summaryrefslogtreecommitdiff
path: root/epan/dissectors/packet-ieee80211-radiotap.c
diff options
context:
space:
mode:
Diffstat (limited to 'epan/dissectors/packet-ieee80211-radiotap.c')
-rw-r--r--epan/dissectors/packet-ieee80211-radiotap.c2137
1 files changed, 2137 insertions, 0 deletions
diff --git a/epan/dissectors/packet-ieee80211-radiotap.c b/epan/dissectors/packet-ieee80211-radiotap.c
new file mode 100644
index 0000000000..3ec6efdfb3
--- /dev/null
+++ b/epan/dissectors/packet-ieee80211-radiotap.c
@@ -0,0 +1,2137 @@
+/*
+ * packet-ieee80211-radiotap.c
+ * Decode packets with a Radiotap header
+ *
+ * $Id$
+ *
+ * Wireshark - Network traffic analyzer
+ * By Gerald Combs <gerald@wireshark.org>
+ * Copyright 1998 Gerald Combs
+ *
+ * Copied from README.developer
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <glib.h>
+#include <errno.h>
+
+#include <epan/packet.h>
+#include <epan/crc32-tvb.h>
+#include <epan/frequency-utils.h>
+#include <epan/tap.h>
+#include <epan/prefs.h>
+#include <epan/addr_resolv.h>
+#include "packet-ieee80211.h"
+#include "packet-ieee80211-radiotap.h"
+#include "packet-ieee80211-radiotap-iter.h"
+#include "packet-ieee80211-radiotap-defs.h"
+
+/* not officially defined (yet) */
+#define IEEE80211_RADIOTAP_F_SHORTGI 0x80
+#define IEEE80211_RADIOTAP_XCHANNEL 18
+#define IEEE80211_CHAN_HT20 0x10000 /* HT 20 channel */
+#define IEEE80211_CHAN_HT40U 0x20000 /* HT 40 channel w/ ext above */
+#define IEEE80211_CHAN_HT40D 0x40000 /* HT 40 channel w/ ext below */
+
+/* Official specifcation:
+ *
+ * http://www.radiotap.org/
+ *
+ * Unofficial and historical specifications:
+ * http://madwifi-project.org/wiki/DevDocs/RadiotapHeader
+ * NetBSD's ieee80211_radiotap.h file
+ */
+
+/*
+ * Useful combinations of channel characteristics.
+ */
+#define IEEE80211_CHAN_FHSS \
+ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
+#define IEEE80211_CHAN_A \
+ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
+#define IEEE80211_CHAN_B \
+ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
+#define IEEE80211_CHAN_PUREG \
+ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
+#define IEEE80211_CHAN_G \
+ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
+#define IEEE80211_CHAN_T \
+ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
+#define IEEE80211_CHAN_108G \
+ (IEEE80211_CHAN_G | IEEE80211_CHAN_TURBO)
+#define IEEE80211_CHAN_108PUREG \
+ (IEEE80211_CHAN_PUREG | IEEE80211_CHAN_TURBO)
+
+#define MAX_MCS_INDEX 76
+
+/*
+ * Indices are:
+ *
+ * the MCS index (0-76);
+ *
+ * 0 for 20 MHz, 1 for 40 MHz;
+ *
+ * 0 for a long guard interval, 1 for a short guard interval.
+ */
+static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
+ /* MCS 0 */
+ { /* 20 Mhz */ { 6.5f, /* SGI */ 7.2f, },
+ /* 40 Mhz */ { 13.5f, /* SGI */ 15.0f, },
+ },
+
+ /* MCS 1 */
+ { /* 20 Mhz */ { 13.0f, /* SGI */ 14.4f, },
+ /* 40 Mhz */ { 27.0f, /* SGI */ 30.0f, },
+ },
+
+ /* MCS 2 */
+ { /* 20 Mhz */ { 19.5f, /* SGI */ 21.7f, },
+ /* 40 Mhz */ { 40.5f, /* SGI */ 45.0f, },
+ },
+
+ /* MCS 3 */
+ { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
+ /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
+ },
+
+ /* MCS 4 */
+ { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
+ /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
+ },
+
+ /* MCS 5 */
+ { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
+ /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
+ },
+
+ /* MCS 6 */
+ { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
+ /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
+ },
+
+ /* MCS 7 */
+ { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
+ /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
+ },
+
+ /* MCS 8 */
+ { /* 20 Mhz */ { 13.0f, /* SGI */ 14.4f, },
+ /* 40 Mhz */ { 27.0f, /* SGI */ 30.0f, },
+ },
+
+ /* MCS 9 */
+ { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
+ /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
+ },
+
+ /* MCS 10 */
+ { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
+ /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
+ },
+
+ /* MCS 11 */
+ { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
+ /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
+ },
+
+ /* MCS 12 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 13 */
+ { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
+ /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
+ },
+
+ /* MCS 14 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 15 */
+ { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
+ /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
+ },
+
+ /* MCS 16 */
+ { /* 20 Mhz */ { 19.5f, /* SGI */ 21.7f, },
+ /* 40 Mhz */ { 40.5f, /* SGI */ 45.0f, },
+ },
+
+ /* MCS 17 */
+ { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
+ /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
+ },
+
+ /* MCS 18 */
+ { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
+ /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
+ },
+
+ /* MCS 19 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 20 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 21 */
+ { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
+ /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
+ },
+
+ /* MCS 22 */
+ { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
+ /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
+ },
+
+ /* MCS 23 */
+ { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
+ /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
+ },
+
+ /* MCS 24 */
+ { /* 20 Mhz */ { 26.0f, /* SGI */ 28.9f, },
+ /* 40 Mhz */ { 54.0f, /* SGI */ 60.0f, },
+ },
+
+ /* MCS 25 */
+ { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
+ /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
+ },
+
+ /* MCS 26 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 27 */
+ { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
+ /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
+ },
+
+ /* MCS 28 */
+ { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
+ /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
+ },
+
+ /* MCS 29 */
+ { /* 20 Mhz */ { 208.0f, /* SGI */ 231.1f, },
+ /* 40 Mhz */ { 432.0f, /* SGI */ 480.0f, },
+ },
+
+ /* MCS 30 */
+ { /* 20 Mhz */ { 234.0f, /* SGI */ 260.0f, },
+ /* 40 Mhz */ { 486.0f, /* SGI */ 540.0f, },
+ },
+
+ /* MCS 31 */
+ { /* 20 Mhz */ { 260.0f, /* SGI */ 288.9f, },
+ /* 40 Mhz */ { 540.0f, /* SGI */ 600.0f, },
+ },
+
+ /* MCS 32 */
+ { /* 20 Mhz */ { 0.0f, /* SGI */ 0.0f, }, /* not valid */
+ /* 40 Mhz */ { 6.0f, /* SGI */ 6.7f, },
+ },
+
+ /* MCS 33 */
+ { /* 20 Mhz */ { 39.0f, /* SGI */ 43.3f, },
+ /* 40 Mhz */ { 81.0f, /* SGI */ 90.0f, },
+ },
+
+ /* MCS 34 */
+ { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
+ /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
+ },
+
+ /* MCS 35 */
+ { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
+ /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
+ },
+
+ /* MCS 36 */
+ { /* 20 Mhz */ { 58.5f, /* SGI */ 65.0f, },
+ /* 40 Mhz */ { 121.5f, /* SGI */ 135.0f, },
+ },
+
+ /* MCS 37 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 38 */
+ { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
+ /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
+ },
+
+ /* MCS 39 */
+ { /* 20 Mhz */ { 52.0f, /* SGI */ 57.8f, },
+ /* 40 Mhz */ { 108.0f, /* SGI */ 120.0f, },
+ },
+
+ /* MCS 40 */
+ { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
+ /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
+ },
+
+ /* MCS 41 */
+ { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
+ /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
+ },
+
+ /* MCS 42 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 43 */
+ { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
+ /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
+ },
+
+ /* MCS 44 */
+ { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
+ /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
+ },
+
+ /* MCS 45 */
+ { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
+ /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
+ },
+
+ /* MCS 46 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 47 */
+ { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
+ /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
+ },
+
+ /* MCS 48 */
+ { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
+ /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
+ },
+
+ /* MCS 49 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 50 */
+ { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
+ /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
+ },
+
+ /* MCS 51 */
+ { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
+ /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
+ },
+
+ /* MCS 52 */
+ { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
+ /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
+ },
+
+ /* MCS 53 */
+ { /* 20 Mhz */ { 65.0f, /* SGI */ 72.2f, },
+ /* 40 Mhz */ { 135.0f, /* SGI */ 150.0f, },
+ },
+
+ /* MCS 54 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 55 */
+ { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
+ /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
+ },
+
+ /* MCS 56 */
+ { /* 20 Mhz */ { 78.0f, /* SGI */ 86.7f, },
+ /* 40 Mhz */ { 162.0f, /* SGI */ 180.0f, },
+ },
+
+ /* MCS 57 */
+ { /* 20 Mhz */ { 91.0f, /* SGI */ 101.1f, },
+ /* 40 Mhz */ { 189.0f, /* SGI */ 210.0f, },
+ },
+
+ /* MCS 58 */
+ { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
+ /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
+ },
+
+ /* MCS 59 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 60 */
+ { /* 20 Mhz */ { 104.0f, /* SGI */ 115.6f, },
+ /* 40 Mhz */ { 216.0f, /* SGI */ 240.0f, },
+ },
+
+ /* MCS 61 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 62 */
+ { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
+ /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
+ },
+
+ /* MCS 63 */
+ { /* 20 Mhz */ { 130.0f, /* SGI */ 144.4f, },
+ /* 40 Mhz */ { 270.0f, /* SGI */ 300.0f, },
+ },
+
+ /* MCS 64 */
+ { /* 20 Mhz */ { 143.0f, /* SGI */ 158.9f, },
+ /* 40 Mhz */ { 297.0f, /* SGI */ 330.0f, },
+ },
+
+ /* MCS 65 */
+ { /* 20 Mhz */ { 97.5f, /* SGI */ 108.3f, },
+ /* 40 Mhz */ { 202.5f, /* SGI */ 225.0f, },
+ },
+
+ /* MCS 66 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 67 */
+ { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
+ /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
+ },
+
+ /* MCS 68 */
+ { /* 20 Mhz */ { 117.0f, /* SGI */ 130.0f, },
+ /* 40 Mhz */ { 243.0f, /* SGI */ 270.0f, },
+ },
+
+ /* MCS 69 */
+ { /* 20 Mhz */ { 136.5f, /* SGI */ 151.7f, },
+ /* 40 Mhz */ { 283.5f, /* SGI */ 315.0f, },
+ },
+
+ /* MCS 70 */
+ { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
+ /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
+ },
+
+ /* MCS 71 */
+ { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
+ /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
+ },
+
+ /* MCS 72 */
+ { /* 20 Mhz */ { 156.0f, /* SGI */ 173.3f, },
+ /* 40 Mhz */ { 324.0f, /* SGI */ 360.0f, },
+ },
+
+ /* MCS 73 */
+ { /* 20 Mhz */ { 175.5f, /* SGI */ 195.0f, },
+ /* 40 Mhz */ { 364.5f, /* SGI */ 405.0f, },
+ },
+
+ /* MCS 74 */
+ { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
+ /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
+ },
+
+ /* MCS 75 */
+ { /* 20 Mhz */ { 195.0f, /* SGI */ 216.7f, },
+ /* 40 Mhz */ { 405.0f, /* SGI */ 450.0f, },
+ },
+
+ /* MCS 76 */
+ { /* 20 Mhz */ { 214.5f, /* SGI */ 238.3f, },
+ /* 40 Mhz */ { 445.5f, /* SGI */ 495.0f, },
+ },
+};
+
+/* protocol */
+static int proto_radiotap = -1;
+
+static int hf_radiotap_version = -1;
+static int hf_radiotap_pad = -1;
+static int hf_radiotap_length = -1;
+static int hf_radiotap_present = -1;
+static int hf_radiotap_mactime = -1;
+static int hf_radiotap_channel = -1;
+static int hf_radiotap_channel_frequency = -1;
+static int hf_radiotap_channel_flags = -1;
+static int hf_radiotap_channel_flags_turbo = -1;
+static int hf_radiotap_channel_flags_cck = -1;
+static int hf_radiotap_channel_flags_ofdm = -1;
+static int hf_radiotap_channel_flags_2ghz = -1;
+static int hf_radiotap_channel_flags_5ghz = -1;
+static int hf_radiotap_channel_flags_passive = -1;
+static int hf_radiotap_channel_flags_dynamic = -1;
+static int hf_radiotap_channel_flags_gfsk = -1;
+static int hf_radiotap_channel_flags_gsm = -1;
+static int hf_radiotap_channel_flags_sturbo = -1;
+static int hf_radiotap_channel_flags_half = -1;
+static int hf_radiotap_channel_flags_quarter = -1;
+static int hf_radiotap_rxflags = -1;
+static int hf_radiotap_rxflags_badplcp = -1;
+static int hf_radiotap_xchannel = -1;
+static int hf_radiotap_xchannel_frequency = -1;
+static int hf_radiotap_xchannel_flags = -1;
+static int hf_radiotap_xchannel_flags_turbo = -1;
+static int hf_radiotap_xchannel_flags_cck = -1;
+static int hf_radiotap_xchannel_flags_ofdm = -1;
+static int hf_radiotap_xchannel_flags_2ghz = -1;
+static int hf_radiotap_xchannel_flags_5ghz = -1;
+static int hf_radiotap_xchannel_flags_passive = -1;
+static int hf_radiotap_xchannel_flags_dynamic = -1;
+static int hf_radiotap_xchannel_flags_gfsk = -1;
+static int hf_radiotap_xchannel_flags_gsm = -1;
+static int hf_radiotap_xchannel_flags_sturbo = -1;
+static int hf_radiotap_xchannel_flags_half = -1;
+static int hf_radiotap_xchannel_flags_quarter = -1;
+static int hf_radiotap_xchannel_flags_ht20 = -1;
+static int hf_radiotap_xchannel_flags_ht40u = -1;
+static int hf_radiotap_xchannel_flags_ht40d = -1;
+#if 0
+static int hf_radiotap_xchannel_maxpower = -1;
+#endif
+static int hf_radiotap_fhss_hopset = -1;
+static int hf_radiotap_fhss_pattern = -1;
+static int hf_radiotap_datarate = -1;
+static int hf_radiotap_antenna = -1;
+static int hf_radiotap_dbm_antsignal = -1;
+static int hf_radiotap_db_antsignal = -1;
+static int hf_radiotap_dbm_antnoise = -1;
+static int hf_radiotap_db_antnoise = -1;
+static int hf_radiotap_tx_attenuation = -1;
+static int hf_radiotap_db_tx_attenuation = -1;
+static int hf_radiotap_txpower = -1;
+static int hf_radiotap_vendor_ns = -1;
+static int hf_radiotap_ven_oui = -1;
+static int hf_radiotap_ven_subns = -1;
+static int hf_radiotap_ven_skip = -1;
+static int hf_radiotap_ven_data = -1;
+static int hf_radiotap_mcs = -1;
+static int hf_radiotap_mcs_known = -1;
+static int hf_radiotap_mcs_have_bw = -1;
+static int hf_radiotap_mcs_have_index = -1;
+static int hf_radiotap_mcs_have_gi = -1;
+static int hf_radiotap_mcs_have_format = -1;
+static int hf_radiotap_mcs_have_fec = -1;
+static int hf_radiotap_mcs_have_stbc = -1;
+static int hf_radiotap_mcs_bw = -1;
+static int hf_radiotap_mcs_index = -1;
+static int hf_radiotap_mcs_gi = -1;
+static int hf_radiotap_mcs_format = -1;
+static int hf_radiotap_mcs_fec = -1;
+static int hf_radiotap_mcs_stbc = -1;
+
+/* "Present" flags */
+static int hf_radiotap_present_tsft = -1;
+static int hf_radiotap_present_flags = -1;
+static int hf_radiotap_present_rate = -1;
+static int hf_radiotap_present_channel = -1;
+static int hf_radiotap_present_fhss = -1;
+static int hf_radiotap_present_dbm_antsignal = -1;
+static int hf_radiotap_present_dbm_antnoise = -1;
+static int hf_radiotap_present_lock_quality = -1;
+static int hf_radiotap_present_tx_attenuation = -1;
+static int hf_radiotap_present_db_tx_attenuation = -1;
+static int hf_radiotap_present_dbm_tx_power = -1;
+static int hf_radiotap_present_antenna = -1;
+static int hf_radiotap_present_db_antsignal = -1;
+static int hf_radiotap_present_db_antnoise = -1;
+static int hf_radiotap_present_hdrfcs = -1;
+static int hf_radiotap_present_rxflags = -1;
+static int hf_radiotap_present_xchannel = -1;
+static int hf_radiotap_present_mcs = -1;
+static int hf_radiotap_present_rtap_ns = -1;
+static int hf_radiotap_present_vendor_ns = -1;
+static int hf_radiotap_present_ext = -1;
+
+/* "present.flags" flags */
+static int hf_radiotap_flags = -1;
+static int hf_radiotap_flags_cfp = -1;
+static int hf_radiotap_flags_preamble = -1;
+static int hf_radiotap_flags_wep = -1;
+static int hf_radiotap_flags_frag = -1;
+static int hf_radiotap_flags_fcs = -1;
+static int hf_radiotap_flags_datapad = -1;
+static int hf_radiotap_flags_badfcs = -1;
+static int hf_radiotap_flags_shortgi = -1;
+
+static int hf_radiotap_quality = -1;
+static int hf_radiotap_fcs = -1;
+static int hf_radiotap_fcs_bad = -1;
+
+static gint ett_radiotap = -1;
+static gint ett_radiotap_present = -1;
+static gint ett_radiotap_flags = -1;
+static gint ett_radiotap_rxflags = -1;
+static gint ett_radiotap_channel_flags = -1;
+static gint ett_radiotap_xchannel_flags = -1;
+static gint ett_radiotap_vendor = -1;
+static gint ett_radiotap_mcs = -1;
+static gint ett_radiotap_mcs_known = -1;
+
+static dissector_handle_t ieee80211_handle;
+static dissector_handle_t ieee80211_datapad_handle;
+
+static int radiotap_tap = -1;
+
+/* Settings */
+static gboolean radiotap_bit14_fcs = FALSE;
+
+static void
+dissect_radiotap(tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree);
+
+#define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
+#define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
+#define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
+#define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
+#define BITNO_2(x) (((x) & 2) ? 1 : 0)
+#define BIT(n) (1 << n)
+
+/*
+ * The NetBSD ieee80211_radiotap man page
+ * (http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current)
+ * says:
+ *
+ * Radiotap capture fields must be naturally aligned. That is, 16-, 32-,
+ * and 64-bit fields must begin on 16-, 32-, and 64-bit boundaries, respec-
+ * tively. In this way, drivers can avoid unaligned accesses to radiotap
+ * capture fields. radiotap-compliant drivers must insert padding before a
+ * capture field to ensure its natural alignment. radiotap-compliant packet
+ * dissectors, such as tcpdump(8), expect the padding.
+ */
+
+void
+capture_radiotap(const guchar * pd, int offset, int len, packet_counts * ld)
+{
+ guint16 it_len;
+ guint32 present, xpresent;
+ guint8 rflags;
+ struct ieee80211_radiotap_header *hdr;
+
+ if (!BYTES_ARE_IN_FRAME(offset, len,
+ sizeof(struct ieee80211_radiotap_header))) {
+ ld->other++;
+ return;
+ }
+ hdr = (void *)pd;
+ it_len = pletohs(&hdr->it_len);
+ if (!BYTES_ARE_IN_FRAME(offset, len, it_len)) {
+ ld->other++;
+ return;
+ }
+
+ if (it_len > len) {
+ /* Header length is bigger than total packet length */
+ ld->other++;
+ return;
+ }
+
+ if (it_len < sizeof(struct ieee80211_radiotap_header)) {
+ /* Header length is shorter than fixed-length portion of header */
+ ld->other++;
+ return;
+ }
+
+ present = pletohl(&hdr->it_present);
+ offset += sizeof(struct ieee80211_radiotap_header);
+ it_len -= sizeof(struct ieee80211_radiotap_header);
+
+ /* skip over other present bitmaps */
+ xpresent = present;
+ while (xpresent & BIT(IEEE80211_RADIOTAP_EXT)) {
+ if (!BYTES_ARE_IN_FRAME(offset, 4, it_len)) {
+ ld->other++;
+ return;
+ }
+ xpresent = pletohl(pd + offset);
+ offset += 4;
+ it_len -= 4;
+ }
+
+ rflags = 0;
+
+ /*
+ * IEEE80211_RADIOTAP_TSFT is the lowest-order bit,
+ * just skip over it.
+ */
+ if (present & BIT(IEEE80211_RADIOTAP_TSFT)) {
+ /* align it properly */
+ if (offset & 7) {
+ int pad = 8 - (offset & 7);
+ offset += pad;
+ it_len -= pad;
+ }
+
+ if (it_len < 8) {
+ /* No room in header for this field. */
+ ld->other++;
+ return;
+ }
+ /* That field is present, and it's 8 bytes long. */
+ offset += 8;
+ it_len -= 8;
+ }
+
+ /*
+ * IEEE80211_RADIOTAP_FLAGS is the next bit.
+ */
+ if (present & BIT(IEEE80211_RADIOTAP_FLAGS)) {
+ if (it_len < 1) {
+ /* No room in header for this field. */
+ ld->other++;
+ return;
+ }
+ /* That field is present; fetch it. */
+ if (!BYTES_ARE_IN_FRAME(offset, len, 1)) {
+ ld->other++;
+ return;
+ }
+ rflags = pd[offset];
+ }
+
+ /* 802.11 header follows */
+ if (rflags & IEEE80211_RADIOTAP_F_DATAPAD)
+ capture_ieee80211_datapad(pd, offset + it_len, len, ld);
+ else
+ capture_ieee80211(pd, offset + it_len, len, ld);
+}
+
+void proto_register_radiotap(void)
+{
+ static const value_string phy_type[] = {
+ {0, "Unknown"},
+ {IEEE80211_CHAN_A, "802.11a"},
+ {IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, "802.11a (ht20)"},
+ {IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, "802.11a (ht40+)"},
+ {IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, "802.11a (ht40-)"},
+ {IEEE80211_CHAN_B, "802.11b"},
+ {IEEE80211_CHAN_PUREG, "802.11g (pure-g)"},
+ {IEEE80211_CHAN_G, "802.11g"},
+ {IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, "802.11g (ht20)"},
+ {IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, "802.11g (ht40+)"},
+ {IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, "802.11g (ht40-)"},
+ {IEEE80211_CHAN_T, "802.11a (turbo)"},
+ {IEEE80211_CHAN_108PUREG, "802.11g (pure-g, turbo)"},
+ {IEEE80211_CHAN_108G, "802.11g (turbo)"},
+ {IEEE80211_CHAN_FHSS, "FHSS"},
+ {0, NULL}
+ };
+
+ static const value_string mcs_bandwidth[] = {
+ { IEEE80211_RADIOTAP_MCS_BW_20, "20 MHz" },
+ { IEEE80211_RADIOTAP_MCS_BW_40, "40 MHz" },
+ { IEEE80211_RADIOTAP_MCS_BW_20L, "20 MHz lower" },
+ { IEEE80211_RADIOTAP_MCS_BW_20U, "20 MHz upper" },
+ {0, NULL}
+ };
+
+ static const value_string mcs_format[] = {
+ { 0, "mixed" },
+ { 1, "greenfield" },
+ {0, NULL},
+ };
+
+ static const value_string mcs_fec[] = {
+ { 0, "BCC" },
+ { 1, "LDPC" },
+ {0, NULL}
+ };
+
+ static const value_string mcs_gi[] = {
+ { 0, "long" },
+ { 1, "short" },
+ {0, NULL}
+ };
+
+ static const true_false_string preamble_type = {
+ "Short",
+ "Long",
+ };
+
+ static hf_register_info hf[] = {
+ {&hf_radiotap_version,
+ {"Header revision", "radiotap.version",
+ FT_UINT8, BASE_DEC, NULL, 0x0,
+ "Version of radiotap header format", HFILL}},
+ {&hf_radiotap_pad,
+ {"Header pad", "radiotap.pad",
+ FT_UINT8, BASE_DEC, NULL, 0x0,
+ "Padding", HFILL}},
+ {&hf_radiotap_length,
+ {"Header length", "radiotap.length",
+ FT_UINT16, BASE_DEC, NULL, 0x0,
+ "Length of header including version, pad, length and data fields",
+ HFILL}},
+ {&hf_radiotap_present,
+ {"Present flags", "radiotap.present",
+ FT_NONE, BASE_NONE, NULL, 0x0,
+ "Bitmask indicating which fields are present", HFILL}},
+
+#define RADIOTAP_MASK(name) BIT(IEEE80211_RADIOTAP_ ##name)
+
+ /* Boolean 'present' flags */
+ {&hf_radiotap_present_tsft,
+ {"TSFT", "radiotap.present.tsft",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(TSFT),
+ "Specifies if the Time Synchronization Function Timer field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_flags,
+ {"Flags", "radiotap.present.flags",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(FLAGS),
+ "Specifies if the channel flags field is present", HFILL}},
+
+ {&hf_radiotap_present_rate,
+ {"Rate", "radiotap.present.rate",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(RATE),
+ "Specifies if the transmit/receive rate field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_channel,
+ {"Channel", "radiotap.present.channel",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(CHANNEL),
+ "Specifies if the transmit/receive frequency field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_fhss,
+ {"FHSS", "radiotap.present.fhss",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(FHSS),
+ "Specifies if the hop set and pattern is present for frequency hopping radios",
+ HFILL}},
+
+ {&hf_radiotap_present_dbm_antsignal,
+ {"dBm Antenna Signal", "radiotap.present.dbm_antsignal",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DBM_ANTSIGNAL),
+ "Specifies if the antenna signal strength in dBm is present",
+ HFILL}},
+
+ {&hf_radiotap_present_dbm_antnoise,
+ {"dBm Antenna Noise", "radiotap.present.dbm_antnoise",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DBM_ANTNOISE),
+ "Specifies if the RF noise power at antenna field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_lock_quality,
+ {"Lock Quality", "radiotap.present.lock_quality",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(LOCK_QUALITY),
+ "Specifies if the signal quality field is present", HFILL}},
+
+ {&hf_radiotap_present_tx_attenuation,
+ {"TX Attenuation", "radiotap.present.tx_attenuation",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(TX_ATTENUATION),
+ "Specifies if the transmit power distance from max power field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_db_tx_attenuation,
+ {"dB TX Attenuation", "radiotap.present.db_tx_attenuation",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DB_TX_ATTENUATION),
+ "Specifies if the transmit power distance from max power (in dB) field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_dbm_tx_power,
+ {"dBm TX Power", "radiotap.present.dbm_tx_power",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DBM_TX_POWER),
+ "Specifies if the transmit power (in dBm) field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_antenna,
+ {"Antenna", "radiotap.present.antenna",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(ANTENNA),
+ "Specifies if the antenna number field is present", HFILL}},
+
+ {&hf_radiotap_present_db_antsignal,
+ {"dB Antenna Signal", "radiotap.present.db_antsignal",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DB_ANTSIGNAL),
+ "Specifies if the RF signal power at antenna in dB field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_db_antnoise,
+ {"dB Antenna Noise", "radiotap.present.db_antnoise",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(DB_ANTNOISE),
+ "Specifies if the RF signal power at antenna in dBm field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_rxflags,
+ {"RX flags", "radiotap.present.rxflags",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(RX_FLAGS),
+ "Specifies if the RX flags field is present", HFILL}},
+
+ {&hf_radiotap_present_hdrfcs,
+ {"FCS in header", "radiotap.present.fcs",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(RX_FLAGS),
+ "Specifies if the FCS field is present", HFILL}},
+
+ {&hf_radiotap_present_xchannel,
+ {"Channel+", "radiotap.present.xchannel",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(XCHANNEL),
+ "Specifies if the extended channel info field is present",
+ HFILL}},
+
+ {&hf_radiotap_present_mcs,
+ {"HT information", "radiotap.present.mcs",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(MCS),
+ "Specifies if the HT field is present", HFILL}},
+
+ {&hf_radiotap_present_rtap_ns,
+ {"Radiotap NS next", "radiotap.present.rtap_ns",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(RADIOTAP_NAMESPACE),
+ "Specifies a reset to the radiotap namespace", HFILL}},
+
+ {&hf_radiotap_present_vendor_ns,
+ {"Vendor NS next", "radiotap.present.vendor_ns",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(VENDOR_NAMESPACE),
+ "Specifies that the next bitmap is in a vendor namespace",
+ HFILL}},
+
+ {&hf_radiotap_present_ext,
+ {"Ext", "radiotap.present.ext",
+ FT_BOOLEAN, 32, NULL, RADIOTAP_MASK(EXT),
+ "Specifies if there are any extensions to the header present",
+ HFILL}},
+
+ /* Boolean 'present.flags' flags */
+ {&hf_radiotap_flags,
+ {"Flags", "radiotap.flags",
+ FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL}},
+
+ {&hf_radiotap_flags_cfp,
+ {"CFP", "radiotap.flags.cfp",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_CFP,
+ "Sent/Received during CFP", HFILL}},
+
+ {&hf_radiotap_flags_preamble,
+ {"Preamble", "radiotap.flags.preamble",
+ FT_BOOLEAN, 8, TFS(&preamble_type),
+ IEEE80211_RADIOTAP_F_SHORTPRE,
+ "Sent/Received with short preamble", HFILL}},
+
+ {&hf_radiotap_flags_wep,
+ {"WEP", "radiotap.flags.wep",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_WEP,
+ "Sent/Received with WEP encryption", HFILL}},
+
+ {&hf_radiotap_flags_frag,
+ {"Fragmentation", "radiotap.flags.frag",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_FRAG,
+ "Sent/Received with fragmentation", HFILL}},
+
+ {&hf_radiotap_flags_fcs,
+ {"FCS at end", "radiotap.flags.fcs",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_FCS,
+ "Frame includes FCS at end", HFILL}},
+
+ {&hf_radiotap_flags_datapad,
+ {"Data Pad", "radiotap.flags.datapad",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_DATAPAD,
+ "Frame has padding between 802.11 header and payload",
+ HFILL}},
+
+ {&hf_radiotap_flags_badfcs,
+ {"Bad FCS", "radiotap.flags.badfcs",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_BADFCS,
+ "Frame received with bad FCS", HFILL}},
+
+ {&hf_radiotap_flags_shortgi,
+ {"Short GI", "radiotap.flags.shortgi",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_F_SHORTGI,
+ "Frame Sent/Received with HT short Guard Interval", HFILL}},
+
+ {&hf_radiotap_mactime,
+ {"MAC timestamp", "radiotap.mactime",
+ FT_UINT64, BASE_DEC, NULL, 0x0,
+ "Value in microseconds of the MAC's Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC.",
+ HFILL}},
+
+ {&hf_radiotap_quality,
+ {"Signal Quality", "radiotap.quality",
+ FT_UINT16, BASE_DEC, NULL, 0x0,
+ "Signal quality (unitless measure)", HFILL}},
+
+ {&hf_radiotap_fcs,
+ {"802.11 FCS", "radiotap.fcs",
+ FT_UINT32, BASE_HEX, NULL, 0x0,
+ "Frame check sequence of this frame", HFILL}},
+
+ {&hf_radiotap_channel,
+ {"Channel", "radiotap.channel",
+ FT_UINT32, BASE_DEC, NULL, 0x0,
+ "802.11 channel number that this frame was sent/received on",
+ HFILL}},
+
+ {&hf_radiotap_channel_frequency,
+ {"Channel frequency", "radiotap.channel.freq",
+ FT_UINT32, BASE_DEC, NULL, 0x0,
+ "Channel frequency in megahertz that this frame was sent/received on",
+ HFILL}},
+
+ {&hf_radiotap_channel_flags,
+ {"Channel type", "radiotap.channel.type",
+ FT_UINT16, BASE_HEX, VALS(phy_type), 0x0,
+ NULL, HFILL}},
+
+ {&hf_radiotap_channel_flags_turbo,
+ {"Turbo", "radiotap.channel.type.turbo",
+ FT_BOOLEAN, 16, NULL, 0x0010, "Channel Type Turbo", HFILL}},
+ {&hf_radiotap_channel_flags_cck,
+ {"Complementary Code Keying (CCK)",
+ "radiotap.channel.type.cck",
+ FT_BOOLEAN, 16, NULL, 0x0020,
+ "Channel Type Complementary Code Keying (CCK) Modulation",
+ HFILL}},
+ {&hf_radiotap_channel_flags_ofdm,
+ {"Orthogonal Frequency-Division Multiplexing (OFDM)",
+ "radiotap.channel.type.ofdm",
+ FT_BOOLEAN, 16, NULL, 0x0040,
+ "Channel Type Orthogonal Frequency-Division Multiplexing (OFDM)",
+ HFILL}},
+ {&hf_radiotap_channel_flags_2ghz,
+ {"2 GHz spectrum", "radiotap.channel.type.2ghz",
+ FT_BOOLEAN, 16, NULL, 0x0080, "Channel Type 2 GHz spectrum",
+ HFILL}},
+ {&hf_radiotap_channel_flags_5ghz,
+ {"5 GHz spectrum", "radiotap.channel.type.5ghz",
+ FT_BOOLEAN, 16, NULL, 0x0100, "Channel Type 5 GHz spectrum",
+ HFILL}},
+ {&hf_radiotap_channel_flags_passive,
+ {"Passive", "radiotap.channel.type.passive",
+ FT_BOOLEAN, 16, NULL, 0x0200, "Channel Type Passive", HFILL}},
+ {&hf_radiotap_channel_flags_dynamic,
+ {"Dynamic CCK-OFDM", "radiotap.channel.type.dynamic",
+ FT_BOOLEAN, 16, NULL, 0x0400,
+ "Channel Type Dynamic CCK-OFDM Channel", HFILL}},
+ {&hf_radiotap_channel_flags_gfsk,
+ {"Gaussian Frequency Shift Keying (GFSK)",
+ "radiotap.channel.type.gfsk",
+ FT_BOOLEAN, 16, NULL, 0x0800,
+ "Channel Type Gaussian Frequency Shift Keying (GFSK) Modulation",
+ HFILL}},
+ {&hf_radiotap_channel_flags_gsm,
+ {"GSM (900MHz)", "radiotap.channel.type.gsm",
+ FT_BOOLEAN, 16, NULL, 0x1000, "Channel Type GSM", HFILL}},
+ {&hf_radiotap_channel_flags_sturbo,
+ {"Static Turbo", "radiotap.channel.type.sturbo",
+ FT_BOOLEAN, 16, NULL, 0x2000, "Channel Type Status Turbo",
+ HFILL}},
+ {&hf_radiotap_channel_flags_half,
+ {"Half Rate Channel (10MHz Channel Width)",
+ "radiotap.channel.type.half",
+ FT_BOOLEAN, 16, NULL, 0x4000, "Channel Type Half Rate",
+ HFILL}},
+ {&hf_radiotap_channel_flags_quarter,
+ {"Quarter Rate Channel (5MHz Channel Width)",
+ "radiotap.channel.type.quarter",
+ FT_BOOLEAN, 16, NULL, 0x8000, "Channel Type Quarter Rate",
+ HFILL}},
+
+ {&hf_radiotap_rxflags,
+ {"RX flags", "radiotap.rxflags",
+ FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL}},
+
+ {&hf_radiotap_rxflags_badplcp,
+ {"Bad PLCP", "radiotap.rxflags.badplcp",
+ FT_BOOLEAN, 24, NULL, IEEE80211_RADIOTAP_F_RX_BADPLCP,
+ "Frame with bad PLCP", HFILL}},
+
+ {&hf_radiotap_xchannel,
+ {"Channel number", "radiotap.xchannel",
+ FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL}},
+ {&hf_radiotap_xchannel_frequency,
+ {"Channel frequency", "radiotap.xchannel.freq",
+ FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL}},
+ {&hf_radiotap_xchannel_flags,
+ {"Channel type", "radiotap.xchannel.flags",
+ FT_UINT32, BASE_HEX, VALS(phy_type), 0x0, NULL, HFILL}},
+
+ {&hf_radiotap_xchannel_flags_turbo,
+ {"Turbo", "radiotap.xchannel.type.turbo",
+ FT_BOOLEAN, 24, NULL, 0x0010, "Channel Type Turbo", HFILL}},
+ {&hf_radiotap_xchannel_flags_cck,
+ {"Complementary Code Keying (CCK)",
+ "radiotap.xchannel.type.cck",
+ FT_BOOLEAN, 24, NULL, 0x0020,
+ "Channel Type Complementary Code Keying (CCK) Modulation",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_ofdm,
+ {"Orthogonal Frequency-Division Multiplexing (OFDM)",
+ "radiotap.xchannel.type.ofdm",
+ FT_BOOLEAN, 24, NULL, 0x0040,
+ "Channel Type Orthogonal Frequency-Division Multiplexing (OFDM)",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_2ghz,
+ {"2 GHz spectrum", "radiotap.xchannel.type.2ghz",
+ FT_BOOLEAN, 24, NULL, 0x0080, "Channel Type 2 GHz spectrum",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_5ghz,
+ {"5 GHz spectrum", "radiotap.xchannel.type.5ghz",
+ FT_BOOLEAN, 24, NULL, 0x0100, "Channel Type 5 GHz spectrum",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_passive,
+ {"Passive", "radiotap.channel.xtype.passive",
+ FT_BOOLEAN, 24, NULL, 0x0200, "Channel Type Passive", HFILL}},
+ {&hf_radiotap_xchannel_flags_dynamic,
+ {"Dynamic CCK-OFDM", "radiotap.xchannel.type.dynamic",
+ FT_BOOLEAN, 24, NULL, 0x0400,
+ "Channel Type Dynamic CCK-OFDM Channel", HFILL}},
+ {&hf_radiotap_xchannel_flags_gfsk,
+ {"Gaussian Frequency Shift Keying (GFSK)",
+ "radiotap.xchannel.type.gfsk",
+ FT_BOOLEAN, 24, NULL, 0x0800,
+ "Channel Type Gaussian Frequency Shift Keying (GFSK) Modulation",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_gsm,
+ {"GSM (900MHz)", "radiotap.xchannel.type.gsm",
+ FT_BOOLEAN, 24, NULL, 0x1000, "Channel Type GSM", HFILL}},
+ {&hf_radiotap_xchannel_flags_sturbo,
+ {"Static Turbo", "radiotap.xchannel.type.sturbo",
+ FT_BOOLEAN, 24, NULL, 0x2000, "Channel Type Status Turbo",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_half,
+ {"Half Rate Channel (10MHz Channel Width)",
+ "radiotap.xchannel.type.half",
+ FT_BOOLEAN, 24, NULL, 0x4000, "Channel Type Half Rate",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_quarter,
+ {"Quarter Rate Channel (5MHz Channel Width)",
+ "radiotap.xchannel.type.quarter",
+ FT_BOOLEAN, 24, NULL, 0x8000, "Channel Type Quarter Rate",
+ HFILL}},
+ {&hf_radiotap_xchannel_flags_ht20,
+ {"HT Channel (20MHz Channel Width)",
+ "radiotap.xchannel.type.ht20",
+ FT_BOOLEAN, 24, NULL, 0x10000, "Channel Type HT/20", HFILL}},
+ {&hf_radiotap_xchannel_flags_ht40u,
+ {"HT Channel (40MHz Channel Width with Extension channel above)", "radiotap.xchannel.type.ht40u",
+ FT_BOOLEAN, 24, NULL, 0x20000, "Channel Type HT/40+", HFILL}},
+ {&hf_radiotap_xchannel_flags_ht40d,
+ {"HT Channel (40MHz Channel Width with Extension channel below)", "radiotap.xchannel.type.ht40d",
+ FT_BOOLEAN, 24, NULL, 0x40000, "Channel Type HT/40-", HFILL}},
+#if 0
+ {&hf_radiotap_xchannel_maxpower,
+ {"Max transmit power", "radiotap.xchannel.maxpower",
+ FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL}},
+#endif
+ {&hf_radiotap_fhss_hopset,
+ {"FHSS Hop Set", "radiotap.fhss.hopset",
+ FT_UINT8, BASE_DEC, NULL, 0x0,
+ "Frequency Hopping Spread Spectrum hopset", HFILL}},
+
+ {&hf_radiotap_fhss_pattern,
+ {"FHSS Pattern", "radiotap.fhss.pattern",
+ FT_UINT8, BASE_DEC, NULL, 0x0,
+ "Frequency Hopping Spread Spectrum hop pattern", HFILL}},
+
+ {&hf_radiotap_datarate,
+ {"Data rate (Mb/s)", "radiotap.datarate",
+ FT_FLOAT, BASE_NONE, NULL, 0x0,
+ "Speed this frame was sent/received at", HFILL}},
+
+ {&hf_radiotap_antenna,
+ {"Antenna", "radiotap.antenna",
+ FT_UINT32, BASE_DEC, NULL, 0x0,
+ "Antenna number this frame was sent/received over (starting at 0)",
+ HFILL}},
+
+ {&hf_radiotap_dbm_antsignal,
+ {"SSI Signal (dBm)", "radiotap.dbm_antsignal",
+ FT_INT32, BASE_DEC, NULL, 0x0,
+ "RF signal power at the antenna from a fixed, arbitrary value in decibels from one milliwatt",
+ HFILL}},
+
+ {&hf_radiotap_db_antsignal,
+ {"SSI Signal (dB)", "radiotap.db_antsignal",
+ FT_UINT32, BASE_DEC, NULL, 0x0,
+ "RF signal power at the antenna from a fixed, arbitrary value in decibels",
+ HFILL}},
+
+ {&hf_radiotap_dbm_antnoise,
+ {"SSI Noise (dBm)", "radiotap.dbm_antnoise",
+ FT_INT32, BASE_DEC, NULL, 0x0,
+ "RF noise power at the antenna from a fixed, arbitrary value in decibels per one milliwatt",
+ HFILL}},
+
+ {&hf_radiotap_db_antnoise,
+ {"SSI Noise (dB)", "radiotap.db_antnoise",
+ FT_UINT32, BASE_DEC, NULL, 0x0,
+ "RF noise power at the antenna from a fixed, arbitrary value in decibels",
+ HFILL}},
+
+ {&hf_radiotap_tx_attenuation,
+ {"Transmit attenuation", "radiotap.txattenuation",
+ FT_UINT16, BASE_DEC, NULL, 0x0,
+ "Transmit power expressed as unitless distance from max power set at factory (0 is max power)",
+ HFILL}},
+
+ {&hf_radiotap_db_tx_attenuation,
+ {"Transmit attenuation (dB)", "radiotap.db_txattenuation",
+ FT_UINT16, BASE_DEC, NULL, 0x0,
+ "Transmit power expressed as decibels from max power set at factory (0 is max power)",
+ HFILL}},
+
+ {&hf_radiotap_txpower,
+ {"Transmit power", "radiotap.txpower",
+ FT_INT32, BASE_DEC, NULL, 0x0,
+ "Transmit power in decibels per one milliwatt (dBm)", HFILL}},
+
+ {&hf_radiotap_mcs,
+ {"MCS information", "radiotap.mcs",
+ FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL}},
+ {&hf_radiotap_mcs_known,
+ {"Known MCS information", "radiotap.mcs.known",
+ FT_UINT8, BASE_HEX, NULL, 0x0,
+ "Bit mask indicating what MCS information is present", HFILL}},
+ {&hf_radiotap_mcs_have_bw,
+ {"Bandwidth", "radiotap.mcs.have_bw",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_BW,
+ "Bandwidth information present", HFILL}},
+ {&hf_radiotap_mcs_have_gi,
+ {"Guard interval", "radiotap.mcs.have_gi",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_GI,
+ "Sent/Received guard interval information present", HFILL}},
+ {&hf_radiotap_mcs_have_format,
+ {"Format", "radiotap.mcs.have_format",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_FMT,
+ "Format information present", HFILL}},
+ {&hf_radiotap_mcs_have_fec,
+ {"FEC", "radiotap.mcs.have_fec",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_FEC,
+ "Forward error correction information present", HFILL}},
+ {&hf_radiotap_mcs_have_stbc,
+ {"STBC", "radiotap.mcs.have_stbc",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_STBC,
+ "Space Time Block Coding information present", HFILL}},
+ {&hf_radiotap_mcs_have_index,
+ {"MCS index", "radiotap.mcs.have_index",
+ FT_BOOLEAN, 8, NULL, IEEE80211_RADIOTAP_MCS_HAVE_MCS,
+ "MCS index information present", HFILL}},
+ {&hf_radiotap_mcs_bw,
+ {"Bandwidth", "radiotap.mcs.bw",
+ FT_UINT8, BASE_DEC, VALS(mcs_bandwidth),
+ IEEE80211_RADIOTAP_MCS_BW_MASK, NULL, HFILL}},
+ {&hf_radiotap_mcs_gi,
+ {"Guard interval", "radiotap.mcs.gi",
+ FT_UINT8, BASE_DEC, VALS(mcs_gi), IEEE80211_RADIOTAP_MCS_SGI,
+ "Sent/Received guard interval", HFILL}},
+ {&hf_radiotap_mcs_format,
+ {"Format", "radiotap.mcs.format",
+ FT_UINT8, BASE_DEC, VALS(mcs_format), IEEE80211_RADIOTAP_MCS_FMT_GF,
+ NULL, HFILL}},
+ {&hf_radiotap_mcs_fec,
+ {"FEC", "radiotap.mcs.fec",
+ FT_UINT8, BASE_DEC, VALS(mcs_fec), IEEE80211_RADIOTAP_MCS_FEC_LDPC,
+ "forward error correction", HFILL}},
+ {&hf_radiotap_mcs_stbc,
+ {"STBC", "radiotap.mcs.stbc",
+ FT_BOOLEAN, 8, TFS(&tfs_on_off), IEEE80211_RADIOTAP_MCS_STBC,
+ "Space Time Block Code", HFILL}},
+
+ {&hf_radiotap_mcs_index,
+ {"MCS index", "radiotap.mcs.index",
+ FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL}},
+
+ {&hf_radiotap_vendor_ns,
+ {"Vendor namespace", "radiotap.vendor_namespace",
+ FT_BYTES, BASE_NONE, NULL, 0x0,
+ NULL, HFILL}},
+
+ {&hf_radiotap_ven_oui,
+ {"Vendor OUI", "radiotap.vendor_oui",
+ FT_BYTES, BASE_NONE, NULL, 0x0,
+ NULL, HFILL}},
+
+ {&hf_radiotap_ven_subns,
+ {"Vendor sub namespace", "radiotap.vendor_subns",
+ FT_UINT8, BASE_DEC, NULL, 0x0,
+ "Vendor-specified sub namespace", HFILL}},
+
+ {&hf_radiotap_ven_skip,
+ {"Vendor data length", "radiotap.vendor_data_len",
+ FT_UINT16, BASE_DEC, NULL, 0x0,
+ "Length of vendor-specified data", HFILL}},
+
+ {&hf_radiotap_ven_data,
+ {"Vendor data", "radiotap.vendor_data",
+ FT_NONE, BASE_NONE, NULL, 0x0,
+ "Vendor-specified data", HFILL}},
+
+ /* Special variables */
+ {&hf_radiotap_fcs_bad,
+ {"Bad FCS", "radiotap.fcs_bad",
+ FT_BOOLEAN, BASE_NONE, NULL, 0x0,
+ "Specifies if this frame has a bad frame check sequence",
+ HFILL}},
+
+ };
+ static gint *ett[] = {
+ &ett_radiotap,
+ &ett_radiotap_present,
+ &ett_radiotap_flags,
+ &ett_radiotap_rxflags,
+ &ett_radiotap_channel_flags,
+ &ett_radiotap_xchannel_flags,
+ &ett_radiotap_vendor,
+ &ett_radiotap_mcs,
+ &ett_radiotap_mcs_known,
+ };
+ module_t *radiotap_module;
+
+ proto_radiotap =
+ proto_register_protocol("IEEE 802.11 Radiotap Capture header",
+ "802.11 Radiotap", "radiotap");
+ proto_register_field_array(proto_radiotap, hf, array_length(hf));
+ proto_register_subtree_array(ett, array_length(ett));
+ register_dissector("radiotap", dissect_radiotap, proto_radiotap);
+
+ radiotap_tap = register_tap("radiotap");
+
+ radiotap_module = prefs_register_protocol(proto_radiotap, NULL);
+ prefs_register_bool_preference(radiotap_module, "bit14_fcs_in_header",
+ "Assume bit 14 means FCS in header",
+ "Radiotap has a bit to indicate whether the FCS is still on the frame or not. "
+ "Some generators (e.g. AirPcap) use a non-standard radiotap flag 14 to put "
+ "the FCS into the header.",
+ &radiotap_bit14_fcs);
+}
+
+static void
+dissect_radiotap(tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree)
+{
+ proto_tree *radiotap_tree = NULL;
+ proto_tree *pt, *present_tree = NULL;
+ proto_tree *ft;
+ proto_item *ti = NULL;
+ proto_item *hidden_item;
+ int offset;
+ tvbuff_t *next_tvb;
+ guint8 version;
+ guint length;
+ guint32 rate, freq, flags;
+ proto_item *rate_ti;
+ gint8 dbm, db;
+ guint8 rflags = 0;
+ /* backward compat with bit 14 == fcs in header */
+ proto_item *hdr_fcs_ti = NULL;
+ int hdr_fcs_offset = 0;
+ guint32 sent_fcs = 0;
+ guint32 calc_fcs;
+ gint err;
+ struct ieee80211_radiotap_iterator iter;
+ void *data;
+ struct _radiotap_info *radiotap_info;
+ static struct _radiotap_info rtp_info_arr;
+
+ /* our non-standard overrides */
+ static struct radiotap_override overrides[] = {
+ {IEEE80211_RADIOTAP_XCHANNEL, 4, 8}, /* xchannel */
+
+ /* keep last */
+ {14, 4, 4}, /* FCS in header */
+ };
+ guint n_overrides = array_length(overrides);
+
+ if (!radiotap_bit14_fcs)
+ n_overrides--;
+
+ radiotap_info = &rtp_info_arr;
+
+ col_set_str(pinfo->cinfo, COL_PROTOCOL, "WLAN");
+ col_clear(pinfo->cinfo, COL_INFO);
+
+ version = tvb_get_guint8(tvb, 0);
+ length = tvb_get_letohs(tvb, 2);
+
+ radiotap_info->radiotap_length = length;
+
+ col_add_fstr(pinfo->cinfo, COL_INFO, "Radiotap Capture v%u, Length %u",
+ version, length);
+
+ /* Dissect the packet */
+ if (tree) {
+ ti = proto_tree_add_protocol_format(tree, proto_radiotap,
+ tvb, 0, length,
+ "Radiotap Header v%u, Length %u",
+ version, length);
+ radiotap_tree = proto_item_add_subtree(ti, ett_radiotap);
+ proto_tree_add_uint(radiotap_tree, hf_radiotap_version,
+ tvb, 0, 1, version);
+ proto_tree_add_item(radiotap_tree, hf_radiotap_pad,
+ tvb, 1, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_uint(radiotap_tree, hf_radiotap_length,
+ tvb, 2, 2, length);
+ }
+
+ data = ep_tvb_memdup(tvb, 0, length);
+ if (!data)
+ return;
+
+ if (ieee80211_radiotap_iterator_init(&iter, data, length, NULL)) {
+ if (tree)
+ proto_item_append_text(ti, " (invalid)");
+ /* maybe the length was correct anyway ... */
+ goto hand_off_to_80211;
+ }
+
+ iter.overrides = overrides;
+ iter.n_overrides = n_overrides;
+
+ /* Add the "present flags" bitmaps. */
+ if (tree) {
+ guchar *bmap_start = (guchar *) data + 4;
+ guint n_bitmaps = (guint)(iter.this_arg - bmap_start) / 4;
+ guint i;
+ gboolean rtap_ns, rtap_ns_next = TRUE;
+ guint rtap_ns_offset, rtap_ns_offset_next = 0;
+
+ pt = proto_tree_add_item(radiotap_tree, hf_radiotap_present,
+ tvb, 4, n_bitmaps * 4,
+ ENC_NA);
+
+ for (i = 0; i < n_bitmaps; i++) {
+ guint32 bmap = pletohl(bmap_start + 4 * i);
+
+ rtap_ns_offset = rtap_ns_offset_next;
+ rtap_ns_offset_next += 32;
+
+ present_tree =
+ proto_item_add_subtree(pt, ett_radiotap_present);
+
+ offset = 4 * i;
+
+ rtap_ns = rtap_ns_next;
+
+ /* Evaluate what kind of namespaces will come next */
+ if (bmap & BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE)) {
+ rtap_ns_next = TRUE;
+ rtap_ns_offset_next = 0;
+ }
+ if (bmap & BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE))
+ rtap_ns_next = FALSE;
+ if ((bmap & (BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE) |
+ BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)))
+ == (BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE) |
+ BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)))
+ goto malformed;
+
+ if (!rtap_ns)
+ goto always_bits;
+
+ /* Currently, we don't know anything about bits >= 32 */
+ if (rtap_ns_offset)
+ goto always_bits;
+
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_tsft, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_flags, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_rate, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_channel, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_fhss, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_dbm_antsignal,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_dbm_antnoise,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_lock_quality,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_tx_attenuation,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_db_tx_attenuation,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_dbm_tx_power,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_antenna, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_db_antsignal,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_db_antnoise,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ if (radiotap_bit14_fcs) {
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_hdrfcs,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ } else {
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_rxflags,
+ tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
+ }
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_xchannel, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_mcs, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ always_bits:
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_rtap_ns, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_vendor_ns, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(present_tree,
+ hf_radiotap_present_ext, tvb,
+ offset + 4, 4, ENC_LITTLE_ENDIAN);
+ }
+ }
+
+ while (!(err = ieee80211_radiotap_iterator_next(&iter))) {
+ offset = (int)((guchar *) iter.this_arg - (guchar *) data);
+
+ if (iter.this_arg_index == IEEE80211_RADIOTAP_VENDOR_NAMESPACE
+ && tree) {
+ proto_tree *vt, *ven_tree = NULL;
+ const gchar *manuf_name;
+ guint8 subns;
+
+ manuf_name = tvb_get_manuf_name(tvb, offset);
+ subns = tvb_get_guint8(tvb, offset+3);
+
+ vt = proto_tree_add_bytes_format(radiotap_tree,
+ hf_radiotap_vendor_ns,
+ tvb, offset,
+ iter.this_arg_size,
+ NULL,
+ "Vendor namespace: %s-%d",
+ manuf_name, subns);
+ ven_tree = proto_item_add_subtree(vt, ett_radiotap_vendor);
+ proto_tree_add_bytes_format(ven_tree,
+ hf_radiotap_ven_oui, tvb,
+ offset, 3, NULL,
+ "Vendor: %s", manuf_name);
+ proto_tree_add_item(ven_tree, hf_radiotap_ven_subns,
+ tvb, offset + 3, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(ven_tree, hf_radiotap_ven_skip, tvb,
+ offset + 4, 2, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(ven_tree, hf_radiotap_ven_data, tvb,
+ offset + 6, iter.this_arg_size - 6,
+ ENC_NA);
+ }
+
+ if (!iter.is_radiotap_ns)
+ continue;
+
+ switch (iter.this_arg_index) {
+ case IEEE80211_RADIOTAP_TSFT:
+ radiotap_info->tsft = tvb_get_letoh64(tvb, offset);
+ if (tree) {
+ proto_tree_add_uint64(radiotap_tree,
+ hf_radiotap_mactime, tvb,
+ offset, 8,
+ radiotap_info->tsft);
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_FLAGS: {
+ proto_tree *flags_tree;
+
+ rflags = tvb_get_guint8(tvb, offset);
+ if (tree) {
+ ft = proto_tree_add_item(radiotap_tree,
+ hf_radiotap_flags,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ flags_tree =
+ proto_item_add_subtree(ft,
+ ett_radiotap_flags);
+
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_cfp,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_preamble,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_wep,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_frag,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_fcs,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_datapad,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_badfcs,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(flags_tree,
+ hf_radiotap_flags_shortgi,
+ tvb, offset, 1, ENC_BIG_ENDIAN);
+ }
+ break;
+ }
+
+ case IEEE80211_RADIOTAP_RATE:
+ rate = tvb_get_guint8(tvb, offset);
+ /*
+ * XXX On FreeBSD rate & 0x80 means we have an MCS. On
+ * Linux and AirPcap it does not. (What about
+ * Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?)
+ *
+ * This is an issue either for proprietary extensions
+ * to 11a or 11g, which do exist, or for 11n
+ * implementations that stuff a rate value into
+ * this field, which also appear to exist.
+ *
+ * We currently handle that by assuming that
+ * if the 0x80 bit is set *and* the remaining
+ * bits have a value between 0 and 15 it's
+ * an MCS value, otherwise it's a rate. If
+ * there are cases where systems that use
+ * "0x80 + MCS index" for MCS indices > 15,
+ * or stuff a rate value here between 64 and
+ * 71.5 Mb/s in here, we'll need a preference
+ * setting. Such rates do exist, e.g. 11n
+ * MCS 7 at 20 MHz with a long guard interval.
+ */
+ if (rate >= 0x80 && rate <= 0x8f) {
+ /*
+ * XXX - we don't know the channel width
+ * or guard interval length, so we can't
+ * convert this to a data rate.
+ *
+ * If you want us to show a data rate,
+ * use the MCS field, not the Rate field;
+ * the MCS field includes not only the
+ * MCS index, it also includes bandwidth
+ * and guard interval information.
+ *
+ * XXX - can we get the channel width
+ * from XChannel and the guard interval
+ * information from Flags, at least on
+ * FreeBSD?
+ */
+ if (tree) {
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_mcs_index,
+ tvb, offset, 1,
+ rate & 0x7f);
+ }
+ } else {
+ col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%d.%d",
+ rate / 2, rate & 1 ? 5 : 0);
+ if (tree) {
+ proto_tree_add_float_format(radiotap_tree,
+ hf_radiotap_datarate,
+ tvb, offset, 1,
+ (float)rate / 2,
+ "Data Rate: %.1f Mb/s",
+ (float)rate / 2);
+ }
+ radiotap_info->rate = rate;
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_CHANNEL: {
+ proto_item *it;
+ proto_tree *flags_tree;
+ gchar *chan_str;
+
+ if (tree) {
+ freq = tvb_get_letohs(tvb, offset);
+ flags = tvb_get_letohs(tvb, offset + 2);
+ chan_str = ieee80211_mhz_to_str(freq);
+ col_add_fstr(pinfo->cinfo,
+ COL_FREQ_CHAN, "%s", chan_str);
+ proto_tree_add_uint_format(radiotap_tree,
+ hf_radiotap_channel_frequency,
+ tvb, offset, 2, freq,
+ "Channel frequency: %s",
+ chan_str);
+ g_free(chan_str);
+ /* We're already 2-byte aligned. */
+ it = proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_channel_flags,
+ tvb, offset + 2, 2, flags);
+ flags_tree =
+ proto_item_add_subtree(it,
+ ett_radiotap_channel_flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_turbo,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_cck,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_ofdm,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_2ghz,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_5ghz,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_passive,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_dynamic,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_gfsk,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_gsm,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_sturbo,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_half,
+ tvb, offset + 3, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_channel_flags_quarter,
+ tvb, offset + 3, 1, flags);
+ radiotap_info->freq = freq;
+ radiotap_info->flags = flags;
+ }
+ break;
+ }
+
+ case IEEE80211_RADIOTAP_FHSS:
+ proto_tree_add_item(radiotap_tree,
+ hf_radiotap_fhss_hopset, tvb,
+ offset, 1, ENC_BIG_ENDIAN);
+ proto_tree_add_item(radiotap_tree,
+ hf_radiotap_fhss_pattern, tvb,
+ offset, 1, ENC_BIG_ENDIAN);
+ break;
+
+ case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
+ dbm = (gint8) tvb_get_guint8(tvb, offset);
+ col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", dbm);
+ if (tree) {
+ proto_tree_add_int_format(radiotap_tree,
+ hf_radiotap_dbm_antsignal,
+ tvb, offset, 1, dbm,
+ "SSI Signal: %d dBm",
+ dbm);
+ }
+ radiotap_info->dbm_antsignal = dbm;
+ break;
+
+ case IEEE80211_RADIOTAP_DBM_ANTNOISE:
+ dbm = (gint8) tvb_get_guint8(tvb, offset);
+ if (tree) {
+ proto_tree_add_int_format(radiotap_tree,
+ hf_radiotap_dbm_antnoise,
+ tvb, offset, 1, dbm,
+ "SSI Noise: %d dBm",
+ dbm);
+ }
+ radiotap_info->dbm_antnoise = dbm;
+ break;
+
+ case IEEE80211_RADIOTAP_LOCK_QUALITY:
+ if (tree) {
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_quality, tvb,
+ offset, 2,
+ tvb_get_letohs(tvb,
+ offset));
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_TX_ATTENUATION:
+ proto_tree_add_item(radiotap_tree,
+ hf_radiotap_tx_attenuation, tvb,
+ offset, 2, ENC_BIG_ENDIAN);
+ break;
+
+ case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
+ proto_tree_add_item(radiotap_tree,
+ hf_radiotap_db_tx_attenuation, tvb,
+ offset, 2, ENC_BIG_ENDIAN);
+ break;
+
+ case IEEE80211_RADIOTAP_DBM_TX_POWER:
+ if (tree) {
+ proto_tree_add_int(radiotap_tree,
+ hf_radiotap_txpower, tvb,
+ offset, 1,
+ tvb_get_guint8(tvb, offset));
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_ANTENNA:
+ if (tree) {
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_antenna, tvb,
+ offset, 1,
+ tvb_get_guint8(tvb,
+ offset));
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
+ db = tvb_get_guint8(tvb, offset);
+ col_add_fstr(pinfo->cinfo, COL_RSSI, "%u dB", db);
+ if (tree) {
+ proto_tree_add_uint_format(radiotap_tree,
+ hf_radiotap_db_antsignal,
+ tvb, offset, 1, db,
+ "SSI Signal: %u dB",
+ db);
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_DB_ANTNOISE:
+ db = tvb_get_guint8(tvb, offset);
+ if (tree) {
+ proto_tree_add_uint_format(radiotap_tree,
+ hf_radiotap_db_antnoise,
+ tvb, offset, 1, db,
+ "SSI Noise: %u dB",
+ db);
+ }
+ break;
+
+ case IEEE80211_RADIOTAP_RX_FLAGS: {
+ proto_tree *flags_tree;
+
+ if (radiotap_bit14_fcs) {
+ if (tree) {
+ sent_fcs = tvb_get_ntohl(tvb, offset);
+ hdr_fcs_ti = proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_fcs, tvb,
+ offset, 4, sent_fcs);
+ hdr_fcs_offset = offset;
+ }
+ } else {
+ proto_item *it;
+
+ if (tree) {
+ flags = tvb_get_letohs(tvb, offset);
+ it = proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_rxflags,
+ tvb, offset, 2, flags);
+ flags_tree =
+ proto_item_add_subtree(it,
+ ett_radiotap_rxflags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_rxflags_badplcp,
+ tvb, offset, 1, flags);
+ }
+ }
+ break;
+ }
+
+ case IEEE80211_RADIOTAP_XCHANNEL: {
+ proto_item *it;
+ proto_tree *flags_tree;
+
+ if (tree) {
+ int channel;
+
+ flags = tvb_get_letohl(tvb, offset);
+ freq = tvb_get_letohs(tvb, offset + 4);
+ channel = tvb_get_guint8(tvb, offset + 6);
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_xchannel,
+ tvb, offset + 6, 1,
+ (guint32) channel);
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_xchannel_frequency,
+ tvb, offset + 4, 2, freq);
+ it = proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_xchannel_flags,
+ tvb, offset + 0, 4, flags);
+ flags_tree =
+ proto_item_add_subtree(it, ett_radiotap_xchannel_flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_turbo,
+ tvb, offset + 0, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_cck,
+ tvb, offset + 0, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_ofdm,
+ tvb, offset + 0, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_2ghz,
+ tvb, offset + 0, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_5ghz,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_passive,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_dynamic,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_gfsk,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_gsm,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_sturbo,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_half,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_quarter,
+ tvb, offset + 1, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_ht20,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_ht40u,
+ tvb, offset + 2, 1, flags);
+ proto_tree_add_boolean(flags_tree,
+ hf_radiotap_xchannel_flags_ht40d,
+ tvb, offset + 2, 1, flags);
+#if 0
+ proto_tree_add_uint(radiotap_tree,
+ hf_radiotap_xchannel_maxpower,
+ tvb, offset + 7, 1, maxpower);
+#endif
+ }
+ break;
+ }
+ case IEEE80211_RADIOTAP_MCS: {
+ proto_item *it;
+ proto_tree *mcs_tree = NULL, *mcs_known_tree;
+ guint8 mcs_known, mcs_flags;
+ guint8 mcs;
+ guint bandwidth;
+ guint gi_length;
+ gboolean can_calculate_rate;
+
+ /*
+ * Start out assuming that we can calculate the rate;
+ * if we are missing any of the MCS index, channel
+ * width, or guard interval length, we can't.
+ */
+ can_calculate_rate = TRUE;
+
+ mcs_known = tvb_get_guint8(tvb, offset);
+ mcs_flags = tvb_get_guint8(tvb, offset + 1);
+ mcs = tvb_get_guint8(tvb, offset + 2);
+
+ if (tree) {
+ it = proto_tree_add_item(radiotap_tree, hf_radiotap_mcs,
+ tvb, offset, 3, ENC_NA);
+ mcs_tree = proto_item_add_subtree(it, ett_radiotap_mcs);
+ it = proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_known,
+ tvb, offset, 1, mcs_known);
+ mcs_known_tree = proto_item_add_subtree(it, ett_radiotap_mcs_known);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_bw,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_index,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_gi,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_format,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_fec,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ proto_tree_add_item(mcs_known_tree, hf_radiotap_mcs_have_stbc,
+ tvb, offset, 1, ENC_LITTLE_ENDIAN);
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW) {
+ bandwidth = ((mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK) == IEEE80211_RADIOTAP_MCS_BW_40) ?
+ 1 : 0;
+ if (mcs_tree)
+ proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_bw,
+ tvb, offset + 1, 1, mcs_flags);
+ } else {
+ bandwidth = 0;
+ can_calculate_rate = FALSE; /* no bandwidth */
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI) {
+ gi_length = (mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) ?
+ 1 : 0;
+ if (mcs_tree)
+ proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_gi,
+ tvb, offset + 1, 1, mcs_flags);
+ } else {
+ gi_length = 0;
+ can_calculate_rate = FALSE; /* no GI width */
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_FMT) {
+ if (mcs_tree)
+ proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_format,
+ tvb, offset + 1, 1, mcs_flags);
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_FEC) {
+ if (mcs_tree)
+ proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_fec,
+ tvb, offset + 1, 1, mcs_flags);
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_STBC) {
+ if (mcs_tree)
+ proto_tree_add_boolean(mcs_tree, hf_radiotap_mcs_stbc,
+ tvb, offset + 1, 1, mcs_flags);
+ }
+ if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS) {
+ if (mcs_tree)
+ proto_tree_add_uint(mcs_tree, hf_radiotap_mcs_index,
+ tvb, offset + 2, 1, mcs);
+ } else
+ can_calculate_rate = FALSE; /* no MCS index */
+
+ /*
+ * If we have the MCS index, channel width, and
+ * guard interval length, and the MCS index is
+ * valid, we can compute the rate. If the resulting
+ * rate is non-zero, report it. (If it's zero,
+ * it's an MCS/channel width/GI combination that
+ * 802.11n doesn't support.)
+ */
+ if (can_calculate_rate && mcs <= MAX_MCS_INDEX
+ && ieee80211_float_htrates[mcs][bandwidth][gi_length] != 0.0) {
+ col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%.1f",
+ ieee80211_float_htrates[mcs][bandwidth][gi_length]);
+ if (tree) {
+ rate_ti = proto_tree_add_float_format(radiotap_tree,
+ hf_radiotap_datarate,
+ tvb, offset, 3,
+ ieee80211_float_htrates[mcs][bandwidth][gi_length],
+ "Data Rate: %.1f Mb/s",
+ ieee80211_float_htrates[mcs][bandwidth][gi_length]);
+ PROTO_ITEM_SET_GENERATED(rate_ti);
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ if (err != -ENOENT && tree) {
+ malformed:
+ proto_item_append_text(ti, " (malformed)");
+ }
+
+ /* This handles the case of an FCS exiting at the end of the frame. */
+ if (rflags & IEEE80211_RADIOTAP_F_FCS)
+ pinfo->pseudo_header->ieee_802_11.fcs_len = 4;
+ else
+ pinfo->pseudo_header->ieee_802_11.fcs_len = 0;
+
+ hand_off_to_80211:
+ /* Grab the rest of the frame. */
+ next_tvb = tvb_new_subset_remaining(tvb, length);
+
+ /* If we had an in-header FCS, check it.
+ * This can only happen if the backward-compat configuration option
+ * is chosen by the user. */
+ if (hdr_fcs_ti) {
+ /* It would be very strange for the header to have an FCS for the
+ * frame *and* the frame to have the FCS at the end, but it's possible, so
+ * take that into account by using the FCS length recorded in pinfo. */
+
+ /* Watch out for [erroneously] short frames */
+ if (tvb_length(next_tvb) >
+ (unsigned int)pinfo->pseudo_header->ieee_802_11.fcs_len) {
+ calc_fcs =
+ crc32_802_tvb(next_tvb,
+ tvb_length(next_tvb) -
+ pinfo->pseudo_header->ieee_802_11.fcs_len);
+
+ /* By virtue of hdr_fcs_ti being set, we know that 'tree' is set,
+ * so there's no need to check it here. */
+ if (calc_fcs == sent_fcs) {
+ proto_item_append_text(hdr_fcs_ti,
+ " [correct]");
+ } else {
+ proto_item_append_text(hdr_fcs_ti,
+ " [incorrect, should be 0x%08x]",
+ calc_fcs);
+ hidden_item =
+ proto_tree_add_boolean(radiotap_tree,
+ hf_radiotap_fcs_bad,
+ tvb, hdr_fcs_offset,
+ 4, TRUE);
+ PROTO_ITEM_SET_HIDDEN(hidden_item);
+ }
+ } else {
+ proto_item_append_text(hdr_fcs_ti,
+ " [cannot verify - not enough data]");
+ }
+ }
+
+ /* dissect the 802.11 header next */
+ call_dissector((rflags & IEEE80211_RADIOTAP_F_DATAPAD) ?
+ ieee80211_datapad_handle : ieee80211_handle,
+ next_tvb, pinfo, tree);
+
+ tap_queue_packet(radiotap_tap, pinfo, radiotap_info);
+}
+
+void proto_reg_handoff_radiotap(void)
+{
+ dissector_handle_t radiotap_handle;
+
+ /* handle for 802.11 dissector */
+ ieee80211_handle = find_dissector("wlan");
+ ieee80211_datapad_handle = find_dissector("wlan_datapad");
+
+ radiotap_handle = find_dissector("radiotap");
+
+ dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_RADIOTAP,
+ radiotap_handle);
+}
+
+/*
+ * Editor modelines - http://www.wireshark.org/tools/modelines.html
+ *
+ * Local variables:
+ * c-basic-offset: 8
+ * tab-width: 8
+ * indent-tabs-mode: t
+ * End:
+ *
+ * vi: set shiftwidth=8 tabstop=8 noexpandtab:
+ * :indentSize=8:tabSize=8:noTabs=false:
+ */