summaryrefslogtreecommitdiff
path: root/src/RaceTrack.java
blob: 78e6e89fcc158ed0e8b1f5d7d3e61ed84b06bb25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

import robotrace.Vector;
import static java.lang.Math.*;

/**
 * Implementation of a race track that is made from Bezier segments.
 */
class RaceTrack {
    /**
     * Halfwidth of the ellipse.
     */
    protected static final int ELLIPSE_A = 10;

    /**
     * Halfheight of the ellipse. 
     */
    protected static final int ELLIPSE_B = 14;

    /**
     * Array with control points for the O-track.
     */
    private Vector[] controlPointsOTrack;

    /**
     * Array with control points for the L-track.
     */
    private Vector[] controlPointsLTrack;

    /**
     * Array with control points for the C-track.
     */
    private Vector[] controlPointsCTrack;

    /**
     * Array with control points for the custom track.
     */
    private Vector[] controlPointsCustomTrack;

    /**
     * Constructs the race track, sets up display lists.
     */
    public RaceTrack() {
        // code goes here ...
        
                           
    }

    /**
     * Draws this track, based on the selected track number.
     */
    public void draw(int trackNr) {

        // The test track is selected
        if (0 == trackNr) {
            // code goes here ...
        } else if (1 == trackNr) { // The O-track is selected
            // code goes here ...
        } else if (2 == trackNr) { // The L-track is selected
            // code goes here ...
        } else if (3 == trackNr) { // The C-track is selected
            // code goes here ...
        } else if (4 == trackNr) { // The custom track is selected
            // code goes here ...
        }
    }

    /**
     * Returns the position of the curve at 0 <= {@code t} <= 1.
     */
    public Vector getPoint(double t) {
        return new Vector(ELLIPSE_A * cos(2 * PI * t),
                          ELLIPSE_B * sin(2 * PI * t),
                          1);
    }

    /**
     * Returns the tangent of the curve at 0 <= {@code t} <= 1.
     */
    public Vector getTangent(double t) {
        /* 
         * Given a vector (-Y/B^2, X/A^2, 0) where X and Y are the coordinates 
         * of the point p on the ellipse. A is the HALFWIDTH of the ellipse and 
         * B is the HALFHEIGHT of the ellipse. 
         * 
         * Vector (X/A^2, Y/B^2, 0) is the normal vector through point p
         * and the center of the ellipse. Because the X and Y coordinates
         * are divided by the width and height of the ellipse, everything is
         * "normalized" to a circle. Hence a line through the origin and a point
         * p describes a normal vector for a point p on the ellipse. 
         * 
         * Since the dot product of the latter vector and the first (tangent) 
         * vector results in zero, we can say the normal vector is perpendicular
         * to the tangent vector. And because of that, the first vector 
         * describes the tangent vector of point p. 
         */
        Vector p = getPoint(t);
        
        return new Vector(-p.y()/(ELLIPSE_A * ELLIPSE_A),
                          p.x()/(ELLIPSE_B * ELLIPSE_B),
                          0).normalized();
    }
}