item(header_tree, hf_cip_axis_resp_stat, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the actual data set header field from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 5);
+
+ /* Create the tree for the actual data set header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the actual data values from the cyclic data payload within the command data set tree, the
+ * cyclic data starts immediately after the interpolation control field in the controller to device
+ * direction and the actual data starts immediately after the cyclic data */
+ bytes_used += dissect_act_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used);
+
+ /* Read the status data set header field from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 6);
+
+ /* Create the tree for the status data set header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_sts_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the status data values from the cyclic data payload within the status data set tree, the
+ * cyclic data starts immediately after the axis state field in the device to controller
+ * direction and the status data starts immediately after the cyclic data */
+ bytes_used += dissect_status_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used);
+
+ /* Display the axis state control field */
+ proto_tree_add_item(header_tree, hf_cip_axis_state, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+
+ /* Return the offset to the next byte in the message */
+ return offset + 8 + bytes_used;
+}
+
+/*
+ * Function name: dissect_cyclic_wt
+ *
+ * Purpose: Dissect the cyclic write data block in a controller to device message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_cyclic_wt(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item;
+ proto_tree *header_tree;
+
+ /* Create the tree for the entire cyclic write data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Cyclic Write Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_cyclic_rd_wt);
+
+ /* Display the cyclic write block id value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the cyclic read block id value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the remainder of the cyclic write data if there is any */
+ if ( (size - 4) > 0 )
+ {
+ proto_tree_add_item(header_tree, hf_cip_cyclic_wrt_data, tvb, offset + 4, size - 4, ENC_NA);
+ }
+
+ return offset + size;
+}
+
+/*
+ * Function name: dissect_cyclic_rd
+ *
+ * Purpose: Dissect the cyclic read data block in a device to controller message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_cyclic_rd(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item;
+ proto_tree *header_tree;
+
+ /* Create the tree for the entire cyclic write data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Cyclic Read Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_cyclic_rd_wt);
+
+ /* Display the cyclic write block id value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the cyclic write status value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_write_sts, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the cyclic read block id value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the cyclic read status value */
+ proto_tree_add_item(header_tree, hf_cip_cyclic_read_sts, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the remainder of the cyclic read data if there is any*/
+ if ( (size - 4) > 0 )
+ {
+ proto_tree_add_item(header_tree, hf_cip_cyclic_rd_data, tvb, offset + 4, size - 4, ENC_NA);
+ }
+
+ return offset + size;
+}
+
+/*
+ * Function name: dissect_cntr_event
+ *
+ * Purpose: Dissect the event data block in a controller to device message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_cntr_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+ guint32 temp_data;
+ guint32 acks, cur_ack;
+ guint32 bytes_used = 0;
+
+ /* Create the tree for the entire cyclic write data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Event Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_event);
+
+ /* Read the event checking control header field from the packet into memory */
+ temp_data = tvb_get_letohl(tvb, offset);
+
+ /* Create the tree for the event checking control header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_checking, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_ctrl);
+
+ /* Add the individual elements of the event checking control */
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_acks, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ /* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it,
+ * to date no products actually support this format */
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+
+ /* The event checking control value is 4 bytes long */
+ bytes_used = 4;
+
+ /* The final 4 bits of the event checking control value are the number of acknowledgements in the message */
+ acks = (temp_data >> 28) & 0x0F;
+
+ /* Each acknowledgement contains and id and a status value */
+ for (cur_ack = 0; cur_ack < acks; cur_ack++)
+ {
+ /* Display the current acknowledgement id */
+ proto_tree_add_item(header_tree, hf_cip_event_ack, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ /* Display the current event status */
+ proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+ }
+
+ return offset + size;
+}
+
+/*
+ * Function name: dissect_devce_event
+ *
+ * Purpose: Dissect the event data block in a device to controller message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_devce_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+ guint64 temp_data;
+ guint64 nots, cur_not;
+ guint32 bytes_used = 0;
+
+ /* Create the tree for the entire cyclic write data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Event Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_event);
+
+ /* Read the event checking control header field from the packet into memory */
+ temp_data = tvb_get_letohl(tvb, offset);
+
+ /* Create the tree for the event checking control header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_status, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_sts);
+
+ /* Add the individual elements of the event checking control */
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_nfs, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+ /* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it,
+ * to date no products actually support this format */
+ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN);
+
+ /* The event status control value is 4 bytes long */
+ bytes_used = 4;
+
+ /* The final 4 bits of the event status control value are the number of notifications in the message */
+ nots = (temp_data >> 28) & 0x0F;
+
+ /* Each notification contains and id, status value, event type, position and time stamp */
+ for (cur_not = 0; cur_not < nots; cur_not++)
+ {
+ /* Display the current event id */
+ proto_tree_add_item(header_tree, hf_cip_event_id, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ /* Display the current event status */
+ proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 1;
+
+ /* Display the current event type */
+ proto_tree_add_item(header_tree, hf_cip_evnt_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
+ bytes_used += 2; /* Increment by 2 to jump the reserved byte */
+
+ /* Display the event position value */
+ proto_tree_add_item(header_tree, hf_cip_event_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
+ bytes_used += 4;
+
+ /* Display the event time stamp value */
+ proto_tree_add_item(header_tree, hf_cip_event_ts, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
+ bytes_used += 8;
+ }
+
+ return size + offset;
+}
+
+/*
+ * Function name: dissect_get_axis_attr_list_request
+ *
+ * Purpose: Dissect the get axis attribute list service request
+ *
+ * Returns: None
+ */
+static void
+dissect_get_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *attr_item;
+ proto_tree *header_tree, *attr_tree;
+ guint16 attribute, attribute_cnt;
+ guint32 local_offset;
+ guint8 increment_size, dimension;
+
+ /* Create the tree for the get axis attribute list request */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Get Axis Attribute List Request");
+ header_tree = proto_item_add_subtree(header_item, ett_get_axis_attribute);
+
+ /* Read the number of attributes that are contained within the request */
+ attribute_cnt = tvb_get_letohs(tvb, offset);
+ proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
+
+ /* Start the attribute loop at the beginning of the first attribute in the list */
+ local_offset = offset + 4;
+
+ /* For each attribute display the associated fields */
+ for (attribute = 0; attribute < attribute_cnt; attribute++)
+ {
+ /* At a minimum the local offset needs will need to be incremented by 4 bytes to reach the next attribute */
+ increment_size = 4;
+
+ /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
+ * properly displaying of the attribute is possible */
+ dimension = tvb_get_guint8(tvb, local_offset + 2);
+
+ /* Create the tree for this attribute within the request */
+ attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
+ attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
+
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ if (dimension == 1)
+ {
+ /* Display the start index and start index from the request if this is an array request */
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
+
+ /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
+ increment_size += 4;
+ }
+
+ /* Move the local offset to the next attribute */
+ local_offset += increment_size;
+ }
+}
+
+/*
+ * Function name: dissect_set_axis_attr_list_request
+ *
+ * Purpose: Dissect the set axis attribute list service request
+ *
+ * Returns: None
+ */
+static void
+dissect_set_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *attr_item;
+ proto_tree *header_tree, *attr_tree;
+ guint16 attribute, attribute_cnt, data_elements;
+ guint32 local_offset;
+ guint32 attribute_size;
+ guint8 dimension, attribute_start, increment_size;
+
+ /* Create the tree for the set axis attribute list request */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Set Axis Attribute List Request");
+ header_tree = proto_item_add_subtree(header_item, ett_set_axis_attribute);
+
+ /* Read the number of attributes that are contained within the request */
+ attribute_cnt = tvb_get_letohs(tvb, offset);
+ proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
+
+ /* Start the attribute loop at the beginning of the first attribute in the list */
+ local_offset = offset + 4;
+
+ /* For each attribute display the associated fields */
+ for (attribute = 0; attribute < attribute_cnt; attribute++)
+ {
+ /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
+ increment_size = 4;
+
+ /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
+ * properly displaying of the attribute is possible */
+ dimension = tvb_get_guint8(tvb, local_offset + 2);
+ attribute_size = tvb_get_guint8(tvb, local_offset + 3);
+ attribute_start = 4;
+
+ if (dimension == 1)
+ {
+ data_elements = tvb_get_letohs(tvb, local_offset + 6);
+
+ /* Modify the size of the attribute data by the number of elements if the request is an array request */
+ attribute_size *= data_elements;
+
+ /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
+ increment_size += 4;
+ attribute_start += 4;
+ }
+
+ /* Create the tree for this attribute in the get axis attribute list request */
+ attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
+ attr_tree = proto_item_add_subtree(attr_item, ett_set_axis_attr_list);
+
+ proto_tree_add_item(attr_tree, hf_set_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_set_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ if (dimension == 1)
+ {
+ /* Display the start index and start index from the request if the request is an array */
+ proto_tree_add_item(attr_tree, hf_set_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_set_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
+ }
+
+ /* Display the value of this attribute */
+ proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, offset + attribute_start, attribute_size, ENC_NA);
+
+ /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
+ if (attribute_size % 4 != 0)
+ {
+ attribute_size = attribute_size + (4 - (attribute_size % 4));
+ }
+
+ /* Move the local offset to the next attribute */
+ local_offset += (attribute_size + increment_size);
+ }
+}
+
+/*
+ * Function name: dissect_group_sync_request
+ *
+ * Purpose: Dissect the group sync service request
+ *
+ * Returns: None
+ */
+static void
+dissect_group_sync_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item;
+ proto_tree *header_tree;
+
+ /* Create the tree for the group sync request */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Group Sync Request");
+ header_tree = proto_item_add_subtree(header_item, ett_group_sync);
+
+ /* Read the grandmaster id from the payload */
+ proto_tree_add_item(header_tree, hf_cip_ptp_grandmaster, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+}
+
+
+/*
+ * Function name: dissect_cntr_service
+ *
+ * Purpose: Dissect the service data block in a controller to device message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_cntr_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item;
+ proto_tree *header_tree;
+ guint8 service;
+
+ /* Create the tree for the entire service data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Service Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_service);
+
+ /* Display the transaction id value */
+ proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the service code */
+ service = tvb_get_guint8(tvb, offset + 1);
+ proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+
+ /* If the service is a set axis, get axis attribute or group sync request dissect it as well */
+ switch(service)
+ {
+ case SC_GET_AXIS_ATTRIBUTE_LIST:
+ dissect_get_axis_attr_list_request(tvb, header_tree, offset + 4, size);
+ break;
+ case SC_SET_AXIS_ATTRIBUTE_LIST:
+ dissect_set_axis_attr_list_request(tvb, header_tree, offset + 4, size);
+ break;
+ case SC_GROUP_SYNC:
+ dissect_group_sync_request(tvb, header_tree, offset + 4, size);
+ break;
+ default:
+ /* Display the remainder of the service channel data */
+ proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
+ }
+
+ return offset + size;
+}
+
+/*
+ * Function name: dissect_set_axis_attr_list_response
+ *
+ * Purpose: Dissect the set axis attribute list service response
+ *
+ * Returns: None
+ */
+static void
+dissect_set_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *attr_item;
+ proto_tree *header_tree, *attr_tree;
+ guint16 attribute, attribute_cnt;
+ guint32 local_offset;
+
+ /* Create the tree for the set axis attribute list response */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Set Axis Attribute List Response");
+ header_tree = proto_item_add_subtree(header_item, ett_get_axis_attribute);
+
+ /* Read the number of attributes that are contained within the response */
+ attribute_cnt = tvb_get_letohs(tvb, offset);
+ proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
+
+ /* Start the attribute loop at the beginning of the first attribute in the list */
+ local_offset = offset + 4;
+
+ /* For each attribute display the associated fields */
+ for (attribute = 0; attribute < attribute_cnt; attribute++)
+ {
+ /* Create the tree for the current attribute in the set axis attribute list response */
+ attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
+ attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
+
+ /* Add the response status to the tree */
+ proto_tree_add_item(attr_tree, hf_cip_svc_set_axis_attr_sts, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Move the local offset to the next attribute */
+ local_offset += 4;
+ }
+}
+
+/*
+ * Function name: dissect_get_axis_attr_list_response
+ *
+ * Purpose: Dissect the get axis attribute list service response
+ *
+ * Returns: None
+ */
+static void
+dissect_get_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item, *attr_item;
+ proto_tree *header_tree, *attr_tree;
+ guint16 attribute, attribute_cnt, data_elements;
+ guint32 attribute_size;
+ guint8 dimension, attribute_start, increment_size;
+ guint32 local_offset;
+
+ /* Create the tree for the get axis attribute list response */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Get Axis Attribute List Response");
+ header_tree = proto_item_add_subtree(header_item, ett_get_axis_attribute);
+
+ /* Read the number of attributes that are contained within the request */
+ attribute_cnt = tvb_get_letohs(tvb, offset);
+ proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
+
+ /* Start the attribute loop at the beginning of the first attribute in the list */
+ local_offset = offset + 4;
+
+ /* For each attribute display the associated fields */
+ for (attribute = 0; attribute < attribute_cnt; attribute++)
+ {
+ /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
+ increment_size = 4;
+
+ /* Pull the fields for this attribute from the payload, all fields are need to make some calculations before
+ * properly displaying of the attribute is possible */
+ dimension = tvb_get_guint8(tvb, local_offset + 2);
+ attribute_size = tvb_get_guint8(tvb, local_offset + 3);
+ attribute_start = 4;
+
+ if (dimension == 1)
+ {
+ data_elements = tvb_get_letohs(tvb, local_offset + 6);
+
+ /* Modify the size of the attribute data by the number of elements if the request is an array request */
+ attribute_size *= data_elements;
+
+ /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
+ increment_size += 4;
+ attribute_start += 4;
+ }
+
+ /* Display the fields associated with the get axis attribute list response */
+ attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
+ attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
+
+ if (dimension == 0xFF)
+ {
+ /* Display the element size as an error code if the dimension field indicates an error */
+ proto_tree_add_item(attr_tree, hf_cip_svc_get_axis_attr_sts, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* No attribute data so no attribute size */
+ attribute_size = 0;
+ }
+ else
+ {
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ if (dimension == 1)
+ {
+ /* Display the start index and start indexfrom the request */
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
+ }
+
+ /* Display the remainder of the service channel data */
+ proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, offset + attribute_start, attribute_size, ENC_NA);
+
+ /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
+ if (attribute_size % 4 != 0)
+ {
+ attribute_size = attribute_size + (4 - (attribute_size % 4));
+ }
+ }
+
+ /* Move the local offset to the next attribute */
+ local_offset += (attribute_size + increment_size);
+ }
+}
+
+/*
+ * Function name: dissect_group_sync_response
+ *
+ * Purpose: Dissect the group sync service response
+ *
+ * Returns: None
+ */
+static void
+dissect_group_sync_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_tree_add_item(tree, hf_cip_group_sync, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+}
+
+/*
+ * Function name: dissect_devce_service
+ *
+ * Purpose: Dissect the service data block in a device to controller message
+ *
+ * Returns: The new offset into the message that follow on dissections should use
+ * as their starting offset
+ */
+static guint32
+dissect_devce_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
+{
+ proto_item *header_item;
+ proto_tree *header_tree;
+
+ /* Create the tree for the entire service data block */
+ header_item = proto_tree_add_text(tree, tvb, offset, size, "Service Data Block");
+ header_tree = proto_item_add_subtree(header_item, ett_service);
+
+ /* Display the transaction id value */
+ proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the service code */
+ proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the general status code */
+ proto_tree_add_item(header_tree, hf_cip_svc_sts, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Display the extended status code */
+ proto_tree_add_item(header_tree, hf_cip_svc_ext_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* If the service is a set axis, get axis attribute response or group sync dissect it as well */
+ switch(tvb_get_guint8(tvb, offset + 1))
+ {
+ case SC_GET_AXIS_ATTRIBUTE_LIST:
+ dissect_get_axis_attr_list_response(tvb, header_tree, offset + 4, size);
+ break;
+ case SC_SET_AXIS_ATTRIBUTE_LIST:
+ dissect_set_axis_attr_list_response(tvb, header_tree, offset + 4, size);
+ break;
+ case SC_GROUP_SYNC:
+ dissect_group_sync_response(tvb, header_tree, offset + 4, size);
+ break;
+ default:
+ /* Display the remainder of the service channel data */
+ proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
+ }
+
+ return offset + size;
+}
+
+/*
+ * Function name: dissect_var_inst_header
+ *
+ * Purpose: Dissect the instance data header of a variable controller to device or
+ * device to controller message
+ *
+ * Returns: void
+ */
+static void
+dissect_var_inst_header(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint8* inst_number, guint32* cyc_size,
+ guint32* cyc_blk_size, guint32* evnt_size, guint32* servc_size)
+{
+ guint8 temp_data;
+ proto_item *header_item;
+ proto_tree *header_tree;
+
+ /* Create the tree for the entire instance data header */
+ *inst_number = tvb_get_guint8(tvb, offset);
+
+ header_item = proto_tree_add_text(tree, tvb, offset, 8, "Instance Data Header - Instance: %d", *inst_number);
+ header_tree = proto_item_add_subtree(header_item, ett_inst_data_header);
+
+ /* Read the instance number field from the instance data header */
+ proto_tree_add_item(header_tree, hf_var_devce_instance, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+
+ /* The "size" fields in the instance data block header are all stored as number of 32-bit words the
+ * block uses since all blocks should pad up to 32-bits so to convert to bytes each is mulitplied by 4 */
+
+ /* Read the instance block size field in bytes from the instance data header */
+ temp_data = tvb_get_guint8(tvb, offset + 2);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_instance_block_size,
+ tvb, offset + 2, 1, temp_data, "%d words", temp_data);
+
+ /* Read the cyclic block size field in bytes from the instance data header */
+ temp_data = tvb_get_guint8(tvb, offset + 3);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_block_size,
+ tvb, offset + 3, 1, temp_data, "%d words", temp_data);
+
+ /* Read the cyclic command block size field in bytes from the instance data header */
+ *cyc_size = (tvb_get_guint8(tvb, offset + 4) * 4);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_data_block_size,
+ tvb, offset + 4, 1, (*cyc_size)/4, "%d words", (*cyc_size)/4);
+
+ /* Read the cyclic write block size field in bytes from the instance data header */
+ *cyc_blk_size = (tvb_get_guint8(tvb, offset + 5) * 4);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_rw_block_size,
+ tvb, offset + 5, 1, (*cyc_blk_size)/4, "%d words", (*cyc_blk_size)/4);
+
+ /* Read the event block size in bytes from the instance data header */
+ *evnt_size = (tvb_get_guint8(tvb, offset + 6) * 4);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_event_block_size,
+ tvb, offset + 6, 1, (*evnt_size)/4, "%d words", (*evnt_size)/4);
+
+ /* Read the service block size in bytes from the instance data header */
+ *servc_size = (tvb_get_guint8(tvb, offset + 7) * 4);
+ proto_tree_add_uint_format_value(header_tree, hf_var_devce_service_block_size,
+ tvb, offset + 7, 1, (*servc_size)/4, "%d words", (*servc_size)/4);
+}
+
+/*
+ * Function name: dissect_var_cont_conn_header
+ *
+ * Purpose: Dissect the connection header of a variable controller to device message
+ *
+ * Returns: Offset to the start of the instance data block
+ */
+static guint32
+dissect_var_cont_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset)
+{
+ guint32 header_size;
+ guint32 temp_data;
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+
+ /* Calculate the header size, start with the basic header size */
+ header_size = 8;
+
+ temp_data = tvb_get_guint8(tvb, offset + 7);
+
+ /* Check the time data set field for enabled bits. If either update period or
+ * update time stamp fields are set, bump the header size by the appropriate size */
+ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
+ {
+ header_size += 8;
+ }
+ if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
+ {
+ header_size += 8;
+ }
+
+ /* Create the tree for the entire connection header */
+ header_item = proto_tree_add_text(tree, tvb, offset, header_size, "Connection Header");
+ header_tree = proto_item_add_subtree(header_item, ett_cont_dev_header);
+
+ /* Add the connection header fields that are common to all types of messages */
+ proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the node control header field from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 3);
+
+ /* Create the tree for the node control header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_control, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_control);
+
+ /* Add the individual data elements to the node control tree */
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_fault_reset, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the instance count field from the packet into memory, this gets passed back out of the method */
+ *inst_count = tvb_get_guint8(tvb, offset + 4);
+
+ /* Add the instance count and last update id to the connection header tree */
+ proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the time data set from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 7);
+
+ /* Create the tree for the time data set field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set);
+
+ /* Add the individual data elements to the time data set header field */
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+
+ /* Move the offset to the byte just beyond the time data set field */
+ offset = (offset + 7 + 1);
+
+ /* Add the time values if they are present in the time data set header field */
+ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
+ {
+ proto_tree_add_item(header_tree, hf_cip_cont_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset = (offset + 8);
+ }
+
+ if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
+ {
+ proto_tree_add_item(header_tree, hf_cip_cont_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset = (offset + 8);
+ }
+
+ /* Return the number of bytes used so it can be used as an offset in the following dissections */
+ return offset;
+}
+
+/*
+ * Function name: dissect_var_devce_conn_header
+ *
+ * Purpose: Dissect the connection header of a variable device to controller message
+ *
+ * Returns: Offset to the start of the instance data block
+ */
+static guint32
+dissect_var_devce_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset)
+{
+ guint32 header_size;
+ guint32 temp_data;
+ proto_item *header_item, *temp_proto_item;
+ proto_tree *header_tree, *temp_proto_tree;
+
+ /* Calculate the header size, start with the basic header size */
+ header_size = 8;
+
+ temp_data = tvb_get_guint8(tvb, offset + 7);
+ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
+ {
+ header_size += 8;
+ }
+ if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
+ {
+ header_size += 8;
+ }
+ if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
+ {
+ header_size += 4;
+ }
+ if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
+ {
+ header_size += 16;
+ }
+
+ /* Create the tree for the entire connection header */
+ header_item = proto_tree_add_text(tree, tvb, offset, header_size, "Connection Header");
+ header_tree = proto_item_add_subtree(header_item, ett_cont_dev_header);
+
+ /* Add the connection header fields that are common to all types of messages */
+ proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
+
+ /* Create the tree for the node status header field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_status);
+
+ /* Add the individual data elements to the node control tree */
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_node_device_faulted, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the instance count field from the packet into memory, this gets passed back out of the method */
+ *inst_count = tvb_get_guint8(tvb, offset + 4);
+
+ /* Add the instance count to the connection header tree */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
+
+ /* The device to controller header contains the node alarms and node faults fields as well. */
+ proto_tree_add_item(header_tree, hf_cip_node_fltalarms, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
+
+ /* Add the last update id to the connection header tree */
+ proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
+
+ /* Read the time data set from the packet into memory */
+ temp_data = tvb_get_guint8(tvb, offset + 7);
+
+ /* Create the tree for the time data set field */
+ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set);
+
+ /* Add the individual data elements to the time data set header field */
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
+
+ /* Move the offset to the byte just beyond the time data set field */
+ offset = (offset + 7 + 1);
+
+ /* Add the time values if they are present in the time data set header field */
+ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
+ {
+ proto_tree_add_item(header_tree, hf_cip_devc_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset = (offset + 8);
+ }
+
+ if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
+ {
+ proto_tree_add_item(header_tree, hf_cip_devc_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset = (offset + 8);
+ }
+
+ if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
+ {
+ /* If the time diagnostic bit is set then the header contains the count of lost updates, late updates, data
+ * received time stamp and data transmit time stamp */
+ proto_tree_add_item(header_tree, hf_cip_lost_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ offset = (offset + 1);
+
+ /* Add the reserved bytes to the offset after adding the late updates to the display */
+ proto_tree_add_item(header_tree, hf_cip_late_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ offset = (offset + 3);
+ }
+
+ if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
+ {
+ proto_tree_add_item(header_tree, hf_cip_data_rx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset += 8;
+
+ proto_tree_add_item(header_tree, hf_cip_data_tx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
+ offset += 8;
+ }
+
+ /* Return the number of bytes used so it can be used as an offset in the following dissections */
+ return offset;
+}
+
+
+/*
+ * Function name: dissect_cipmotion
+ *
+ * Purpose: Perform the top level dissection of the CIP Motion datagram, it is called by
+ * Wireshark when the dissection rule registered in proto_reg_handoff_cipmotion is fired
+ *
+ * Returns: void
+ */
+static void
+dissect_cipmotion(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree)
+{
+ guint32 con_format;
+ guint32 seq_number;
+ guint32 update_id;
+ proto_item *proto_item_top;
+ proto_tree *proto_tree_top;
+ guint32 offset = 0;
+
+ /* Pull the CIP class 1 sequence number from the incoming message */
+ seq_number = tvb_get_letohs(tvb, offset);
+ offset = (offset + 2);
+
+ /* Pull the actual values for the connection format and update id from the
+ * incoming message to be used in the column info */
+ con_format = tvb_get_guint8(tvb, offset);
+ update_id = tvb_get_guint8(tvb, offset + 2);
+
+ /* Make entries in Protocol column and Info column on summary display */
+ col_set_str(pinfo->cinfo, COL_PROTOCOL, "Motion");
+
+ /* Add connection format and update number to the info column */
+ col_add_fstr( pinfo->cinfo, COL_INFO, "%s, Update Id: %d",
+ val_to_str(con_format, cip_con_format_vals, "Unknown connection format (%x)"), update_id );
+
+ /* If tree is not NULL then Wireshark is requesting that the dissection
+ * panel be updated with the dissected packet, if tree is NULL then only
+ * the summary protocol and info columns need to be updated */
+ if ( tree )
+ {
+ /* Create display subtree for the protocol by creating an item and then
+ * creating a subtree from the item, the subtree must have been registered
+ * in proto_register_cipmotion already */
+ proto_item_top = proto_tree_add_item( tree, proto_cipmotion, tvb, 0, -1, ENC_LITTLE_ENDIAN );
+ proto_tree_top = proto_item_add_subtree( proto_item_top, ett_cipmotion );
+
+ /* Add the CIP class 1 sequence number to the tree */
+ proto_tree_add_item( proto_tree_top, hf_cip_class1_seqnum, tvb, 0, 2, ENC_LITTLE_ENDIAN );
+
+ /* Attempt to classify the incoming header */
+ if (( con_format == FORMAT_VAR_CONTROL_TO_DEVICE ) ||
+ ( con_format == FORMAT_VAR_DEVICE_TO_CONTROL ))
+ {
+ /* Sizes of the individual channels within the connection */
+ guint32 cyc_size, cyc_blk_size, evnt_size, servc_size;
+ guint32 inst_count, inst;
+
+ /* Dissect the header fields */
+ switch(con_format)
+ {
+ case FORMAT_VAR_CONTROL_TO_DEVICE:
+ offset = dissect_var_cont_conn_header(tvb, proto_tree_top, &inst_count, offset);
+ break;
+ case FORMAT_VAR_DEVICE_TO_CONTROL:
+ offset = dissect_var_devce_conn_header(tvb, proto_tree_top, &inst_count, offset);
+ break;
+ }
+
+ /* Repeat the following dissections for each instance within the payload */
+ for( inst = 0; inst < inst_count; inst++ )
+ {
+ /* Actual instance number from header field */
+ guint8 instance;
+
+ /* Dissect the instance data header */
+ dissect_var_inst_header( tvb, proto_tree_top, offset, &instance,
+ &cyc_size, &cyc_blk_size, &evnt_size, &servc_size );
+
+ /* Increment the offset to just beyond the instance header */
+ offset += 8;
+
+ /* Dissect the cyclic command (actual) data if any exists */
+ /* Dissect the cyclic write (read) data if any exists */
+ /* Dissect the event data block if there is any event data */
+ switch(con_format)
+ {
+ case FORMAT_VAR_CONTROL_TO_DEVICE:
+ if ( cyc_size > 0 )
+ offset = dissect_cntr_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance );
+ if ( cyc_blk_size > 0 )
+ offset = dissect_cyclic_wt(tvb, proto_tree_top, offset, cyc_blk_size);
+ if ( evnt_size > 0 )
+ offset = dissect_cntr_event(tvb, proto_tree_top, offset, evnt_size);
+ if ( servc_size > 0 )
+ offset = dissect_cntr_service(tvb, proto_tree_top, offset, servc_size);
+ break;
+ case FORMAT_VAR_DEVICE_TO_CONTROL:
+ if ( cyc_size > 0 )
+ offset = dissect_devce_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance );
+ if ( cyc_blk_size > 0 )
+ offset = dissect_cyclic_rd( tvb, proto_tree_top, offset, cyc_blk_size );
+ if ( evnt_size > 0 )
+ offset = dissect_devce_event(tvb, proto_tree_top, offset, evnt_size);
+ if ( servc_size > 0 )
+ offset = dissect_devce_service(tvb, proto_tree_top, offset, servc_size);
+ break;
+ }
+
+ } /* End of instance for( ) loop */
+ }
+ }
+}
+
+static gboolean
+dissect_cipmotion_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
+{
+ if (
+ /* The total message size is 10 bytes long at a minimum, 2 bytes for the
+ * update id and 8 bytes for the protocol header */
+ (tvb_length(tvb) >= 10) &&
+ /* The connection format is between 4 and 7 (fixed format message is very unlikely) */
+ ( (tvb_get_guint8(tvb, 2) >= 4) ||
+ (tvb_get_guint8(tvb, 2) <= 7) ) &&
+ /* The datagram format revision is 2 */
+ (tvb_get_guint8(tvb, 3) == 2) &&
+ /* The node control field is a maximum of Fh */
+ (tvb_get_guint8(tvb, 5) <= 0x0F) &&
+ /* If all valid bits are set in the time data set the value is 0x0F at a maximum */
+ (tvb_get_guint8(tvb, 9) <= 0x0F) )
+ {
+ /* ...then attempt a dissection */
+ dissect_cipmotion(tvb, pinfo, tree);
+ return TRUE;
+ }
+ else
+ {
+ return FALSE;
+ }
+}
+
+/*
+ * Function name: proto_register_cipmotion
+ *
+ * Purpose: Register the protocol with Wireshark, a script will add this protocol
+ * to the list of protocols during the build process. This function is where the
+ * header fields and subtree identifiers are registered.
+ *
+ * Returns: void
+ */
+void
+proto_register_cipmotion(void)
+{
+ /* This is a list of header fields that can be used in the dissection or
+ * to use in a filter expression */
+ static hf_register_info header_fields[] =
+ {
+ /* Connection format header field, the first byte in the message which
+ * determines if the message is fixed or variable, controller to device,
+ * device to controller, etc. */
+ { &hf_cip_format, { "Connection Format", "cipm.format", FT_UINT8, BASE_DEC, VALS(cip_con_format_vals), 0, "Message connection format", HFILL }},
+
+ /* Connection format revision header field */
+ { &hf_cip_revision, { "Format Revision", "cipm.revision", FT_UINT8, BASE_DEC, NULL, 0, "Message format revision", HFILL }},
+
+ { &hf_cip_class1_seqnum, { "CIP Class 1 Sequence Number", "cipm.class1seqnum", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }},
+ { &hf_cip_updateid, { "Update Id", "cipm.updateid", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Transaction Number", HFILL }},
+ { &hf_cip_instance_cnt, { "Instance Count", "cipm.instancecount", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }},
+ { &hf_cip_last_update, { "Last Update Id", "cipm.lastupdate", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }},
+ { &hf_cip_node_status, { "Node Status", "cipm.nodestatus", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_node_control, { "Node Control", "cipm.nodecontrol", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_node_control_remote, { "Remote Control", "cipm.remote", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x01, "Node Control: Remote Control", HFILL}},
+ { &hf_cip_node_control_sync, { "Sync Control", "cipm.sync", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x02, "Node Control: Synchronous Operation", HFILL}},
+ { &hf_cip_node_data_valid, { "Data Valid", "cipm.valid", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x04, "Node Control: Data Valid", HFILL}},
+ { &hf_cip_node_fault_reset, { "Fault Reset", "cipm.fltrst", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08, "Node Control: Device Fault Reset", HFILL}},
+ { &hf_cip_node_device_faulted, { "Faulted", "cipm.flt", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08, "Node Control: Device Faulted", HFILL}},
+ { &hf_cip_node_fltalarms, { "Node Faults and Alarms", "cipm.fltalarms", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }},
+ { &hf_cip_time_data_set, { "Time Data Set", "cipm.timedataset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_time_data_stamp, { "Time Stamp", "cipm.time.stamp", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_STAMP, "Time Data Set: Time Stamp", HFILL}},
+ { &hf_cip_time_data_offset, { "Time Offset", "cipm.time.offset", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_OFFSET, "Time Data Set: Time Offset", HFILL}},
+ { &hf_cip_time_data_diag, { "Time Update Diagnostics", "cipm.time.update", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_UPDATE_DIAGNOSTICS, "Time Data Set: Time Update Diagnostics", HFILL}},
+ { &hf_cip_time_data_time_diag, { "Time Diagnostics", "cipm.time.diag", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_DIAGNOSTICS, "Time Data Set: Time Diagnostics", HFILL}},
+
+ { &hf_cip_cont_time_stamp, { "Controller Time Stamp", "cipm.ctrltimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Controller Time Stamp", HFILL}},
+ { &hf_cip_cont_time_offset, { "Controller Time Offset", "cipm.ctrltimeoffser", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Controller Time Offset", HFILL}},
+ { &hf_cip_data_rx_time_stamp, { "Data Received Time Stamp", "cipm.rxtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Data Received Time Stamp", HFILL}},
+ { &hf_cip_data_tx_time_stamp, { "Data Transmit Time Stamp", "cipm.txtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Data Transmit Time Offset", HFILL}},
+ { &hf_cip_devc_time_stamp, { "Device Time Stamp", "cipm.devctimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Device Time Stamp", HFILL} },
+ { &hf_cip_devc_time_offset, { "Device Time Offset", "cipm.devctimeoffser", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Device Time Offset", HFILL}},
+ { &hf_cip_lost_update, { "Lost Updates", "cipm.lostupdates", FT_UINT8, BASE_DEC, NULL, 0, "Time Data Set: Lost Updates", HFILL}},
+ { &hf_cip_late_update, { "Lost Updates", "cipm.lateupdates", FT_UINT8, BASE_DEC, NULL, 0, "Time Data Set: Late Updates", HFILL}},
+
+ { &hf_cip_motor_cntrl, { "Control Mode", "cipm.ctrlmode", FT_UINT8, BASE_DEC, VALS(cip_motor_control_vals), 0, "Cyclic Data Block: Motor Control Mode", HFILL }},
+ { &hf_cip_fdbk_config, { "Feedback Config", "cipm.fdbkcfg", FT_UINT8, BASE_DEC, VALS(cip_fdbk_config_vals), 0, "Cyclic Data Block: Feedback Configuration", HFILL }},
+ { &hf_cip_axis_control, { "Axis Control", "cipm.axisctrl", FT_UINT8, BASE_DEC, VALS(cip_axis_control_vals), 0, "Cyclic Data Block: Axis Control", HFILL }},
+ { &hf_cip_control_status, { "Control Status", "cipm.csts", FT_UINT8, BASE_DEC, VALS(cip_control_status_vals), 0, "Cyclic Data Block: Axis Control Status", HFILL }},
+ { &hf_cip_axis_response, { "Axis Response", "cipm.axisresp", FT_UINT8, BASE_DEC, VALS(cip_axis_response_vals), 0, "Cyclic Data Block: Axis Response", HFILL }},
+ { &hf_cip_axis_resp_stat, { "Response Status", "cipm.respstat", FT_UINT8, BASE_DEC, VALS(cip_gs_vals), 0, "Cyclic Data Block: Axis Response Status", HFILL }},
+ { &hf_cip_group_sync, { "Group Sync Status", "cipm.syncstatus", FT_UINT8, BASE_HEX, VALS(cip_sync_status_vals), 0, NULL, HFILL }},
+ { &hf_cip_cmd_data_set, { "Command Data Set", "cipm.cmdset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_act_data_set, { "Actual Data Set", "cipm.actset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_sts_data_set, { "Status Data Set", "cipm.stsset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_cmd_data_pos_cmd, { "Command Position", "cipm.cmd.pos", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION, "Command Data Set: Command Position", HFILL}},
+ { &hf_cip_cmd_data_vel_cmd, { "Command Velocity", "cipm.cmd.vel", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY, "Command Data Set: Command Velocity", HFILL}},
+ { &hf_cip_cmd_data_acc_cmd, { "Command Acceleration", "cipm.cmd.acc", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION, "Command Data Set: Command Acceleration", HFILL}},
+ { &hf_cip_cmd_data_trq_cmd, { "Command Torque", "cipm.cmd.trq", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE, "Command Data Set: Command Torque", HFILL}},
+ { &hf_cip_cmd_data_pos_trim_cmd, { "Position Trim", "cipm.cmd.postrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION_TRIM, "Command Data Set: Position Trim", HFILL}},
+ { &hf_cip_cmd_data_vel_trim_cmd, { "Velocity Trim", "cipm.cmd.veltrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY_TRIM, "Command Data Set: Velocity Trim", HFILL}},
+ { &hf_cip_cmd_data_acc_trim_cmd, { "Acceleration Trim", "cipm.cmd.acctrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION_TRIM, "Command Data Set: Acceleration Trim", HFILL}},
+ { &hf_cip_cmd_data_trq_trim_cmd, { "Torque Trim", "cipm.cmd.trqtrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE_TRIM, "Command Data Set: Torque Trim", HFILL}},
+
+ { &hf_cip_act_data_pos, { "Actual Position", "cipm.act.pos", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_POSITION, "Acutal Data Set: Actual Position", HFILL}},
+ { &hf_cip_act_data_vel, { "Actual Velocity", "cipm.act.vel", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VELOCITY, "Actual Data Set: Actual Velocity", HFILL}},
+ { &hf_cip_act_data_acc, { "Actual Acceleration", "cipm.act.acc", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_ACCELERATION, "Actual Data Set: Actual Acceleration", HFILL}},
+ { &hf_cip_act_data_trq, { "Actual Torque", "cipm.act.trq", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_TORQUE, "Actual Data Set: Actual Torque", HFILL}},
+ { &hf_cip_act_data_crnt, { "Actual Current", "cipm.act.crnt", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_CURRENT, "Actual Data Set: Actual Current", HFILL}},
+ { &hf_cip_act_data_vltg, { "Actual Voltage", "cipm.act.vltg", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VOLTAGE, "Actual Data Set: Actual Voltage", HFILL}},
+ { &hf_cip_act_data_fqcy, { "Actual Frequency", "cipm.act.fqcy", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_FREQUENCY, "Actual Data Set: Actual Frequency", HFILL}},
+
+ { &hf_cip_axis_fault, { "Axis Fault Code", "cipm.fault.code", FT_UINT8, BASE_DEC, NULL, 0, "Status Data Set: Fault Code", HFILL }},
+ { &hf_cip_fault_type, { "Axis Fault Type", "cipm.flttype", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Type", HFILL}},
+ { &hf_cip_fault_sub_code, { "Axis Fault Sub Code", "cipm.fltsubcode", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Sub Code", HFILL}},
+ { &hf_cip_fault_action, { "Axis Fault Action", "cipm.fltaction", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Action", HFILL}},
+ { &hf_cip_fault_time_stamp, { "Axis Fault Time Stamp", "cipm.flttimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Time Stamp", HFILL}},
+ { &hf_cip_alarm_type, { "Axis Fault Type", "cipm.alarmtype", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Type", HFILL}},
+ { &hf_cip_alarm_sub_code, { "Axis Alarm Sub Code", "cipm.alarmsubcode", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Sub Code", HFILL} },
+ { &hf_cip_alarm_state, { "Axis Alarm State", "cipm.alarmstate", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm State", HFILL }},
+ { &hf_cip_alarm_time_stamp, { "Axis Fault Time Stamp", "cipm.alarmtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Time Stamp", HFILL}},
+ { &hf_cip_axis_status, { "Axis Status", "cipm.axisstatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_axis_status_mfg, { "Axis Status Mfg", "cipm.axisstatusmfg", FT_UINT32, BASE_HEX, NULL, 0, "Axis Status, Manufacturer Specific", HFILL}},
+ { &hf_cip_axis_io_status, { "Axis I/O Status", "cipm.axisiostatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_axis_io_status_mfg, { "Axis I/O Status Mfg", "cipm.axisiostatusmfg", FT_UINT32, BASE_HEX, NULL, 0, "Axis I/O Status, Manufacturer Specific", HFILL}},
+ { &hf_cip_safety_status, { "Axis Safety Status", "cipm.safetystatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL}},
+ { &hf_cip_sts_flt, { "Axis Fault Codes", "cipm.sts.flt", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_FAULT, "Status Data Set: Axis Fault Codes", HFILL}},
+ { &hf_cip_sts_alrm, { "Axis Alarm Codes", "cipm.sts.alarm", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_ALARM, "Status Data Set: Axis Alarm Codes", HFILL}},
+ { &hf_cip_sts_sts, { "Axis Status", "cipm.sts.sts", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_STATUS, "Status Data Set: Axis Status", HFILL}},
+ { &hf_cip_sts_iosts, { "Axis I/O Status", "cipm.sts.iosts", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_IO_STATUS, "Status Data Set: Axis I/O Status", HFILL}},
+ { &hf_cip_sts_safety, { "Axis Safety Status", "cipm.sts.safety", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_SAFETY, "Status Data Set: Axis Safety Status", HFILL}},
+
+ { &hf_cip_intrp, { "Interpolation Control", "cipm.intrp", FT_UINT8, BASE_DEC, VALS(cip_interpolation_vals), COMMAND_CONTROL_TARGET_UPDATE, "Cyclic Data Block: Interpolation Control", HFILL}},
+ { &hf_cip_position_data_type, { "Position Data Type", "cipm.posdatatype", FT_UINT8, BASE_DEC, VALS(cip_pos_data_type_vals), COMMAND_CONTROL_POSITION_DATA_TYPE, "Cyclic Data Block: Position Data Type", HFILL }},
+ { &hf_cip_axis_state, { "Axis State", "cipm.axste", FT_UINT8, BASE_DEC, VALS(cip_axis_state_vals), 0, "Cyclic Data Block: Axis State", HFILL}},
+ { &hf_cip_command_control, { "Command Control", "cipm.cmdcontrol", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Command Control", HFILL }},
+ { &hf_cip_cyclic_wrt_data, { "Write Data", "cipm.writedata", FT_BYTES, BASE_NONE, NULL, 0, "Cyclic Write: Data", HFILL }},
+ { &hf_cip_cyclic_rd_data, { "Read Data", "cipm.readdata", FT_BYTES, BASE_NONE, NULL, 0, "Cyclic Read: Data", HFILL }},
+ { &hf_cip_cyclic_write_blk, { "Write Block", "cipm.writeblk", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Write Block Id", HFILL }},
+ { &hf_cip_cyclic_read_blk, { "Read Block", "cipm.readblk", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Read Block Id", HFILL}},
+ { &hf_cip_cyclic_write_sts, { "Write Status", "cipm.writests", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Write Status", HFILL }},
+ { &hf_cip_cyclic_read_sts, { "Read Status", "cipm.readsts", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Read Status", HFILL }},
+ { &hf_cip_event_checking, { "Event Control", "cipm.evntchkcontrol", FT_UINT32, BASE_HEX, NULL, 0, "Event Channel: Event Checking Control", HFILL}},
+ { &hf_cip_event_ack, { "Event Acknowledgement", "cipm.evntack", FT_UINT8, BASE_DEC, NULL, 0, "Event Channel: Event Acknowledgement", HFILL} },
+ { &hf_cip_event_status, { "Event Status", "cipm.evntchkstatus", FT_UINT32, BASE_HEX, NULL, 0, "Event Channel: Event Checking Status", HFILL} },
+ { &hf_cip_event_id, { "Event Id", "cipm.evntack", FT_UINT8, BASE_DEC, NULL, 0, "Event Channel: Event Id", HFILL }},
+ { &hf_cip_event_pos, { "Event Position", "cipm.evntpos", FT_INT32, BASE_DEC, NULL, 0, "Event Channel: Event Position", HFILL} },
+ { &hf_cip_event_ts, { "Event Time Stamp", "cipm.evntimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Event Channel: Time Stamp", HFILL}},
+
+ { &hf_cip_evnt_ctrl_reg1_pos, { "Reg 1 Pos Edge", "cipm.evnt.ctrl.reg1posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Event Checking Control: Reg 1 Pos Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_reg1_neg, { "Reg 1 Neg Edge", "cipm.evnt.ctrl.reg1negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Event Checking Control: Reg 1 Neg Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_reg2_pos, { "Reg 2 Pos Edge", "cipm.evnt.ctrl.reg2posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Event Checking Control: Reg 2 Pos Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_reg2_neg, { "Reg 2 Neg Edge", "cipm.evnt.ctrl.reg2negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Event Checking Control: Reg 2 Neg Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_reg1_posrearm, { "Reg 1 Pos Rearm", "cipm.evnt.ctrl.reg1posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Event Checking Control: Reg 1 Pos Rearm", HFILL}},
+ { &hf_cip_evnt_ctrl_reg1_negrearm, { "Reg 1 Neg Rearm", "cipm.evnt.ctrl.reg1negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Event Checking Control: Reg 1 Neg Rearm", HFILL}},
+ { &hf_cip_evnt_ctrl_reg2_posrearm, { "Reg 2 Pos Rearm", "cipm.evnt.ctrl.reg2posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Event Checking Control: Reg 2 Pos Rearm", HFILL}},
+ { &hf_cip_evnt_ctrl_reg2_negrearm, { "Reg 2 Neg Rearm", "cipm.evnt.ctrl.reg2negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Event Checking Control: Reg 2 Neg Rearm", HFILL}},
+ { &hf_cip_evnt_ctrl_marker_pos, { "Marker Pos Edge", "cipm.evnt.ctrl.mrkrpos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Event Checking Control: Marker Pos Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_marker_neg, { "Marker Neg Edge", "cipm.evnt.ctrl.mrkrneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Event Checking Control: Marker Neg Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_home_pos, { "Home Pos Edge", "cipm.evnt.ctrl.homepos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Event Checking Control: Home Pos Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_home_neg, { "Home Neg Edge", "cipm.evnt.ctrl.homeneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Event Checking Control: Home Neg Edge", HFILL}},
+ { &hf_cip_evnt_ctrl_home_pp, { "Home-Switch-Marker Plus Plus", "cipm.evnt.ctrl.homepp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000, "Event Checking Control: Home-Switch-Marker Plus Plus", HFILL}},
+ { &hf_cip_evnt_ctrl_home_pm, { "Home-Switch-Marker Plus Minus", "cipm.evnt.ctrl.homepm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000, "Event Checking Control: Home-Switch-Marker Plus Minus", HFILL}},
+ { &hf_cip_evnt_ctrl_home_mp,{ "Home-Switch-Marker Minus Plus", "cipm.evnt.ctrl.homemp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000, "Event Checking Control: Home-Switch-Marker Minus Plus", HFILL}},
+ { &hf_cip_evnt_ctrl_home_mm, { "Home-Switch-Marker Minus Minus", "cipm.evnt.ctrl.homemm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000, "Event Checking Control: Home-Switch-Marker Minus Minus", HFILL}},
+ { &hf_cip_evnt_ctrl_acks, { "Event Acknowledge Blocks", "cipm.evnt.ctrl.acks", FT_UINT32, BASE_DEC, NULL, 0x70000000, "Event Checking Control: Event Acknowledge Blocks", HFILL}},
+ { &hf_cip_evnt_extend_format, { "Extended Event Format", "cipm.evnt.extend", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x80000000, "Event Checking Control: Extended Event Format", HFILL}},
+
+ { &hf_cip_evnt_sts_reg1_pos,{ "Reg 1 Pos Edge", "cipm.evnt.sts.reg1posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Event Checking Status: Reg 1 Pos Edge", HFILL}},
+ { &hf_cip_evnt_sts_reg1_neg, { "Reg 1 Neg Edge", "cipm.evnt.sts.reg1negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Event Checking Status: Reg 1 Neg Edge", HFILL }},
+ { &hf_cip_evnt_sts_reg2_pos, { "Reg 2 Pos Edge", "cipm.evnt.sts.reg2posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Event Checking Status: Reg 2 Pos Edge", HFILL}},
+ { &hf_cip_evnt_sts_reg2_neg, { "Reg 2 Neg Edge", "cipm.evnt.sts.reg2negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Event Checking Status: Reg 2 Neg Edge", HFILL}},
+ { &hf_cip_evnt_sts_reg1_posrearm, { "Reg 1 Pos Rearm", "cipm.evnt.sts.reg1posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Event Checking Status: Reg 1 Pos Rearm", HFILL}},
+ { &hf_cip_evnt_sts_reg1_negrearm, { "Reg 1 Neg Rearm", "cipm.evnt.sts.reg1negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Event Checking Status: Reg 1 Neg Rearm", HFILL}},
+ { &hf_cip_evnt_sts_reg2_posrearm, { "Reg 2 Pos Rearm", "cipm.evnt.sts.reg2posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Event Checking Status: Reg 2 Pos Rearm", HFILL}},
+ { &hf_cip_evnt_sts_reg2_negrearm, { "Reg 2 Neg Rearm", "cipm.evnt.sts.reg2negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Event Checking Status: Reg 2 Neg Rearm", HFILL}},
+ { &hf_cip_evnt_sts_marker_pos, { "Marker Pos Edge", "cipm.evnt.sts.mrkrpos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Event Checking Status: Marker Pos Edge", HFILL}},
+ { &hf_cip_evnt_sts_marker_neg, { "Marker Neg Edge", "cipm.evnt.sts.mrkrneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Event Checking Status: Marker Neg Edge", HFILL }},
+ { &hf_cip_evnt_sts_home_pos, { "Home Pos Edge", "cipm.evnt.sts.homepos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Event Checking Status: Home Pos Edge", HFILL}},
+ { &hf_cip_evnt_sts_home_neg, { "Home Neg Edge", "cipm.evnt.sts.homeneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Event Checking Status: Home Neg Edge", HFILL }},
+ { &hf_cip_evnt_sts_home_pp, { "Home-Switch-Marker Plus Plus", "cipm.evnt.sts.homepp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000, "Event Checking Status: Home-Switch-Marker Plus Plus", HFILL}},
+ { &hf_cip_evnt_sts_home_pm, { "Home-Switch-Marker Plus Minus", "cipm.evnt.sts.homepm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000, "Event Checking Status: Home-Switch-Marker Plus Minus", HFILL}},
+ { &hf_cip_evnt_sts_home_mp, { "Home-Switch-Marker Minus Plus", "cipm.evnt.sts.homemp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000, "Event Checking Status: Home-Switch-Marker Minus Plus", HFILL}},
+ { &hf_cip_evnt_sts_home_mm, { "Home-Switch-Marker Minus Minus", "cipm.evnt.sts.homemm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000, "Event Checking Status: Home-Switch-Marker Minus Minus", HFILL}},
+ { &hf_cip_evnt_sts_nfs, { "Event Notification Blocks", "cipm.evnt.sts.nfs", FT_UINT32, BASE_DEC, NULL, 0x70000000, "Event Checking Status: Event Notification Blocks", HFILL}},
+
+ { &hf_cip_evnt_sts_stat, { "Event Status", "cipm.evnt.stat", FT_UINT8, BASE_DEC, VALS(cip_gs_vals), 0, "Event Data Block: Event Status", HFILL }},
+ { &hf_cip_evnt_type, { "Event Type", "cipm.evnt.type", FT_UINT8, BASE_DEC, VALS(cip_event_type_vals), 0, "Event Data Block: Event Type", HFILL}},
+ { &hf_cip_svc_code, { "Service Code", "cipm.svc.code", FT_UINT8, BASE_DEC, VALS(cip_sc_vals), 0, "Service Data Block: Service Code", HFILL}},
+ { &hf_cip_svc_sts, { "General Status", "cipm.svc.sts", FT_UINT8, BASE_DEC, VALS(cip_gs_vals), 0, "Service Data Block: General Status", HFILL }},
+ { &hf_cip_svc_transction, { "Transaction Id", "cipm.svc.tranid", FT_UINT8, BASE_DEC, NULL, 0, "Service Data Block: Transaction Id", HFILL }},
+ { &hf_cip_svc_ext_status, { "Extended Status", "cipm.svc.extstatus", FT_UINT8, BASE_DEC, NULL, 0, "Service Data Block: Extended Status", HFILL }},
+ { &hf_cip_svc_data, { "Service Data", "cipm.svc.data", FT_BYTES, BASE_NONE, NULL, 0, "Service Data Block: Data", HFILL }},
+ { &hf_cip_attribute_data, { "Attribute Data", "cipm.attrdata", FT_BYTES, BASE_NONE, NULL, 0, "Attribute Service: Data", HFILL }},
+ { &hf_cip_ptp_grandmaster, { "Grandmaster", "cipm.grandmaster", FT_UINT64, BASE_HEX, NULL, 0, "Group Sync: Grandmaster Id", HFILL}},
+
+ { &hf_cip_svc_get_axis_attr_sts, { "Attribute Status", "cipm.getaxisattr.sts", FT_UINT8, BASE_DEC, VALS(cip_gs_vals), 0, "Service Channel: Get Axis Attribute List Response Status", HFILL }},
+ { &hf_get_axis_attr_list_attribute_cnt, { "Number of attributes", "cipm.getaxisattr.cnt", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Attribute Count", HFILL}},
+ { &hf_get_axis_attr_list_attribute_id, { "Attribute ID", "cipm.getaxisattr.id", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Attribute ID", HFILL}},
+ { &hf_get_axis_attr_list_dimension, { "Dimension", "cipm.getaxisattr.dimension", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Dimension", HFILL}},
+ { &hf_get_axis_attr_list_element_size, { "Element size", "cipm.getaxisattr.element_size", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Element Size", HFILL}},
+ { &hf_get_axis_attr_list_start_index, { "Start index", "cipm.getaxisattr.start_index", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Start index", HFILL}},
+ { &hf_get_axis_attr_list_data_elements, { "Data elements", "cipm.getaxisattr.data_elements", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Data elements", HFILL}},
+
+ { &hf_cip_svc_set_axis_attr_sts, { "Attribute Status", "cipm.setaxisattr.sts", FT_UINT8, BASE_DEC, VALS(cip_gs_vals), 0, "Service Channel: Set Axis Attribute List Response Status", HFILL }},
+ { &hf_set_axis_attr_list_attribute_cnt, { "Number of attributes", "cipm.setaxisattr.cnt", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Attribute Count", HFILL}},
+ { &hf_set_axis_attr_list_attribute_id, { "Attribute ID", "cipm.setaxisattr.id", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Attribute ID", HFILL}},
+ { &hf_set_axis_attr_list_dimension, { "Dimension", "cipm.setaxisattr.dimension", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Dimension", HFILL}},
+ { &hf_set_axis_attr_list_element_size, { "Element size", "cipm.setaxisattr.element_size", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Element Size", HFILL}},
+ { &hf_set_axis_attr_list_start_index, { "Start index", "cipm.setaxisattr.start_index", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Start index", HFILL}},
+ { &hf_set_axis_attr_list_data_elements, { "Data elements", "cipm.setaxisattr.data_elements", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Data elements", HFILL}},
+
+ { &hf_var_devce_instance, { "Instance Number", "cipm.var_devce.header.instance", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Instance Number", HFILL}},
+ { &hf_var_devce_instance_block_size, { "Instance Block Size", "cipm.var_devce.header.instance_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Instance Block Size", HFILL}},
+ { &hf_var_devce_cyclic_block_size, { "Cyclic Block Size", "cipm.var_devce.header.cyclic_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Cyclic Block Size", HFILL}},
+ { &hf_var_devce_cyclic_data_block_size, { "Cyclic Data Block Size", "cipm.var_devce.header.cyclic_data_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Cyclic Data Block Size", HFILL}},
+ { &hf_var_devce_cyclic_rw_block_size, { "Cyclic Read/Write Block Size", "cipm.var_devce.header.cyclic_rw_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Cyclic Read/Write Block Size", HFILL}},
+ { &hf_var_devce_event_block_size, { "Event Block Size", "cipm.var_devce.header.event_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Event Block Size", HFILL}},
+ { &hf_var_devce_service_block_size, { "Service Block Size", "cipm.var_devce.header.service_block_size", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Service Block Size", HFILL}},
+
+ { &hf_cip_axis_alarm, { "Axis Alarm Code", "cipm.alarm.code", FT_UINT8, BASE_DEC, NULL, 0, "Status Data Set: Alarm Code", HFILL }},
+ { &hf_cip_axis_sts_local_ctrl, { "Local Control", "cipm.axis.local", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Axis Status Data Set: Local Contol", HFILL }},
+ { &hf_cip_axis_sts_alarm, { "Alarm", "cipm.axis.alarm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Axis Status Data Set: Alarm", HFILL }},
+ { &hf_cip_axis_sts_dc_bus, { "DC Bus", "cipm.axis.bus", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Axis Status Data Set: DC Bus", HFILL }},
+ { &hf_cip_axis_sts_pwr_struct, { "Power Struct", "cipm.axis.pwr", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Axis Status Data Set: Power Struct", HFILL }},
+ { &hf_cip_axis_sts_tracking, { "Tracking", "cipm.axis.track", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020, "Axis Status Data Set: Tracking", HFILL }},
+ { &hf_cip_axis_sts_pos_lock, { "Pos Lock", "cipm.axis.poslock", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000040, "Axis Status Data Set: Pos Lock", HFILL }},
+ { &hf_cip_axis_sts_vel_lock, { "Vel Lock", "cipm.axis.vellock", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080, "Axis Status Data Set: Vel Lock", HFILL }},
+ { &hf_cip_axis_sts_vel_standstill, { "Standstill", "cipm.axis.nomo", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Axis Status Data Set: Standstill", HFILL }},
+ { &hf_cip_axis_sts_vel_threshold, { "Vel Threshold", "cipm.axis.vthresh", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Axis Status Data Set: Vel Threshold", HFILL }},
+ { &hf_cip_axis_sts_vel_limit, { "Vel Limit", "cipm.axis.vlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Axis Status Data Set: Vel Limit", HFILL }},
+ { &hf_cip_axis_sts_acc_limit, { "Acc Limit", "cipm.axis.alim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Axis Status Data Set: Acc Limit", HFILL }},
+ { &hf_cip_axis_sts_dec_limit, { "Dec Limit", "cipm.axis.dlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00001000, "Axis Status Data Set: Dec Limit", HFILL }},
+ { &hf_cip_axis_sts_torque_threshold, { "Torque Threshold", "cipm.axis.tthresh", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00002000, "Axis Status Data Set: Torque Threshold", HFILL }},
+ { &hf_cip_axis_sts_torque_limit, { "Torque Limit", "cipm.axis.tlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00004000, "Axis Status Data Set: Torque Limit", HFILL }},
+ { &hf_cip_axis_sts_cur_limit, { "Current Limit", "cipm.axis.ilim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00008000, "Axis Status Data Set: Current Limit", HFILL }},
+ { &hf_cip_axis_sts_therm_limit, { "Thermal Limit", "cipm.axis.hot", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Axis Status Data Set: Thermal Limit", HFILL }},
+ { &hf_cip_axis_sts_feedback_integ, { "Feedback Integrity", "cipm.axis.fgood", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Axis Status Data Set: Feedback Integrity", HFILL }},
+ { &hf_cip_axis_sts_shutdown, { "Shutdown", "cipm.axis.sdwn", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Axis Status Data Set: Shutdown", HFILL }},
+ { &hf_cip_axis_sts_in_process, { "In Process", "cipm.axis.inp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Axis Status Data Set: In Process", HFILL }},
+
+ { &hf_cip_act_pos, { "Actual Position", "cipm.actpos", FT_INT32, BASE_DEC, NULL, 0, "Cyclic Data Set: Actual Position", HFILL }},
+ { &hf_cip_act_vel, { "Actual Velocity", "cipm.actvel", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Velocity", HFILL }},
+ { &hf_cip_act_accel, { "Actual Acceleration", "cipm.actaccel", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Acceleration", HFILL }},
+ { &hf_cip_act_trq, { "Actual Torque", "cipm.acttrq", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Torque", HFILL }},
+ { &hf_cip_act_crnt, { "Actual Current", "cipm.actcrnt", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Current", HFILL }},
+ { &hf_cip_act_volts, { "Actual Volts", "cipm.actvolts", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Volts", HFILL }},
+ { &hf_cip_act_freq, { "Actual Frequency", "cipm.actfreq", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Frequency", HFILL }},
+ { &hf_cip_pos_cmd, { "Position Command", "cipm.posfcmd", FT_DOUBLE, BASE_NONE, NULL, 0, "Cyclic Data Set: Position Command (LREAL)", HFILL }},
+ { &hf_cip_pos_cmd_int, { "Position Command", "cipm.posicmd", FT_INT32, BASE_DEC, NULL, 0, "Cyclic Data Set: Position Command (DINT)", HFILL }},
+ { &hf_cip_vel_cmd, { "Velocity Command", "cipm.velcmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Velocity Command", HFILL }},
+ { &hf_cip_accel_cmd, { "Acceleration Command", "cipm.accelcmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Acceleration Command", HFILL }},
+ { &hf_cip_trq_cmd, { "Torque Command", "cipm.torquecmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Torque Command", HFILL }},
+ { &hf_cip_pos_trim, { "Position Trim", "cipm.postrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Position Trim", HFILL }},
+ { &hf_cip_vel_trim, { "Velocity Trim", "cipm.veltrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Velocity Trim", HFILL }},
+ { &hf_cip_accel_trim, { "Acceleration Trim", "cipm.acceltrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Acceleration Trim", HFILL }},
+ { &hf_cip_trq_trim, { "Torque Trim", "cipm.trqtrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Torque Trim", HFILL }}
+ };
+
+ /* Setup protocol subtree array, these will help Wireshark remember
+ * if the subtree should be expanded as the user moves through packets */
+ static gint *cip_subtree[] = {
+ &ett_cipmotion,
+ &ett_cont_dev_header,
+ &ett_node_control,
+ &ett_node_status,
+ &ett_time_data_set,
+ &ett_inst_data_header,
+ &ett_cyclic_data_block,
+ &ett_control_mode,
+ &ett_feedback_config,
+ &ett_command_data_set,
+ &ett_actual_data_set,
+ &ett_status_data_set,
+ &ett_interp_control,
+ &ett_cyclic_rd_wt,
+ &ett_event,
+ &ett_event_check_ctrl,
+ &ett_event_check_sts,
+ &ett_service,
+ &ett_get_axis_attribute,
+ &ett_set_axis_attribute,
+ &ett_get_axis_attr_list,
+ &ett_set_axis_attr_list,
+ &ett_group_sync,
+ &ett_axis_status_set,
+ &ett_command_control
+ };
+
+ /* Create a CIP Motion protocol handle */
+ proto_cipmotion = proto_register_protocol(
+ "Common Industrial Protocol, Motion", /* Full name of protocol */
+ "CIP Motion", /* Short name of protocol */
+ "cipm"); /* Abbreviated name of protocol */
+
+ /* Register the header fields with the protocol */
+ proto_register_field_array(proto_cipmotion, header_fields, array_length(header_fields));
+
+ /* Register the subtrees for the protocol dissection */
+ proto_register_subtree_array(cip_subtree, array_length(cip_subtree));
+}
+
+/*
+ * Function name: proto_reg_handoff_cipmotion
+ *
+ * Purpose: This function will setup the automatic dissection of the CIP Motion datagram,
+ * it is called by Wireshark when the protocol is registered
+ *
+ * Returns: void
+ */
+void
+proto_reg_handoff_cipmotion(void)
+{
+ heur_dissector_add("enip.cpf.conndata", dissect_cipmotion_heur, proto_cipmotion);
+}
+
+
+/*
+* Editor modelines - http://www.wireshark.org/tools/modelines.html
+*
+* Local variables:
+* c-basic-offset: 3
+* tab-width: 8
+* indent-tabs-mode: nil
+* End:
+*
+* ex: set shiftwidth=3 tabstop=8 expandtab:
+* :indentSize=3:tabSize=8:noTabs=true:
+*/