summaryrefslogtreecommitdiff
path: root/epan/reedsolomon.c
diff options
context:
space:
mode:
authorAnders Broman <anders.broman@ericsson.com>2006-11-25 13:03:48 +0000
committerAnders Broman <anders.broman@ericsson.com>2006-11-25 13:03:48 +0000
commit1509562c0f19db5004b45d67e14c140edfd695b9 (patch)
treedbd938e73eb5e0a53f5b94c790e247d832ea992b /epan/reedsolomon.c
parent643dc7099d3d3cafa53e46c7c4941fb9401d4f14 (diff)
downloadwireshark-1509562c0f19db5004b45d67e14c140edfd695b9.tar.gz
From Julian Cable:
New dissector for ETSI DCP (ETSI TS 102 821). Code rearranged to look more like other Wireshark dissectors and some warnings/errors on Windows fixed. svn path=/trunk/; revision=19981
Diffstat (limited to 'epan/reedsolomon.c')
-rw-r--r--epan/reedsolomon.c672
1 files changed, 672 insertions, 0 deletions
diff --git a/epan/reedsolomon.c b/epan/reedsolomon.c
new file mode 100644
index 0000000000..9d2b2aa9ad
--- /dev/null
+++ b/epan/reedsolomon.c
@@ -0,0 +1,672 @@
+/*
+ * Reed-Solomon coding and decoding
+ * Phil Karn (karn@ka9q.ampr.org) September 1996
+ * Separate CCSDS version create Dec 1998, merged into this version May 1999
+ *
+ * This file is derived from my generic RS encoder/decoder, which is
+ * in turn based on the program "new_rs_erasures.c" by Robert
+ * Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy
+ * (harit@spectra.eng.hawaii.edu), Aug 1995
+
+ * Copyright 1999 Phil Karn, KA9Q
+ * May be used under the terms of the GNU public license
+ */
+#include <stdio.h>
+#include "reedsolomon.h"
+
+#ifdef CCSDS
+/* CCSDS field generator polynomial: 1+x+x^2+x^7+x^8 */
+int Pp[MM+1] = { 1, 1, 1, 0, 0, 0, 0, 1, 1 };
+
+#else /* not CCSDS */
+/* MM, KK, B0, PRIM are user-defined in rs.h */
+
+/* Primitive polynomials - see Lin & Costello, Appendix A,
+ * and Lee & Messerschmitt, p. 453.
+ */
+#if(MM == 2)/* Admittedly silly */
+int Pp[MM+1] = { 1, 1, 1 };
+
+#elif(MM == 3)
+/* 1 + x + x^3 */
+int Pp[MM+1] = { 1, 1, 0, 1 };
+
+#elif(MM == 4)
+/* 1 + x + x^4 */
+int Pp[MM+1] = { 1, 1, 0, 0, 1 };
+
+#elif(MM == 5)
+/* 1 + x^2 + x^5 */
+int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 };
+
+#elif(MM == 6)
+/* 1 + x + x^6 */
+int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 };
+
+#elif(MM == 7)
+/* 1 + x^3 + x^7 */
+int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 };
+
+#elif(MM == 8)
+/* 1+x^2+x^3+x^4+x^8 */
+int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 };
+
+#elif(MM == 9)
+/* 1+x^4+x^9 */
+int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
+
+#elif(MM == 10)
+/* 1+x^3+x^10 */
+int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
+
+#elif(MM == 11)
+/* 1+x^2+x^11 */
+int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+
+#elif(MM == 12)
+/* 1+x+x^4+x^6+x^12 */
+int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
+
+#elif(MM == 13)
+/* 1+x+x^3+x^4+x^13 */
+int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+
+#elif(MM == 14)
+/* 1+x+x^6+x^10+x^14 */
+int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
+
+#elif(MM == 15)
+/* 1+x+x^15 */
+int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+
+#elif(MM == 16)
+/* 1+x+x^3+x^12+x^16 */
+int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
+
+#else
+#error "Either CCSDS must be defined, or MM must be set in range 2-16"
+#endif
+
+#endif
+
+#ifdef STANDARD_ORDER /* first byte transmitted is index of x**(KK-1) in message poly*/
+ /* definitions used in the encode routine*/
+ #define MESSAGE(i) data[KK-(i)-1]
+ #define REMAINDER(i) bb[NN-KK-(i)-1]
+ /* definitions used in the decode routine*/
+ #define RECEIVED(i) data[NN-1-(i)]
+ #define ERAS_INDEX(i) (NN-1-eras_pos[i])
+ #define INDEX_TO_POS(i) (NN-1-(i))
+#else /* first byte transmitted is index of x**0 in message polynomial*/
+ /* definitions used in the encode routine*/
+ #define MESSAGE(i) data[i]
+ #define REMAINDER(i) bb[i]
+ /* definitions used in the decode routine*/
+ #define RECEIVED(i) data[i]
+ #define ERAS_INDEX(i) eras_pos[i]
+ #define INDEX_TO_POS(i) i
+#endif
+
+
+/* This defines the type used to store an element of the Galois Field
+ * used by the code. Make sure this is something larger than a char if
+ * if anything larger than GF(256) is used.
+ *
+ * Note: unsigned char will work up to GF(256) but int seems to run
+ * faster on the Pentium.
+ */
+typedef int gf;
+
+/* index->polynomial form conversion table */
+static gf Alpha_to[NN + 1];
+
+/* Polynomial->index form conversion table */
+static gf Index_of[NN + 1];
+
+/* No legal value in index form represents zero, so
+ * we need a special value for this purpose
+ */
+#define A0 (NN)
+
+/* Generator polynomial g(x) in index form */
+static gf Gg[NN - KK + 1];
+
+static int RS_init; /* Initialization flag */
+
+/* Compute x % NN, where NN is 2**MM - 1,
+ * without a slow divide
+ */
+/* static inline gf*/
+static gf
+modnn(int x)
+{
+ while (x >= NN) {
+ x -= NN;
+ x = (x >> MM) + (x & NN);
+ }
+ return x;
+}
+
+#define min_(a,b) ((a) < (b) ? (a) : (b))
+
+#define CLEAR(a,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = 0;\
+}
+
+#define COPY(a,b,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = (b)[ci];\
+}
+
+#define COPYDOWN(a,b,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = (b)[ci];\
+}
+
+static void init_rs(void);
+
+#ifdef CCSDS
+/* Conversion lookup tables from conventional alpha to Berlekamp's
+ * dual-basis representation. Used in the CCSDS version only.
+ * taltab[] -- convert conventional to dual basis
+ * tal1tab[] -- convert dual basis to conventional
+
+ * Note: the actual RS encoder/decoder works with the conventional basis.
+ * So data is converted from dual to conventional basis before either
+ * encoding or decoding and then converted back.
+ */
+static unsigned char taltab[NN+1],tal1tab[NN+1];
+
+static unsigned char tal[] = { 0x8d, 0xef, 0xec, 0x86, 0xfa, 0x99, 0xaf, 0x7b };
+
+/* Generate conversion lookup tables between conventional alpha representation
+ * (@**7, @**6, ...@**0)
+ * and Berlekamp's dual basis representation
+ * (l0, l1, ...l7)
+ */
+static void
+gen_ltab(void)
+{
+ int i,j,k;
+
+ for(i=0;i<256;i++){/* For each value of input */
+ taltab[i] = 0;
+ for(j=0;j<8;j++) /* for each column of matrix */
+ for(k=0;k<8;k++){ /* for each row of matrix */
+ if(i & (1<<k))
+ taltab[i] ^= tal[7-k] & (1<<j);
+ }
+ tal1tab[taltab[i]] = i;
+ }
+}
+#endif /* CCSDS */
+
+#if PRIM != 1
+static int Ldec;/* Decrement for aux location variable in Chien search */
+
+static void
+gen_ldec(void)
+{
+ for(Ldec=1;(Ldec % PRIM) != 0;Ldec+= NN)
+ ;
+ Ldec /= PRIM;
+}
+#else
+#define Ldec 1
+#endif
+
+/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
+ lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
+ polynomial form -> index form index_of[j=alpha**i] = i
+ alpha=2 is the primitive element of GF(2**m)
+ HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
+ Let @ represent the primitive element commonly called "alpha" that
+ is the root of the primitive polynomial p(x). Then in GF(2^m), for any
+ 0 <= i <= 2^m-2,
+ @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
+ of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
+ example the polynomial representation of @^5 would be given by the binary
+ representation of the integer "alpha_to[5]".
+ Similarily, index_of[] can be used as follows:
+ As above, let @ represent the primitive element of GF(2^m) that is
+ the root of the primitive polynomial p(x). In order to find the power
+ of @ (alpha) that has the polynomial representation
+ a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ we consider the integer "i" whose binary representation with a(0) being LSB
+ and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
+ "index_of[i]". Now, @^index_of[i] is that element whose polynomial
+ representation is (a(0),a(1),a(2),...,a(m-1)).
+ NOTE:
+ The element alpha_to[2^m-1] = 0 always signifying that the
+ representation of "@^infinity" = 0 is (0,0,0,...,0).
+ Similarily, the element index_of[0] = A0 always signifying
+ that the power of alpha which has the polynomial representation
+ (0,0,...,0) is "infinity".
+
+*/
+
+static void
+generate_gf(void)
+{
+ register int i, mask;
+
+ mask = 1;
+ Alpha_to[MM] = 0;
+ for (i = 0; i < MM; i++) {
+ Alpha_to[i] = mask;
+ Index_of[Alpha_to[i]] = i;
+ /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
+ if (Pp[i] != 0)
+ Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
+ mask <<= 1; /* single left-shift */
+ }
+ Index_of[Alpha_to[MM]] = MM;
+ /*
+ * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
+ * poly-repr of @^i shifted left one-bit and accounting for any @^MM
+ * term that may occur when poly-repr of @^i is shifted.
+ */
+ mask >>= 1;
+ for (i = MM + 1; i < NN; i++) {
+ if (Alpha_to[i - 1] >= mask)
+ Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
+ else
+ Alpha_to[i] = Alpha_to[i - 1] << 1;
+ Index_of[Alpha_to[i]] = i;
+ }
+ Index_of[0] = A0;
+ Alpha_to[NN] = 0;
+}
+
+/*
+ * Obtain the generator polynomial of the TT-error correcting, length
+ * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
+ * ... ,(2*TT-1)
+ *
+ * Examples:
+ *
+ * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
+ * g(x) = (x+@) (x+@**2)
+ *
+ * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
+ * g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
+ */
+static void
+gen_poly(void)
+{
+ register int i, j;
+
+ Gg[0] = 1;
+ for (i = 0; i < NN - KK; i++) {
+ Gg[i+1] = 1;
+ /*
+ * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
+ * (@**(B0+i)*PRIM + x)
+ */
+ for (j = i; j > 0; j--)
+ if (Gg[j] != 0)
+ Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + (B0 + i) *PRIM)];
+ else
+ Gg[j] = Gg[j - 1];
+ /* Gg[0] can never be zero */
+ Gg[0] = Alpha_to[modnn(Index_of[Gg[0]] + (B0 + i) * PRIM)];
+ }
+ /* convert Gg[] to index form for quicker encoding */
+ for (i = 0; i <= NN - KK; i++)
+ Gg[i] = Index_of[Gg[i]];
+}
+
+
+/*
+ * take the string of symbols in data[i], i=0..(k-1) and encode
+ * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
+ * is input and bb[] is output in polynomial form. Encoding is done by using
+ * a feedback shift register with appropriate connections specified by the
+ * elements of Gg[], which was generated above. Codeword is c(X) =
+ * data(X)*X**(NN-KK)+ b(X)
+ */
+
+int
+encode_rs(dtype data[KK], dtype bb[NN-KK])
+{
+ register int i, j;
+ gf feedback;
+
+#if DEBUG >= 1 && MM != 8
+ /* Check for illegal input values */
+ for(i=0;i<KK;i++)
+ if(MESSAGE(i) > NN)
+ return -1;
+#endif
+
+ if(!RS_init)
+ init_rs();
+
+ CLEAR(bb,NN-KK);
+
+#ifdef CCSDS
+ /* Convert to conventional basis */
+ for(i=0;i<KK;i++)
+ MESSAGE(i) = tal1tab[MESSAGE(i)];
+#endif
+
+ for(i = KK - 1; i >= 0; i--) {
+ feedback = Index_of[MESSAGE(i) ^ REMAINDER(NN - KK - 1)];
+ if (feedback != A0) { /* feedback term is non-zero */
+ for (j = NN - KK - 1; j > 0; j--)
+ if (Gg[j] != A0)
+ REMAINDER(j) = REMAINDER(j - 1) ^ Alpha_to[modnn(Gg[j] + feedback)];
+ else
+ REMAINDER(j) = REMAINDER(j - 1);
+ REMAINDER(0) = Alpha_to[modnn(Gg[0] + feedback)];
+ } else { /* feedback term is zero. encoder becomes a
+ * single-byte shifter */
+ for (j = NN - KK - 1; j > 0; j--)
+ REMAINDER(j) = REMAINDER(j - 1);
+ REMAINDER(0) = 0;
+ }
+ }
+#ifdef CCSDS
+ /* Convert to l-basis */
+ for(i=0;i<NN;i++)
+ MESSAGE(i) = taltab[MESSAGE(i)];
+#endif
+
+ return 0;
+}
+
+/*
+ * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
+ * writes the codeword into data[] itself. Otherwise data[] is unaltered.
+ *
+ * Return number of symbols corrected, or -1 if codeword is illegal
+ * or uncorrectable. If eras_pos is non-null, the detected error locations
+ * are written back. NOTE! This array must be at least NN-KK elements long.
+ *
+ * First "no_eras" erasures are declared by the calling program. Then, the
+ * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
+ * If the number of channel errors is not greater than "t_after_eras" the
+ * transmitted codeword will be recovered. Details of algorithm can be found
+ * in R. Blahut's "Theory ... of Error-Correcting Codes".
+
+ * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
+ * will result. The decoder *could* check for this condition, but it would involve
+ * extra time on every decoding operation.
+ */
+
+int
+eras_dec_rs(dtype data[NN], int eras_pos[NN-KK], int no_eras)
+{
+ int deg_lambda, el, deg_omega;
+ int i, j, r,k;
+ gf u,q,tmp,num1,num2,den,discr_r;
+ gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
+ * and syndrome poly */
+ gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
+ gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
+ int syn_error, count;
+
+ if(!RS_init)
+ init_rs();
+
+#ifdef CCSDS
+ /* Convert to conventional basis */
+ for(i=0;i<NN;i++)
+ RECEIVED(i) = tal1tab[RECEIVED(i)];
+#endif
+
+#if DEBUG >= 1 && MM != 8
+ /* Check for illegal input values */
+ for(i=0;i<NN;i++)
+ if(RECEIVED(i) > NN)
+ return -1;
+#endif
+ /* form the syndromes; i.e., evaluate data(x) at roots of g(x)
+ * namely @**(B0+i)*PRIM, i = 0, ... ,(NN-KK-1)
+ */
+ for(i=1;i<=NN-KK;i++){
+ s[i] = RECEIVED(0);
+ }
+ for(j=1;j<NN;j++){
+ if(RECEIVED(j) == 0)
+ continue;
+ tmp = Index_of[RECEIVED(j)];
+
+ /* s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*j)]; */
+ for(i=1;i<=NN-KK;i++)
+ s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
+ }
+ /* Convert syndromes to index form, checking for nonzero condition */
+ syn_error = 0;
+ for(i=1;i<=NN-KK;i++){
+ syn_error |= s[i];
+ /*printf("syndrome %d = %x\n",i,s[i]);*/
+ s[i] = Index_of[s[i]];
+ }
+
+ if (!syn_error) {
+ /* if syndrome is zero, data[] is a codeword and there are no
+ * errors to correct. So return data[] unmodified
+ */
+ count = 0;
+ goto finish;
+ }
+ CLEAR(&lambda[1],NN-KK);
+ lambda[0] = 1;
+
+ if (no_eras > 0) {
+ /* Init lambda to be the erasure locator polynomial */
+ lambda[1] = Alpha_to[modnn(PRIM * ERAS_INDEX(0))];
+ for (i = 1; i < no_eras; i++) {
+ u = modnn(PRIM*ERAS_INDEX(i));
+ for (j = i+1; j > 0; j--) {
+ tmp = Index_of[lambda[j - 1]];
+ if(tmp != A0)
+ lambda[j] ^= Alpha_to[modnn(u + tmp)];
+ }
+ }
+#if DEBUG >= 1
+ /* Test code that verifies the erasure locator polynomial just constructed
+ Needed only for decoder debugging. */
+
+ /* find roots of the erasure location polynomial */
+ for(i=1;i<=no_eras;i++)
+ reg[i] = Index_of[lambda[i]];
+ count = 0;
+ for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
+ q = 1;
+ for (j = 1; j <= no_eras; j++)
+ if (reg[j] != A0) {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ if (q != 0)
+ continue;
+ /* store root and error location number indices */
+ root[count] = i;
+ loc[count] = k;
+ count++;
+ }
+ if (count != no_eras) {
+ printf("\n lambda(x) is WRONG\n");
+ count = -1;
+ goto finish;
+ }
+#if DEBUG >= 2
+ printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
+ for (i = 0; i < count; i++)
+ printf("%d ", loc[i]);
+ printf("\n");
+#endif
+#endif
+ }
+ for(i=0;i<NN-KK+1;i++)
+ b[i] = Index_of[lambda[i]];
+
+ /*
+ * Begin Berlekamp-Massey algorithm to determine error+erasure
+ * locator polynomial
+ */
+ r = no_eras;
+ el = no_eras;
+ while (++r <= NN-KK) { /* r is the step number */
+ /* Compute discrepancy at the r-th step in poly-form */
+ discr_r = 0;
+ for (i = 0; i < r; i++){
+ if ((lambda[i] != 0) && (s[r - i] != A0)) {
+ discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
+ }
+ }
+ discr_r = Index_of[discr_r]; /* Index form */
+ if (discr_r == A0) {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(&b[1],b,NN-KK);
+ b[0] = A0;
+ } else {
+ /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
+ t[0] = lambda[0];
+ for (i = 0 ; i < NN-KK; i++) {
+ if(b[i] != A0)
+ t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
+ else
+ t[i+1] = lambda[i+1];
+ }
+ if (2 * el <= r + no_eras - 1) {
+ el = r + no_eras - el;
+ /*
+ * 2 lines below: B(x) <-- inv(discr_r) *
+ * lambda(x)
+ */
+ for (i = 0; i <= NN-KK; i++)
+ b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
+ } else {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(&b[1],b,NN-KK);
+ b[0] = A0;
+ }
+ COPY(lambda,t,NN-KK+1);
+ }
+ }
+
+ /* Convert lambda to index form and compute deg(lambda(x)) */
+ deg_lambda = 0;
+ for(i=0;i<NN-KK+1;i++){
+ lambda[i] = Index_of[lambda[i]];
+ if(lambda[i] != A0)
+ deg_lambda = i;
+ }
+ /*
+ * Find roots of the error+erasure locator polynomial by Chien
+ * Search
+ */
+ COPY(&reg[1],&lambda[1],NN-KK);
+ count = 0; /* Number of roots of lambda(x) */
+ for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
+ q = 1;
+ for (j = deg_lambda; j > 0; j--){
+ if (reg[j] != A0) {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ }
+ if (q != 0)
+ continue;
+ /* store root (index-form) and error location number */
+ root[count] = i;
+ loc[count] = k;
+ /* If we've already found max possible roots,
+ * abort the search to save time
+ */
+ if(++count == deg_lambda)
+ break;
+ }
+ if (deg_lambda != count) {
+ /*
+ * deg(lambda) unequal to number of roots => uncorrectable
+ * error detected
+ */
+ count = -1;
+ goto finish;
+ }
+ /*
+ * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
+ * x**(NN-KK)). in index form. Also find deg(omega).
+ */
+ deg_omega = 0;
+ for (i = 0; i < NN-KK;i++){
+ tmp = 0;
+ j = (deg_lambda < i) ? deg_lambda : i;
+ for(;j >= 0; j--){
+ if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
+ tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
+ }
+ if(tmp != 0)
+ deg_omega = i;
+ omega[i] = Index_of[tmp];
+ }
+ omega[NN-KK] = A0;
+
+ /*
+ * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
+ * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
+ */
+ for (j = count-1; j >=0; j--) {
+ num1 = 0;
+ for (i = deg_omega; i >= 0; i--) {
+ if (omega[i] != A0)
+ num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
+ }
+ num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
+ den = 0;
+
+ /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
+ for (i = min_(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
+ if(lambda[i+1] != A0)
+ den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
+ }
+ if (den == 0) {
+#if DEBUG >= 1
+ printf("\n ERROR: denominator = 0\n");
+#endif
+ /* Convert to dual- basis */
+ count = -1;
+ goto finish;
+ }
+ /* Apply error to data */
+ if (num1 != 0) {
+ RECEIVED(loc[j]) ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
+ }
+ }
+ finish:
+#ifdef CCSDS
+ /* Convert to dual- basis */
+ for(i=0;i<NN;i++)
+ RECEIVED(i) = taltab[RECEIVED(i)];
+#endif
+ if(eras_pos != NULL){
+ for(i=0;i<count;i++){
+ if(eras_pos!= NULL)
+ eras_pos[i] = INDEX_TO_POS(loc[i]);
+ }
+ }
+ return count;
+}
+/* Encoder/decoder initialization - call this first! */
+static void
+init_rs(void)
+{
+ generate_gf();
+ gen_poly();
+#ifdef CCSDS
+ gen_ltab();
+#endif
+#if PRIM != 1
+ gen_ldec();
+#endif
+ RS_init = 1;
+}