summaryrefslogtreecommitdiff
path: root/Venus_Skeleton/libs/TrueRandom/TrueRandom.cpp
blob: 61920d006a5448c94962ba08cd51bb39dcdfb79a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/**
 * TrueRandom - A true random number generator for Arduino.
 *
 * Copyright (c) 2010 Peter Knight, Tinker.it! All rights reserved.
 */

#include <avr/io.h>
#include "TrueRandom.h"

int TrueRandomClass::randomBitRaw(void) {
  uint8_t copyAdmux, copyAdcsra, copyAdcsrb, copyPortc, copyDdrc;
  uint16_t i;
  uint8_t bit;
  volatile uint8_t dummy;
  
  // Store all the registers we'll be playing with
  copyAdmux = ADMUX;
  copyAdcsra = ADCSRA;
  copyAdcsrb = ADCSRB;
  copyPortc = PORTC;
  copyDdrc = DDRC;
  
  // Perform a conversion on Analog0, using the Vcc reference
  ADMUX = _BV(REFS0);
  
#if F_CPU > 16000000
  // ADC is enabled, divide by 32 prescaler
  ADCSRA = _BV(ADEN) | _BV(ADPS2) | _BV(ADPS0);
#elif F_CPU > 8000000
  // ADC is enabled, divide by 16 prescaler
  ADCSRA = _BV(ADEN) | _BV(ADPS2);
#else
  // ADC is enabled, divide by 8 prescaler
  ADCSRA = _BV(ADEN) | _BV(ADPS1) | _BV(ADPS0);
#endif

  // Autotriggering disabled
  ADCSRB = 0;

  // Pull Analog0 to ground
  PORTC &=~_BV(0);
  DDRC |= _BV(0);
  // Release Analog0, apply internal pullup
  DDRC &= ~_BV(0);
  PORTC |= _BV(1);
  // Immediately start a sample conversion on Analog0
  ADCSRA |= _BV(ADSC);
  // Wait for conversion to complete
  while (ADCSRA & _BV(ADSC)) PORTC ^= _BV(0);
  // Xor least significant bits together
  bit = ADCL;
  // We're ignoring the high bits, but we have to read them before the next conversion
  dummy = ADCH;

  // Restore register states
  ADMUX = copyAdmux;
  ADCSRA = copyAdcsra;
  ADCSRB = copyAdcsrb;
  PORTC = copyPortc;
  DDRC = copyDdrc;

  return bit & 1;
}

int TrueRandomClass::randomBitRaw2(void) {
  // Software whiten bits using Von Neumann algorithm
  //
  // von Neumann, John (1951). "Various techniques used in connection
  // with random digits". National Bureau of Standards Applied Math Series
  // 12:36.
  //
  for(;;) {
    int a = randomBitRaw() | (randomBitRaw()<<1);
    if (a==1) return 0; // 1 to 0 transition: log a zero bit
    if (a==2) return 1; // 0 to 1 transition: log a one bit
    // For other cases, try again.
  }
}

int TrueRandomClass::randomBit(void) {
  // Software whiten bits using Von Neumann algorithm
  //
  // von Neumann, John (1951). "Various techniques used in connection
  // with random digits". National Bureau of Standards Applied Math Series
  // 12:36.
  //
  for(;;) {
    int a = randomBitRaw2() | (randomBitRaw2()<<1);
    if (a==1) return 0; // 1 to 0 transition: log a zero bit
    if (a==2) return 1; // 0 to 1 transition: log a one bit
    // For other cases, try again.
  }
}

char TrueRandomClass::randomByte(void) {
  char result;
  uint8_t i;
  result = 0;
  for (i=8; i--;) result += result + randomBit();
  return result;
}

int TrueRandomClass::rand() {
  int result;
  uint8_t i;
  result = 0;
  for (i=15; i--;) result += result + randomBit();
  return result;
}

long TrueRandomClass::random() {
  long result;
  uint8_t i;
  result = 0;
  for (i=31; i--;) result += result + randomBit();
  return result;
}

long TrueRandomClass::random(long howBig) {
  long randomValue;
  long maxRandomValue;
  long topBit;
  long bitPosition;
  
  if (!howBig) return 0;
  randomValue = 0;
  if (howBig & (howBig-1)) {
    // Range is not a power of 2 - use slow method
    topBit = howBig-1;
    topBit |= topBit>>1;
    topBit |= topBit>>2;
    topBit |= topBit>>4;
    topBit |= topBit>>8;
    topBit |= topBit>>16;
    topBit = (topBit+1) >> 1;

    bitPosition = topBit;
    do {
      // Generate the next bit of the result
      if (randomBit()) randomValue |= bitPosition;

      // Check if bit 
      if (randomValue >= howBig) {
        // Number is over the top limit - start again.
        randomValue = 0;
        bitPosition = topBit;
      } else {
        // Repeat for next bit
        bitPosition >>= 1;
      }
    } while (bitPosition);
  } else {
    // Special case, howBig is a power of 2
    bitPosition = howBig >> 1;
    while (bitPosition) {
      if (randomBit()) randomValue |= bitPosition;
      bitPosition >>= 1;
    }
  }
  return randomValue;
}

long TrueRandomClass::random(long howSmall, long howBig) {
  if (howSmall >= howBig) return howSmall;
  long diff = howBig - howSmall;
  return TrueRandomClass::random(diff) + howSmall;
}

void TrueRandomClass::memfill(char* location, int size) {
  for (;size--;) *location++ = randomByte();
}

void TrueRandomClass::mac(uint8_t* macLocation) {
  memfill((char*)macLocation,6);
}

void TrueRandomClass::uuid(uint8_t* uuidLocation) {
  // Generate a Version 4 UUID according to RFC4122
  memfill((char*)uuidLocation,16);
  // Although the UUID contains 128 bits, only 122 of those are random.
  // The other 6 bits are fixed, to indicate a version number.
  uuidLocation[6] = 0x40 | (0x0F & uuidLocation[6]); 
  uuidLocation[8] = 0x80 | (0x3F & uuidLocation[8]);
}

TrueRandomClass TrueRandom;