summaryrefslogtreecommitdiff
path: root/src/Camera.java
blob: a3e3a4397d15e1d3b1b4b0e0964648c46f469b04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

import robotrace.Vector;
import static java.lang.Math.*;
import robotrace.GlobalState;

/**
 * Implementation of a camera with a position and orientation.
 */
class Camera {

    /** The position of the camera. */
    public Vector eye = new Vector(3f, 6f, 5f);

    /** The point to which the camera is looking. */
    public Vector center = Vector.O;

    /** The up vector. */
    public Vector up = Vector.Z;

    /** Race track used. */
    private RaceTrack track;

    /**
     * A reference to the global game state from RobotRace.
     */
    private final GlobalState gs;

    /**
     * Robots that are to be tracked by the camera.
     */
    private final Robot[] robots;

    public Camera(GlobalState gs, RaceTrack track, Robot[] robots) {
        this.gs = gs;
        this.track = track;
        this.robots = robots;
    }

    /**
     * Updates the camera viewpoint and direction based on the
     * selected camera mode.
     */
    public void update(int mode) {
        if (1 == mode) { // Helicopter mode
            setHelicopterMode();
        } else if (2 == mode) { // Motor cycle mode
            setMotorCycleMode();
        } else if (3 == mode) { // First person mode
            setFirstPersonMode();
        } else if (4 == mode) { // Auto mode
            setAutoMode();
        } else { // Default mode
            setDefaultMode();
        }
    }

    /**
     * Computes {@code eye}, {@code center}, and {@code up}, based
     * on the camera's default mode.
     */
    private void setDefaultMode() {
        /*        z |
         *          |   vDist %
         *          |    %    * Ez
         *          |%________*________ y
         *      Ex /    %     *
         *      /        s %  *
         * x /  - - - - - - - *
         *           Ey
         * phi is angle between vDist and XY plane (Z direction)
         * theta is angle between X-axis and s (XY plane)
         * E = (Ex, Ey, Ez)
         * sin phi  = Ez / vDist => Ez = vDist * sin phi
         * cos phi = s / vDist => s = vDist * cos phi
         * Ex = s * sin theta
         * Ey = s * cos theta
         */
        float Ex, Ey, Ez, s;
        Ez = gs.vDist * (float) sin(gs.phi);
        s = gs.vDist * (float) cos(gs.phi);
        Ex = s * (float) sin(gs.theta);
        Ey = s * (float) cos(gs.theta);

        eye = new Vector(Ex, Ey, Ez);

        // WASD action: center point and eye point translate
        double Cx, Cy, Cz;
        // x and y are swapped because robot looks in y direction
        Cx = -gs.cnt.y();
        Cy = gs.cnt.x();
        Cz = gs.cnt.z();
        center = new Vector(Cx, Cy, Cz);
        eye = eye.add(center);

        // just look straight forward
        up = Vector.Z;
    }

    /**
     * Computes {@code eye}, {@code center}, and {@code up}, based
     * on the helicopter mode.
     */
    private void setHelicopterMode() {
        /**
         * In the Helicopter view, the camera (eye point) is located above the
         * robots.
         */
        Robot focus = getFocusedRobot();

        // center at the chosen robot.
        center = track.getPointForLane(focus.getTimePos(), focus.getLane());

        /* look in the direction where the robots walks, namely the tangent
         Add the actual robot position to the tangent vector, and calculate
         the normal vector based on the resulting vector. This is the up vector. */
        Vector robotPos = track.getPointForLane(focus.getTimePos(),
                focus.getLane());
        Vector robotTangent = track.getTangent(focus.getTimePos());
        Vector totalVector = robotTangent.add(robotPos);

        up = new Vector(-totalVector.y(), totalVector.x(), 0);

        // "above" is 10 meters.
        eye = center.add(new Vector(0, 0, 10f));
    }

    /**
     * Computes {@code eye}, {@code center}, and {@code up}, based
     * on the motorcycle mode.
     */
    private void setMotorCycleMode() {
        /**
         * In the Motor Cycle view, the camera is at the side of a track,
         * following the robots.
         */
        Robot focus = getFocusedRobot();

        // Center at the focused robot.
        center = track.getPointForLane(focus.getTimePos(), focus.getLane());

        // We are looking at the robot from the side.
        up = Vector.Z;

        // look at a distance of 10 meters from the center of the first lane
        eye = track.getPointForLane(focus.getTimePos(), 10);
        // assume that the motor camera is one meter above the race track.
        eye = eye.add(new Vector(0, 0, 1f));
    }

    /**
     * Computes {@code eye}, {@code center}, and {@code up}, based
     * on the first person mode.
     */
    private void setFirstPersonMode() {
        /**
         * First person mode: look from the slowest robot forward.
         */
        Robot focus = getSlowestRobot();

        // trivial: looks from the robot POV.
        eye = track.getPointForLane(focus.getTimePos(), focus.getLane());
        // robots are two meter, look from head.
        eye = eye.add(new Vector(0, 0, 2f));

        // The question is similar to question 2b of the intermediate test
        // http://www.win.tue.nl/~vanwijk/2IV60/2IV60_test_exam_161213_answers.pdf
        // C(t) = E(t) + P'(t) (P'(t) is the tangent vector).
        Vector robotTangent = track.getTangent(focus.getTimePos());

        // look at a point one meter in front of the robot
        // TODO: this gets badly messed up when perspective is modified
        center = eye.add(robotTangent);

        // trivial: look forward, so up vector points up.
        up = Vector.Z;
    }

    /**
     * Alternates between the available camera modes.
     */
    private void setAutoMode() {
        double slowest_pos = robots[0].getTimePos();
        double fastest_pos = robots[0].getTimePos();
        for (Robot robot : robots) {
            slowest_pos = Math.min(slowest_pos, robot.getTimePos());
            fastest_pos = Math.max(fastest_pos, robot.getTimePos());
        }
        double distance = Robot.racepost2meter(fastest_pos - slowest_pos);
        System.err.println("dist+" + distance);
        // the helicopter view is more suitable if robots are more distant
        if (distance > 5) {
            setHelicopterMode();
        } else {
            setMotorCycleMode();
        }
    }

    /**
     * Returns the robot on which the camera is focused.
     */
    private Robot getFocusedRobot() {
        Robot selected = robots[0];
        for (Robot robot : robots) {
            // Many possibilities here, fastest, slowest, loser, winner...
            if (selected.getSpeed() < robot.getSpeed()) {
                // select the fastest accelerating robot.
                selected = robot;
            }
        }
        return selected;
    }

    /**
     * Returns the robots which has the lowest Global State Time position.
     */
    private Robot getSlowestRobot() {
        Robot slowest = robots[0];
        for (Robot robot : robots) {
            if (robot.getTimePos() < slowest.getTimePos()) {
                slowest = robot;
            }
        }
        return slowest;
    }
}