summaryrefslogtreecommitdiff
path: root/src/RaceTrack.java
blob: 66621969e70e08b4adbd37e921f3ec519503cbd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

import java.awt.Color;
import robotrace.Vector;
import static java.lang.Math.*;
import static javax.media.opengl.GL2.*;

/**
 * Implementation of a race track that is made from Bezier segments.
 */
class RaceTrack extends BetterBase {
    /**
     * Half-width of the ellipse.
     */
    protected static final double ELLIPSE_A = 10;

    /**
     * Half-height of the ellipse.
     */
    protected static final double ELLIPSE_B = 14;

    /**
     * Number of segments for the race track.
     */
    private final double SEGMENTS = 180;

    /**
     * Array with control points for the O-track.
     */
    private final Vector[] controlPointsOTrack;

    /**
     * Array with control points for the L-track.
     */
    private Vector[] controlPointsLTrack;

    /**
     * Array with control points for the C-track.
     */
    private Vector[] controlPointsCTrack;

    /**
     * Array with control points for the custom track.
     */
    private Vector[] controlPointsCustomTrack;
    private Vector[] selectedControlPoints;
    private final RobotRace race;
    /**
     * Debug option: set to true to show control points.
     */
    private static final boolean drawControlPoints = true;

    /**
     * Constructs the race track, sets up display lists.
     */
    public RaceTrack(RobotRace race) {
        this.race = race;

        // points are chosen such that the boundaries of a quarter lay
        // on a straight line (to get second-order continuity).
        // top  #---#|--#        this is the first control point of top-left,
        // left     ^- - - - - - and the last of top-right
        //   #         top  #
        //   |        right |       (^ then continue anti-clockwise)
        //   -              |
        //   #              # <- - - begin here (top-right)
        //   |              -
        //   |    bottom    |
        //   # left   right #
        //      #--|#---#
        controlPointsOTrack = new Vector[] {
            // top-right
            new Vector( 15,   0, 1),
            new Vector( 15,   8, 1),
            new Vector(  8,  15, 1),

            // top-left
            new Vector(  0,  15, 1),
            new Vector( -8,  15, 1),
            new Vector(-15,   8, 1),

            // bottom-left
            new Vector(-15,   0, 1),
            new Vector(-15,  -8, 1),
            new Vector( -8, -15, 1),

            // bottom-right
            new Vector(  0, -15, 1),
            new Vector(  8, -15, 1),
            new Vector( 15,  -8, 1),
        };
    }

    /**
     * Draws this track, based on the selected track number.
     */
    public void draw(int trackNr) {
        // The test track is selected
        if (0 == trackNr) {
            drawTestTrack();
        } else if (1 == trackNr) { // The O-track is selected
            drawTrack(controlPointsOTrack);
        } else if (2 == trackNr) { // The L-track is selected
            drawTrack(controlPointsLTrack);
        } else if (3 == trackNr) { // The C-track is selected
            drawTrack(controlPointsCTrack);
        } else if (4 == trackNr) { // The custom track is selected
            drawTrack(controlPointsOTrack);
        }
    }

    /**
     * Returns the position of the curve at 0 <= {@code t} <= 1.
     */
    public Vector getPoint(double t) {
        return new Vector(ELLIPSE_A * cos(2 * PI * t),
                          ELLIPSE_B * sin(2 * PI * t),
                          1);
    }

    /**
     * Returns the position of the curve at 0 &lt;= {@code t} &lt;= 1 and
     * the center of a lane at lane 1 &lt;= laneNo &lt;= (number of robots).
     */
    public Vector getPointForLane(double t, double laneNo) {
        Vector p = getPoint(t);
        Vector lanes_len = new Vector(p.x(), p.y(), 0).normalized().scale(laneNo + .5);
        return p.add(lanes_len);
    }

    /**
     * Returns the tangent of the curve at 0 <= {@code t} <= 1.
     */
    public Vector getTangent(double t) {
        /* 
         * Given a vector (-Y/B^2, X/A^2, 0) where X and Y are the coordinates 
         * of the point p on the ellipse. A is the HALFWIDTH of the ellipse and 
         * B is the HALFHEIGHT of the ellipse. 
         * 
         * Vector (X/A^2, Y/B^2, 0) is the normal vector through point p
         * and the center of the ellipse. Because the X and Y coordinates
         * are divided by the width and height of the ellipse, everything is
         * "normalized" to a circle. Hence a line through the origin and a point
         * p describes a normal vector for a point p on the ellipse. 
         * 
         * Since the dot product of the latter vector and the first (tangent) 
         * vector results in zero, we can say the normal vector is perpendicular
         * to the tangent vector. And because of that, the first vector 
         * describes the tangent vector of point p. 
         */
        Vector p = getPoint(t);
        return new Vector(-p.y() / (ELLIPSE_A * ELLIPSE_A),
                          p.x() / (ELLIPSE_B * ELLIPSE_B),
                          0).normalized();
    }

    private void drawTestTrack() {
        /* A track segment looks like:
         *         B----------------------------D   "outside top"
         *       / :                           /|
         *     /   G- - - - - - - - - - - - -/--H   "outside bottom"
         *   /                            /
         * A----------------------------C  "inside top"
         * |                            |
         * E----------------------------F  "inside bottom"
         * ^-- t = t0                   ^-- t = t0 + 1
         * Assume point A the inner point of the race track. Draw quads from
         * EF (starting point) to AC, BD, GH.
         */
        // previous points
        Vector point_A = null, point_B = null, point_E = null, point_G = null;

        for (double i = 0; i <= SEGMENTS; ++i) {
            double t = i / SEGMENTS;
            Vector point_C = getPoint(t);
            // the outer side is located on the number of lanes (4) shifted from
            // the center to the side (minus 0.5).
            Vector point_D = getPointForLane(t, 3.5);
            // Z=1 to Z=-1
            Vector point_F = point_C.subtract(new Vector(0, 0, 2));
            Vector point_H = point_D.subtract(new Vector(0, 0, 2));

            // initially, there are no "previous" vectors to use as start.
            if (i > 0) {
                Vector norm_outside = new Vector(point_E.x(), point_E.y(), 0).normalized();
                Vector norm_inside = norm_outside.scale(-1).normalized();
                Vector norm_up = Vector.Z;

                // Set brick texture
                if (race.enableTextures) {
                    race.getBrickTexture().bind(gl);
                }

                // Draw track walls
                gl.glBegin(GL_QUADS);
                setColor(Color.RED);
                // inside bottom
                glNormal(norm_inside);
                gl.glTexCoord2f(0, 0);
                glVertex(point_E);
                gl.glTexCoord2f(1, 0);
                glVertex(point_F);
                setColor(Colors.PALE_TURQOISE);
                // inside top
                glNormal(norm_up.add(norm_inside).normalized());
                gl.glTexCoord2f(1, 1);
                glVertex(point_C);
                gl.glTexCoord2f(0, 1);
                glVertex(point_A);

                // outside bottom
                glNormal(norm_outside);
                gl.glTexCoord2f(0, 0);
                glVertex(point_G);
                gl.glTexCoord2f(1, 0);
                glVertex(point_H);
                // outside top
                glNormal(norm_up.add(norm_outside).normalized());
                gl.glTexCoord2f(1, 1);
                glVertex(point_D);
                gl.glTexCoord2f(0, 1);
                glVertex(point_B);
                gl.glEnd();

                if (race.enableTextures) {
                    race.getTrackTexture().bind(gl);
                }

                // Draw track itself
                // Every 20 segments a distance line is drawn,
                // and at the start, a start line is drawn. 
                gl.glBegin(GL_QUADS);
                glNormal(Vector.Z);
                gl.glTexCoord2f(i == 1 ? 0 : 0.2f, 0);
                glVertex(point_A);
                gl.glTexCoord2f(i % 20 == 0 && i != SEGMENTS ? 1f : 0.8f, 0);
                glVertex(point_C);
                gl.glTexCoord2f(i % 20 == 0 && i != SEGMENTS ? 1f : 0.8f, 1f);
                glVertex(point_D);
                gl.glTexCoord2f(i == 1 ? 0 : 0.2f, 1f);
                glVertex(point_B);
                gl.glEnd();
            }

            unbindTextures();

            // save points for next draw round
            point_E = point_F;
            point_A = point_C;
            point_B = point_D;
            point_G = point_H;
        }
    }

    /**
     * Draw a closed race track.
     *
     * @param pts Control points.
     */
    private void drawTrack(Vector[] pts) {
        if (pts == null) {
            System.err.println("not implemented points");
            return;
        }

        assert pts.length % 3 == 0 : "Multiple of three control points required";

        int number_of_segments = pts.length / 3;
        // number of "u" units per segment
        double segment_size = 1.0 / number_of_segments;

        gl.glLineWidth(5);
        gl.glBegin(GL_LINE_STRIP);
        for (double i = 0; i <= SEGMENTS; ++i) {
            double u = i / SEGMENTS;
            int segment_number = (int) ((i / (SEGMENTS + 1)) / segment_size);
            int start = 3 * segment_number;
            double segment_u = u - segment_number * segment_size;
            // scale the part to 0.0 to 0.1
            segment_u *= number_of_segments;

            assert segment_u >= 0.0 && segment_u <= 1.0 : "Segment out of bounds";
            Vector bezierPt = getCubicBezierPnt(segment_u, pts, start);
            gl.glColor4d(1.0, 0.0, segment_number, .8);
            glVertex(bezierPt);
        }
        gl.glEnd();

        if (drawControlPoints) {
            // draw control points
            gl.glPointSize(10);
            gl.glBegin(GL_POINTS);
            for (int i = 0; i < pts.length; i++) {
                double color = ((double) i / 3.0);
                gl.glColor3d(0.0, color, 1.0);
                glVertex(pts[i]);
            }
            gl.glEnd();
        }
    }

    /**
     * Obtains a cubic Bézier segment from points P0, P1, P2 and P3 for
     * parameter value t.
     */
    public static Vector getCubicBezierPnt(double t, Vector P0, Vector P1,
                                                     Vector P2, Vector P3) {
        // the factorials for the Bézier blending functions (Bernstein
        // polynomials) with n=3 are pre-calculated.
        // P(u) =      (1 - u)^3    . P0 +
        //        3u   (1 - u)^2    . P1 +
        //        3u^2 (1 - u)      . P2 +
        //         u^3              . P3
        // Implementation note: Vector is instantiated 7 times!
        return   P0.scale(                pow(1 - t, 3))    // k = 0
            .add(P1.scale(3 *     t     * pow(1 - t, 2)))   // k = 1
            .add(P2.scale(3 * pow(t, 2) *    (1 - t)))      // k = 2
            .add(P3.scale(    pow(t, 3)));                  // k = 3
    }

    /**
     * Obtains a point on the Bézier curve from points P, starting at index i.
     */
    public static Vector getCubicBezierPnt(double t, Vector[] P, int i) {
        Vector P4 = P[(i + 3) % P.length];
        return getCubicBezierPnt(t, P[i], P[i + 1], P[i + 2], P4);
    }

    /**
     * Evaluate the tangent of a cubic Bézier segment from points P0, P2, P2 and
     * P3 for parameter value t.
     */
    public static Vector getCubicBezierTng(double t, Vector P0, Vector P1,
                                                     Vector P2, Vector P3) {
        // The tangent is the derivative of the Bézier curve P(t).
        // dP(u) / du =  3  (1 - u)^2               . P0 +
        //              (3  (1 - u)^2 + 6u (1 - u)) . P1 +
        //              (6u (1 - u) - 3u^2)         . P2 +
        //               3u^2                       . P3
        //            =  3   (1 - u)^2  . P0 +
        //                   (3 - 3u^2) . P1 +
        //                  (6u - 9u^2) . P2 +
        //                        3u^2  . P3
        return       P0.scale(3 *                 pow(1 - t, 2))
                .add(P1.scale(3     - 3 * t * t))
                .add(P2.scale(6 * t + 9 * t * t))
                .add(P3.scale(3 *         t * t));
    }
}